clippy_utils/
consts.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
#![allow(clippy::float_cmp)]

use crate::macros::HirNode;
use crate::source::{SpanRangeExt, walk_span_to_context};
use crate::{clip, is_direct_expn_of, sext, unsext};

use rustc_apfloat::Float;
use rustc_apfloat::ieee::{Half, Quad};
use rustc_ast::ast::{self, LitFloatType, LitKind};
use rustc_data_structures::sync::Lrc;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::{BinOp, BinOpKind, Block, ConstBlock, Expr, ExprKind, HirId, Item, ItemKind, Node, QPath, UnOp};
use rustc_lexer::tokenize;
use rustc_lint::LateContext;
use rustc_middle::mir::ConstValue;
use rustc_middle::mir::interpret::{Scalar, alloc_range};
use rustc_middle::ty::{self, FloatTy, IntTy, ParamEnv, ScalarInt, Ty, TyCtxt, TypeckResults, UintTy};
use rustc_middle::{bug, mir, span_bug};
use rustc_span::def_id::DefId;
use rustc_span::symbol::Ident;
use rustc_span::{SyntaxContext, sym};
use rustc_target::abi::Size;
use std::cell::Cell;
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::iter;

/// A `LitKind`-like enum to fold constant `Expr`s into.
#[derive(Debug, Clone)]
pub enum Constant<'tcx> {
    Adt(mir::Const<'tcx>),
    /// A `String` (e.g., "abc").
    Str(String),
    /// A binary string (e.g., `b"abc"`).
    Binary(Lrc<[u8]>),
    /// A single `char` (e.g., `'a'`).
    Char(char),
    /// An integer's bit representation.
    Int(u128),
    /// An `f16`.
    F16(f16),
    /// An `f32`.
    F32(f32),
    /// An `f64`.
    F64(f64),
    /// An `f128`.
    F128(f128),
    /// `true` or `false`.
    Bool(bool),
    /// An array of constants.
    Vec(Vec<Constant<'tcx>>),
    /// Also an array, but with only one constant, repeated N times.
    Repeat(Box<Constant<'tcx>>, u64),
    /// A tuple of constants.
    Tuple(Vec<Constant<'tcx>>),
    /// A raw pointer.
    RawPtr(u128),
    /// A reference
    Ref(Box<Constant<'tcx>>),
    /// A literal with syntax error.
    Err,
}

trait IntTypeBounds: Sized {
    type Output: PartialOrd;

    fn min_max(self) -> Option<(Self::Output, Self::Output)>;
    fn bits(self) -> Self::Output;
    fn ensure_fits(self, val: Self::Output) -> Option<Self::Output> {
        let (min, max) = self.min_max()?;
        (min <= val && val <= max).then_some(val)
    }
}
impl IntTypeBounds for UintTy {
    type Output = u128;
    fn min_max(self) -> Option<(Self::Output, Self::Output)> {
        Some(match self {
            UintTy::U8 => (u8::MIN.into(), u8::MAX.into()),
            UintTy::U16 => (u16::MIN.into(), u16::MAX.into()),
            UintTy::U32 => (u32::MIN.into(), u32::MAX.into()),
            UintTy::U64 => (u64::MIN.into(), u64::MAX.into()),
            UintTy::U128 => (u128::MIN, u128::MAX),
            UintTy::Usize => (usize::MIN.try_into().ok()?, usize::MAX.try_into().ok()?),
        })
    }
    fn bits(self) -> Self::Output {
        match self {
            UintTy::U8 => 8,
            UintTy::U16 => 16,
            UintTy::U32 => 32,
            UintTy::U64 => 64,
            UintTy::U128 => 128,
            UintTy::Usize => usize::BITS.into(),
        }
    }
}
impl IntTypeBounds for IntTy {
    type Output = i128;
    fn min_max(self) -> Option<(Self::Output, Self::Output)> {
        Some(match self {
            IntTy::I8 => (i8::MIN.into(), i8::MAX.into()),
            IntTy::I16 => (i16::MIN.into(), i16::MAX.into()),
            IntTy::I32 => (i32::MIN.into(), i32::MAX.into()),
            IntTy::I64 => (i64::MIN.into(), i64::MAX.into()),
            IntTy::I128 => (i128::MIN, i128::MAX),
            IntTy::Isize => (isize::MIN.try_into().ok()?, isize::MAX.try_into().ok()?),
        })
    }
    fn bits(self) -> Self::Output {
        match self {
            IntTy::I8 => 8,
            IntTy::I16 => 16,
            IntTy::I32 => 32,
            IntTy::I64 => 64,
            IntTy::I128 => 128,
            IntTy::Isize => isize::BITS.into(),
        }
    }
}

impl PartialEq for Constant<'_> {
    fn eq(&self, other: &Self) -> bool {
        match (self, other) {
            (Self::Str(ls), Self::Str(rs)) => ls == rs,
            (Self::Binary(l), Self::Binary(r)) => l == r,
            (&Self::Char(l), &Self::Char(r)) => l == r,
            (&Self::Int(l), &Self::Int(r)) => l == r,
            (&Self::F64(l), &Self::F64(r)) => {
                // We want `Fw32 == FwAny` and `FwAny == Fw64`, and by transitivity we must have
                // `Fw32 == Fw64`, so don’t compare them.
                // `to_bits` is required to catch non-matching 0.0, -0.0, and NaNs.
                l.to_bits() == r.to_bits()
            },
            (&Self::F32(l), &Self::F32(r)) => {
                // We want `Fw32 == FwAny` and `FwAny == Fw64`, and by transitivity we must have
                // `Fw32 == Fw64`, so don’t compare them.
                // `to_bits` is required to catch non-matching 0.0, -0.0, and NaNs.
                f64::from(l).to_bits() == f64::from(r).to_bits()
            },
            (&Self::Bool(l), &Self::Bool(r)) => l == r,
            (&Self::Vec(ref l), &Self::Vec(ref r)) | (&Self::Tuple(ref l), &Self::Tuple(ref r)) => l == r,
            (Self::Repeat(lv, ls), Self::Repeat(rv, rs)) => ls == rs && lv == rv,
            (Self::Ref(lb), Self::Ref(rb)) => *lb == *rb,
            // TODO: are there inter-type equalities?
            _ => false,
        }
    }
}

impl Hash for Constant<'_> {
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        std::mem::discriminant(self).hash(state);
        match *self {
            Self::Adt(ref elem) => {
                elem.hash(state);
            },
            Self::Str(ref s) => {
                s.hash(state);
            },
            Self::Binary(ref b) => {
                b.hash(state);
            },
            Self::Char(c) => {
                c.hash(state);
            },
            Self::Int(i) => {
                i.hash(state);
            },
            Self::F16(f) => {
                // FIXME(f16_f128): once conversions to/from `f128` are available on all platforms,
                f.to_bits().hash(state);
            },
            Self::F32(f) => {
                f64::from(f).to_bits().hash(state);
            },
            Self::F64(f) => {
                f.to_bits().hash(state);
            },
            Self::F128(f) => {
                f.to_bits().hash(state);
            },
            Self::Bool(b) => {
                b.hash(state);
            },
            Self::Vec(ref v) | Self::Tuple(ref v) => {
                v.hash(state);
            },
            Self::Repeat(ref c, l) => {
                c.hash(state);
                l.hash(state);
            },
            Self::RawPtr(u) => {
                u.hash(state);
            },
            Self::Ref(ref r) => {
                r.hash(state);
            },
            Self::Err => {},
        }
    }
}

impl Constant<'_> {
    pub fn partial_cmp(tcx: TyCtxt<'_>, cmp_type: Ty<'_>, left: &Self, right: &Self) -> Option<Ordering> {
        match (left, right) {
            (Self::Str(ls), Self::Str(rs)) => Some(ls.cmp(rs)),
            (Self::Char(l), Self::Char(r)) => Some(l.cmp(r)),
            (&Self::Int(l), &Self::Int(r)) => match *cmp_type.kind() {
                ty::Int(int_ty) => Some(sext(tcx, l, int_ty).cmp(&sext(tcx, r, int_ty))),
                ty::Uint(_) => Some(l.cmp(&r)),
                _ => bug!("Not an int type"),
            },
            (&Self::F64(l), &Self::F64(r)) => l.partial_cmp(&r),
            (&Self::F32(l), &Self::F32(r)) => l.partial_cmp(&r),
            (Self::Bool(l), Self::Bool(r)) => Some(l.cmp(r)),
            (Self::Tuple(l), Self::Tuple(r)) if l.len() == r.len() => match *cmp_type.kind() {
                ty::Tuple(tys) if tys.len() == l.len() => l
                    .iter()
                    .zip(r)
                    .zip(tys)
                    .map(|((li, ri), cmp_type)| Self::partial_cmp(tcx, cmp_type, li, ri))
                    .find(|r| r.map_or(true, |o| o != Ordering::Equal))
                    .unwrap_or_else(|| Some(l.len().cmp(&r.len()))),
                _ => None,
            },
            (Self::Vec(l), Self::Vec(r)) => {
                let (ty::Array(cmp_type, _) | ty::Slice(cmp_type)) = *cmp_type.kind() else {
                    return None;
                };
                iter::zip(l, r)
                    .map(|(li, ri)| Self::partial_cmp(tcx, cmp_type, li, ri))
                    .find(|r| r.map_or(true, |o| o != Ordering::Equal))
                    .unwrap_or_else(|| Some(l.len().cmp(&r.len())))
            },
            (Self::Repeat(lv, ls), Self::Repeat(rv, rs)) => {
                match Self::partial_cmp(
                    tcx,
                    match *cmp_type.kind() {
                        ty::Array(ty, _) => ty,
                        _ => return None,
                    },
                    lv,
                    rv,
                ) {
                    Some(Ordering::Equal) => Some(ls.cmp(rs)),
                    x => x,
                }
            },
            (Self::Ref(lb), Self::Ref(rb)) => Self::partial_cmp(
                tcx,
                match *cmp_type.kind() {
                    ty::Ref(_, ty, _) => ty,
                    _ => return None,
                },
                lb,
                rb,
            ),
            // TODO: are there any useful inter-type orderings?
            _ => None,
        }
    }

    /// Returns the integer value or `None` if `self` or `val_type` is not integer type.
    pub fn int_value(&self, tcx: TyCtxt<'_>, val_type: Ty<'_>) -> Option<FullInt> {
        if let Constant::Int(const_int) = *self {
            match *val_type.kind() {
                ty::Int(ity) => Some(FullInt::S(sext(tcx, const_int, ity))),
                ty::Uint(_) => Some(FullInt::U(const_int)),
                _ => None,
            }
        } else {
            None
        }
    }

    #[must_use]
    pub fn peel_refs(mut self) -> Self {
        while let Constant::Ref(r) = self {
            self = *r;
        }
        self
    }

    fn parse_f16(s: &str) -> Self {
        let f: Half = s.parse().unwrap();
        Self::F16(f16::from_bits(f.to_bits().try_into().unwrap()))
    }

    fn parse_f128(s: &str) -> Self {
        let f: Quad = s.parse().unwrap();
        Self::F128(f128::from_bits(f.to_bits()))
    }
}

/// Parses a `LitKind` to a `Constant`.
pub fn lit_to_mir_constant<'tcx>(lit: &LitKind, ty: Option<Ty<'tcx>>) -> Constant<'tcx> {
    match *lit {
        LitKind::Str(ref is, _) => Constant::Str(is.to_string()),
        LitKind::Byte(b) => Constant::Int(u128::from(b)),
        LitKind::ByteStr(ref s, _) | LitKind::CStr(ref s, _) => Constant::Binary(Lrc::clone(s)),
        LitKind::Char(c) => Constant::Char(c),
        LitKind::Int(n, _) => Constant::Int(n.get()),
        LitKind::Float(ref is, LitFloatType::Suffixed(fty)) => match fty {
            // FIXME(f16_f128): just use `parse()` directly when available for `f16`/`f128`
            ast::FloatTy::F16 => Constant::parse_f16(is.as_str()),
            ast::FloatTy::F32 => Constant::F32(is.as_str().parse().unwrap()),
            ast::FloatTy::F64 => Constant::F64(is.as_str().parse().unwrap()),
            ast::FloatTy::F128 => Constant::parse_f128(is.as_str()),
        },
        LitKind::Float(ref is, LitFloatType::Unsuffixed) => match ty.expect("type of float is known").kind() {
            ty::Float(FloatTy::F16) => Constant::parse_f16(is.as_str()),
            ty::Float(FloatTy::F32) => Constant::F32(is.as_str().parse().unwrap()),
            ty::Float(FloatTy::F64) => Constant::F64(is.as_str().parse().unwrap()),
            ty::Float(FloatTy::F128) => Constant::parse_f128(is.as_str()),
            _ => bug!(),
        },
        LitKind::Bool(b) => Constant::Bool(b),
        LitKind::Err(_) => Constant::Err,
    }
}

/// The source of a constant value.
#[derive(Clone, Copy)]
pub enum ConstantSource {
    /// The value is determined solely from the expression.
    Local,
    /// The value is dependent on a defined constant.
    Constant,
    /// The value is dependent on a constant defined in `core` crate.
    CoreConstant,
}
impl ConstantSource {
    pub fn is_local(self) -> bool {
        matches!(self, Self::Local)
    }
}

#[derive(Copy, Clone, Debug, Eq)]
pub enum FullInt {
    S(i128),
    U(u128),
}

impl PartialEq for FullInt {
    #[must_use]
    fn eq(&self, other: &Self) -> bool {
        self.cmp(other) == Ordering::Equal
    }
}

impl PartialOrd for FullInt {
    #[must_use]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for FullInt {
    #[must_use]
    fn cmp(&self, other: &Self) -> Ordering {
        use FullInt::{S, U};

        fn cmp_s_u(s: i128, u: u128) -> Ordering {
            u128::try_from(s).map_or(Ordering::Less, |x| x.cmp(&u))
        }

        match (*self, *other) {
            (S(s), S(o)) => s.cmp(&o),
            (U(s), U(o)) => s.cmp(&o),
            (S(s), U(o)) => cmp_s_u(s, o),
            (U(s), S(o)) => cmp_s_u(o, s).reverse(),
        }
    }
}

/// The context required to evaluate a constant expression.
///
/// This is currently limited to constant folding and reading the value of named constants.
pub struct ConstEvalCtxt<'tcx> {
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    typeck: &'tcx TypeckResults<'tcx>,
    source: Cell<ConstantSource>,
}

impl<'tcx> ConstEvalCtxt<'tcx> {
    /// Creates the evaluation context from the lint context. This requires the lint context to be
    /// in a body (i.e. `cx.enclosing_body.is_some()`).
    pub fn new(cx: &LateContext<'tcx>) -> Self {
        Self {
            tcx: cx.tcx,
            param_env: cx.param_env,
            typeck: cx.typeck_results(),
            source: Cell::new(ConstantSource::Local),
        }
    }

    /// Creates an evaluation context.
    pub fn with_env(tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, typeck: &'tcx TypeckResults<'tcx>) -> Self {
        Self {
            tcx,
            param_env,
            typeck,
            source: Cell::new(ConstantSource::Local),
        }
    }

    /// Attempts to evaluate the expression and returns both the value and whether it's dependant on
    /// other items.
    pub fn eval_with_source(&self, e: &Expr<'_>) -> Option<(Constant<'tcx>, ConstantSource)> {
        self.source.set(ConstantSource::Local);
        self.expr(e).map(|c| (c, self.source.get()))
    }

    /// Attempts to evaluate the expression.
    pub fn eval(&self, e: &Expr<'_>) -> Option<Constant<'tcx>> {
        self.expr(e)
    }

    /// Attempts to evaluate the expression without accessing other items.
    pub fn eval_simple(&self, e: &Expr<'_>) -> Option<Constant<'tcx>> {
        match self.eval_with_source(e) {
            Some((x, ConstantSource::Local)) => Some(x),
            _ => None,
        }
    }

    /// Attempts to evaluate the expression as an integer without accessing other items.
    pub fn eval_full_int(&self, e: &Expr<'_>) -> Option<FullInt> {
        match self.eval_with_source(e) {
            Some((x, ConstantSource::Local)) => x.int_value(self.tcx, self.typeck.expr_ty(e)),
            _ => None,
        }
    }

    /// Simple constant folding: Insert an expression, get a constant or none.
    fn expr(&self, e: &Expr<'_>) -> Option<Constant<'tcx>> {
        match e.kind {
            ExprKind::ConstBlock(ConstBlock { body, .. }) => self.expr(self.tcx.hir().body(body).value),
            ExprKind::DropTemps(e) => self.expr(e),
            ExprKind::Path(ref qpath) => {
                let is_core_crate = if let Some(def_id) = self.typeck.qpath_res(qpath, e.hir_id()).opt_def_id() {
                    self.tcx.crate_name(def_id.krate) == sym::core
                } else {
                    false
                };
                self.fetch_path_and_apply(qpath, e.hir_id, self.typeck.expr_ty(e), |self_, result| {
                    let result = mir_to_const(self_.tcx, result)?;
                    // If source is already Constant we wouldn't want to override it with CoreConstant
                    self_.source.set(
                        if is_core_crate && !matches!(self_.source.get(), ConstantSource::Constant) {
                            ConstantSource::CoreConstant
                        } else {
                            ConstantSource::Constant
                        },
                    );
                    Some(result)
                })
            },
            ExprKind::Block(block, _) => self.block(block),
            ExprKind::Lit(lit) => {
                if is_direct_expn_of(e.span, "cfg").is_some() {
                    None
                } else {
                    Some(lit_to_mir_constant(&lit.node, self.typeck.expr_ty_opt(e)))
                }
            },
            ExprKind::Array(vec) => self.multi(vec).map(Constant::Vec),
            ExprKind::Tup(tup) => self.multi(tup).map(Constant::Tuple),
            ExprKind::Repeat(value, _) => {
                let n = match self.typeck.expr_ty(e).kind() {
                    ty::Array(_, n) => n.try_to_target_usize(self.tcx)?,
                    _ => span_bug!(e.span, "typeck error"),
                };
                self.expr(value).map(|v| Constant::Repeat(Box::new(v), n))
            },
            ExprKind::Unary(op, operand) => self.expr(operand).and_then(|o| match op {
                UnOp::Not => self.constant_not(&o, self.typeck.expr_ty(e)),
                UnOp::Neg => self.constant_negate(&o, self.typeck.expr_ty(e)),
                UnOp::Deref => Some(if let Constant::Ref(r) = o { *r } else { o }),
            }),
            ExprKind::If(cond, then, ref otherwise) => self.ifthenelse(cond, then, *otherwise),
            ExprKind::Binary(op, left, right) => self.binop(op, left, right),
            ExprKind::Call(callee, []) => {
                // We only handle a few const functions for now.
                if let ExprKind::Path(qpath) = &callee.kind
                    && let Some(did) = self.typeck.qpath_res(qpath, callee.hir_id).opt_def_id()
                {
                    match self.tcx.get_diagnostic_name(did) {
                        Some(sym::i8_legacy_fn_max_value) => Some(Constant::Int(i8::MAX as u128)),
                        Some(sym::i16_legacy_fn_max_value) => Some(Constant::Int(i16::MAX as u128)),
                        Some(sym::i32_legacy_fn_max_value) => Some(Constant::Int(i32::MAX as u128)),
                        Some(sym::i64_legacy_fn_max_value) => Some(Constant::Int(i64::MAX as u128)),
                        Some(sym::i128_legacy_fn_max_value) => Some(Constant::Int(i128::MAX as u128)),
                        _ => None,
                    }
                } else {
                    None
                }
            },
            ExprKind::Index(arr, index, _) => self.index(arr, index),
            ExprKind::AddrOf(_, _, inner) => self.expr(inner).map(|r| Constant::Ref(Box::new(r))),
            ExprKind::Field(local_expr, ref field) => {
                let result = self.expr(local_expr);
                if let Some(Constant::Adt(constant)) = &self.expr(local_expr)
                    && let ty::Adt(adt_def, _) = constant.ty().kind()
                    && adt_def.is_struct()
                    && let Some(desired_field) = field_of_struct(*adt_def, self.tcx, *constant, field)
                {
                    mir_to_const(self.tcx, desired_field)
                } else {
                    result
                }
            },
            _ => None,
        }
    }

    /// Simple constant folding to determine if an expression is an empty slice, str, array, …
    /// `None` will be returned if the constness cannot be determined, or if the resolution
    /// leaves the local crate.
    pub fn eval_is_empty(&self, e: &Expr<'_>) -> Option<bool> {
        match e.kind {
            ExprKind::ConstBlock(ConstBlock { body, .. }) => self.eval_is_empty(self.tcx.hir().body(body).value),
            ExprKind::DropTemps(e) => self.eval_is_empty(e),
            ExprKind::Path(ref qpath) => {
                if !self
                    .typeck
                    .qpath_res(qpath, e.hir_id)
                    .opt_def_id()
                    .is_some_and(DefId::is_local)
                {
                    return None;
                }
                self.fetch_path_and_apply(qpath, e.hir_id, self.typeck.expr_ty(e), |self_, result| {
                    mir_is_empty(self_.tcx, result)
                })
            },
            ExprKind::Lit(lit) => {
                if is_direct_expn_of(e.span, "cfg").is_some() {
                    None
                } else {
                    match &lit.node {
                        LitKind::Str(is, _) => Some(is.is_empty()),
                        LitKind::ByteStr(s, _) | LitKind::CStr(s, _) => Some(s.is_empty()),
                        _ => None,
                    }
                }
            },
            ExprKind::Array(vec) => self.multi(vec).map(|v| v.is_empty()),
            ExprKind::Repeat(..) => {
                if let ty::Array(_, n) = self.typeck.expr_ty(e).kind() {
                    Some(n.try_to_target_usize(self.tcx)? == 0)
                } else {
                    span_bug!(e.span, "typeck error");
                }
            },
            _ => None,
        }
    }

    #[expect(clippy::cast_possible_wrap)]
    fn constant_not(&self, o: &Constant<'tcx>, ty: Ty<'_>) -> Option<Constant<'tcx>> {
        use self::Constant::{Bool, Int};
        match *o {
            Bool(b) => Some(Bool(!b)),
            Int(value) => {
                let value = !value;
                match *ty.kind() {
                    ty::Int(ity) => Some(Int(unsext(self.tcx, value as i128, ity))),
                    ty::Uint(ity) => Some(Int(clip(self.tcx, value, ity))),
                    _ => None,
                }
            },
            _ => None,
        }
    }

    fn constant_negate(&self, o: &Constant<'tcx>, ty: Ty<'_>) -> Option<Constant<'tcx>> {
        use self::Constant::{F32, F64, Int};
        match *o {
            Int(value) => {
                let ty::Int(ity) = *ty.kind() else { return None };
                let (min, _) = ity.min_max()?;
                // sign extend
                let value = sext(self.tcx, value, ity);

                // Applying unary - to the most negative value of any signed integer type panics.
                if value == min {
                    return None;
                }

                let value = value.checked_neg()?;
                // clear unused bits
                Some(Int(unsext(self.tcx, value, ity)))
            },
            F32(f) => Some(F32(-f)),
            F64(f) => Some(F64(-f)),
            _ => None,
        }
    }

    /// Create `Some(Vec![..])` of all constants, unless there is any
    /// non-constant part.
    fn multi(&self, vec: &[Expr<'_>]) -> Option<Vec<Constant<'tcx>>> {
        vec.iter().map(|elem| self.expr(elem)).collect::<Option<_>>()
    }

    /// Lookup a possibly constant expression from an `ExprKind::Path` and apply a function on it.
    fn fetch_path_and_apply<T, F>(&self, qpath: &QPath<'_>, id: HirId, ty: Ty<'tcx>, f: F) -> Option<T>
    where
        F: FnOnce(&Self, mir::Const<'tcx>) -> Option<T>,
    {
        let res = self.typeck.qpath_res(qpath, id);
        match res {
            Res::Def(DefKind::Const | DefKind::AssocConst, def_id) => {
                // Check if this constant is based on `cfg!(..)`,
                // which is NOT constant for our purposes.
                if let Some(node) = self.tcx.hir().get_if_local(def_id)
                    && let Node::Item(Item {
                        kind: ItemKind::Const(.., body_id),
                        ..
                    }) = node
                    && let Node::Expr(Expr {
                        kind: ExprKind::Lit(_),
                        span,
                        ..
                    }) = self.tcx.hir_node(body_id.hir_id)
                    && is_direct_expn_of(*span, "cfg").is_some()
                {
                    return None;
                }

                let args = self.typeck.node_args(id);
                let result = self
                    .tcx
                    .const_eval_resolve(self.param_env, mir::UnevaluatedConst::new(def_id, args), qpath.span())
                    .ok()
                    .map(|val| mir::Const::from_value(val, ty))?;
                f(self, result)
            },
            _ => None,
        }
    }

    fn index(&self, lhs: &'_ Expr<'_>, index: &'_ Expr<'_>) -> Option<Constant<'tcx>> {
        let lhs = self.expr(lhs);
        let index = self.expr(index);

        match (lhs, index) {
            (Some(Constant::Vec(vec)), Some(Constant::Int(index))) => match vec.get(index as usize) {
                Some(Constant::F16(x)) => Some(Constant::F16(*x)),
                Some(Constant::F32(x)) => Some(Constant::F32(*x)),
                Some(Constant::F64(x)) => Some(Constant::F64(*x)),
                Some(Constant::F128(x)) => Some(Constant::F128(*x)),
                _ => None,
            },
            (Some(Constant::Vec(vec)), _) => {
                if !vec.is_empty() && vec.iter().all(|x| *x == vec[0]) {
                    match vec.first() {
                        Some(Constant::F16(x)) => Some(Constant::F16(*x)),
                        Some(Constant::F32(x)) => Some(Constant::F32(*x)),
                        Some(Constant::F64(x)) => Some(Constant::F64(*x)),
                        Some(Constant::F128(x)) => Some(Constant::F128(*x)),
                        _ => None,
                    }
                } else {
                    None
                }
            },
            _ => None,
        }
    }

    /// A block can only yield a constant if it has exactly one constant expression.
    fn block(&self, block: &Block<'_>) -> Option<Constant<'tcx>> {
        if block.stmts.is_empty()
            && let Some(expr) = block.expr
        {
            // Try to detect any `cfg`ed statements or empty macro expansions.
            let span = block.span.data();
            if span.ctxt == SyntaxContext::root() {
                if let Some(expr_span) = walk_span_to_context(expr.span, span.ctxt)
                    && let expr_lo = expr_span.lo()
                    && expr_lo >= span.lo
                    && let Some(src) = (span.lo..expr_lo).get_source_range(&self.tcx)
                    && let Some(src) = src.as_str()
                {
                    use rustc_lexer::TokenKind::{BlockComment, LineComment, OpenBrace, Semi, Whitespace};
                    if !tokenize(src)
                        .map(|t| t.kind)
                        .filter(|t| !matches!(t, Whitespace | LineComment { .. } | BlockComment { .. } | Semi))
                        .eq([OpenBrace])
                    {
                        self.source.set(ConstantSource::Constant);
                    }
                } else {
                    // Unable to access the source. Assume a non-local dependency.
                    self.source.set(ConstantSource::Constant);
                }
            }

            self.expr(expr)
        } else {
            None
        }
    }

    fn ifthenelse(&self, cond: &Expr<'_>, then: &Expr<'_>, otherwise: Option<&Expr<'_>>) -> Option<Constant<'tcx>> {
        if let Some(Constant::Bool(b)) = self.expr(cond) {
            if b {
                self.expr(then)
            } else {
                otherwise.as_ref().and_then(|expr| self.expr(expr))
            }
        } else {
            None
        }
    }

    fn binop(&self, op: BinOp, left: &Expr<'_>, right: &Expr<'_>) -> Option<Constant<'tcx>> {
        let l = self.expr(left)?;
        let r = self.expr(right);
        match (l, r) {
            (Constant::Int(l), Some(Constant::Int(r))) => match *self.typeck.expr_ty_opt(left)?.kind() {
                ty::Int(ity) => {
                    let (ty_min_value, _) = ity.min_max()?;
                    let bits = ity.bits();
                    let l = sext(self.tcx, l, ity);
                    let r = sext(self.tcx, r, ity);

                    // Using / or %, where the left-hand argument is the smallest integer of a signed integer type and
                    // the right-hand argument is -1 always panics, even with overflow-checks disabled
                    if let BinOpKind::Div | BinOpKind::Rem = op.node
                        && l == ty_min_value
                        && r == -1
                    {
                        return None;
                    }

                    let zext = |n: i128| Constant::Int(unsext(self.tcx, n, ity));
                    match op.node {
                        // When +, * or binary - create a value greater than the maximum value, or less than
                        // the minimum value that can be stored, it panics.
                        BinOpKind::Add => l.checked_add(r).and_then(|n| ity.ensure_fits(n)).map(zext),
                        BinOpKind::Sub => l.checked_sub(r).and_then(|n| ity.ensure_fits(n)).map(zext),
                        BinOpKind::Mul => l.checked_mul(r).and_then(|n| ity.ensure_fits(n)).map(zext),
                        BinOpKind::Div if r != 0 => l.checked_div(r).map(zext),
                        BinOpKind::Rem if r != 0 => l.checked_rem(r).map(zext),
                        // Using << or >> where the right-hand argument is greater than or equal to the number of bits
                        // in the type of the left-hand argument, or is negative panics.
                        BinOpKind::Shr if r < bits && !r.is_negative() => l.checked_shr(r.try_into().ok()?).map(zext),
                        BinOpKind::Shl if r < bits && !r.is_negative() => l.checked_shl(r.try_into().ok()?).map(zext),
                        BinOpKind::BitXor => Some(zext(l ^ r)),
                        BinOpKind::BitOr => Some(zext(l | r)),
                        BinOpKind::BitAnd => Some(zext(l & r)),
                        BinOpKind::Eq => Some(Constant::Bool(l == r)),
                        BinOpKind::Ne => Some(Constant::Bool(l != r)),
                        BinOpKind::Lt => Some(Constant::Bool(l < r)),
                        BinOpKind::Le => Some(Constant::Bool(l <= r)),
                        BinOpKind::Ge => Some(Constant::Bool(l >= r)),
                        BinOpKind::Gt => Some(Constant::Bool(l > r)),
                        _ => None,
                    }
                },
                ty::Uint(ity) => {
                    let bits = ity.bits();

                    match op.node {
                        BinOpKind::Add => l.checked_add(r).and_then(|n| ity.ensure_fits(n)).map(Constant::Int),
                        BinOpKind::Sub => l.checked_sub(r).and_then(|n| ity.ensure_fits(n)).map(Constant::Int),
                        BinOpKind::Mul => l.checked_mul(r).and_then(|n| ity.ensure_fits(n)).map(Constant::Int),
                        BinOpKind::Div => l.checked_div(r).map(Constant::Int),
                        BinOpKind::Rem => l.checked_rem(r).map(Constant::Int),
                        BinOpKind::Shr if r < bits => l.checked_shr(r.try_into().ok()?).map(Constant::Int),
                        BinOpKind::Shl if r < bits => l.checked_shl(r.try_into().ok()?).map(Constant::Int),
                        BinOpKind::BitXor => Some(Constant::Int(l ^ r)),
                        BinOpKind::BitOr => Some(Constant::Int(l | r)),
                        BinOpKind::BitAnd => Some(Constant::Int(l & r)),
                        BinOpKind::Eq => Some(Constant::Bool(l == r)),
                        BinOpKind::Ne => Some(Constant::Bool(l != r)),
                        BinOpKind::Lt => Some(Constant::Bool(l < r)),
                        BinOpKind::Le => Some(Constant::Bool(l <= r)),
                        BinOpKind::Ge => Some(Constant::Bool(l >= r)),
                        BinOpKind::Gt => Some(Constant::Bool(l > r)),
                        _ => None,
                    }
                },
                _ => None,
            },
            // FIXME(f16_f128): add these types when binary operations are available on all platforms
            (Constant::F32(l), Some(Constant::F32(r))) => match op.node {
                BinOpKind::Add => Some(Constant::F32(l + r)),
                BinOpKind::Sub => Some(Constant::F32(l - r)),
                BinOpKind::Mul => Some(Constant::F32(l * r)),
                BinOpKind::Div => Some(Constant::F32(l / r)),
                BinOpKind::Rem => Some(Constant::F32(l % r)),
                BinOpKind::Eq => Some(Constant::Bool(l == r)),
                BinOpKind::Ne => Some(Constant::Bool(l != r)),
                BinOpKind::Lt => Some(Constant::Bool(l < r)),
                BinOpKind::Le => Some(Constant::Bool(l <= r)),
                BinOpKind::Ge => Some(Constant::Bool(l >= r)),
                BinOpKind::Gt => Some(Constant::Bool(l > r)),
                _ => None,
            },
            (Constant::F64(l), Some(Constant::F64(r))) => match op.node {
                BinOpKind::Add => Some(Constant::F64(l + r)),
                BinOpKind::Sub => Some(Constant::F64(l - r)),
                BinOpKind::Mul => Some(Constant::F64(l * r)),
                BinOpKind::Div => Some(Constant::F64(l / r)),
                BinOpKind::Rem => Some(Constant::F64(l % r)),
                BinOpKind::Eq => Some(Constant::Bool(l == r)),
                BinOpKind::Ne => Some(Constant::Bool(l != r)),
                BinOpKind::Lt => Some(Constant::Bool(l < r)),
                BinOpKind::Le => Some(Constant::Bool(l <= r)),
                BinOpKind::Ge => Some(Constant::Bool(l >= r)),
                BinOpKind::Gt => Some(Constant::Bool(l > r)),
                _ => None,
            },
            (l, r) => match (op.node, l, r) {
                (BinOpKind::And, Constant::Bool(false), _) => Some(Constant::Bool(false)),
                (BinOpKind::Or, Constant::Bool(true), _) => Some(Constant::Bool(true)),
                (BinOpKind::And, Constant::Bool(true), Some(r)) | (BinOpKind::Or, Constant::Bool(false), Some(r)) => {
                    Some(r)
                },
                (BinOpKind::BitXor, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l ^ r)),
                (BinOpKind::BitAnd, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l & r)),
                (BinOpKind::BitOr, Constant::Bool(l), Some(Constant::Bool(r))) => Some(Constant::Bool(l | r)),
                _ => None,
            },
        }
    }
}

pub fn mir_to_const<'tcx>(tcx: TyCtxt<'tcx>, result: mir::Const<'tcx>) -> Option<Constant<'tcx>> {
    let mir::Const::Val(val, _) = result else {
        // We only work on evaluated consts.
        return None;
    };
    match (val, result.ty().kind()) {
        (ConstValue::Scalar(Scalar::Int(int)), _) => match result.ty().kind() {
            ty::Adt(adt_def, _) if adt_def.is_struct() => Some(Constant::Adt(result)),
            ty::Bool => Some(Constant::Bool(int == ScalarInt::TRUE)),
            ty::Uint(_) | ty::Int(_) => Some(Constant::Int(int.to_bits(int.size()))),
            ty::Float(FloatTy::F16) => Some(Constant::F16(f16::from_bits(int.into()))),
            ty::Float(FloatTy::F32) => Some(Constant::F32(f32::from_bits(int.into()))),
            ty::Float(FloatTy::F64) => Some(Constant::F64(f64::from_bits(int.into()))),
            ty::Float(FloatTy::F128) => Some(Constant::F128(f128::from_bits(int.into()))),
            ty::RawPtr(_, _) => Some(Constant::RawPtr(int.to_bits(int.size()))),
            _ => None,
        },
        (_, ty::Ref(_, inner_ty, _)) if matches!(inner_ty.kind(), ty::Str) => {
            let data = val.try_get_slice_bytes_for_diagnostics(tcx)?;
            String::from_utf8(data.to_owned()).ok().map(Constant::Str)
        },
        (_, ty::Adt(adt_def, _)) if adt_def.is_struct() => Some(Constant::Adt(result)),
        (ConstValue::Indirect { alloc_id, offset }, ty::Array(sub_type, len)) => {
            let alloc = tcx.global_alloc(alloc_id).unwrap_memory().inner();
            let len = len.try_to_target_usize(tcx)?;
            let ty::Float(flt) = sub_type.kind() else {
                return None;
            };
            let size = Size::from_bits(flt.bit_width());
            let mut res = Vec::new();
            for idx in 0..len {
                let range = alloc_range(offset + size * idx, size);
                let val = alloc.read_scalar(&tcx, range, /* read_provenance */ false).ok()?;
                res.push(match flt {
                    FloatTy::F16 => Constant::F16(f16::from_bits(val.to_u16().discard_err()?)),
                    FloatTy::F32 => Constant::F32(f32::from_bits(val.to_u32().discard_err()?)),
                    FloatTy::F64 => Constant::F64(f64::from_bits(val.to_u64().discard_err()?)),
                    FloatTy::F128 => Constant::F128(f128::from_bits(val.to_u128().discard_err()?)),
                });
            }
            Some(Constant::Vec(res))
        },
        _ => None,
    }
}

fn mir_is_empty<'tcx>(tcx: TyCtxt<'tcx>, result: mir::Const<'tcx>) -> Option<bool> {
    let mir::Const::Val(val, _) = result else {
        // We only work on evaluated consts.
        return None;
    };
    match (val, result.ty().kind()) {
        (_, ty::Ref(_, inner_ty, _)) => match inner_ty.kind() {
            ty::Str | ty::Slice(_) => {
                if let ConstValue::Indirect { alloc_id, offset } = val {
                    // Get the length from the slice, using the same formula as
                    // [`ConstValue::try_get_slice_bytes_for_diagnostics`].
                    let a = tcx.global_alloc(alloc_id).unwrap_memory().inner();
                    let ptr_size = tcx.data_layout.pointer_size;
                    if a.size() < offset + 2 * ptr_size {
                        // (partially) dangling reference
                        return None;
                    }
                    let len = a
                        .read_scalar(&tcx, alloc_range(offset + ptr_size, ptr_size), false)
                        .ok()?
                        .to_target_usize(&tcx)
                        .discard_err()?;
                    Some(len == 0)
                } else {
                    None
                }
            },
            ty::Array(_, len) => Some(len.try_to_target_usize(tcx)? == 0),
            _ => None,
        },
        (ConstValue::Indirect { .. }, ty::Array(_, len)) => Some(len.try_to_target_usize(tcx)? == 0),
        (ConstValue::ZeroSized, _) => Some(true),
        _ => None,
    }
}

fn field_of_struct<'tcx>(
    adt_def: ty::AdtDef<'tcx>,
    tcx: TyCtxt<'tcx>,
    result: mir::Const<'tcx>,
    field: &Ident,
) -> Option<mir::Const<'tcx>> {
    if let mir::Const::Val(result, ty) = result
        && let Some(dc) = tcx.try_destructure_mir_constant_for_user_output(result, ty)
        && let Some(dc_variant) = dc.variant
        && let Some(variant) = adt_def.variants().get(dc_variant)
        && let Some(field_idx) = variant.fields.iter().position(|el| el.name == field.name)
        && let Some(&(val, ty)) = dc.fields.get(field_idx)
    {
        Some(mir::Const::Val(val, ty))
    } else {
        None
    }
}