clippy_utils/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
#![feature(array_chunks)]
#![feature(box_patterns)]
#![feature(f128)]
#![feature(f16)]
#![feature(if_let_guard)]
#![feature(macro_metavar_expr_concat)]
#![feature(let_chains)]
#![feature(never_type)]
#![feature(rustc_private)]
#![feature(assert_matches)]
#![feature(unwrap_infallible)]
#![recursion_limit = "512"]
#![allow(
    clippy::missing_errors_doc,
    clippy::missing_panics_doc,
    clippy::must_use_candidate,
    rustc::diagnostic_outside_of_impl,
    rustc::untranslatable_diagnostic
)]
#![warn(
    trivial_casts,
    trivial_numeric_casts,
    rust_2018_idioms,
    unused_lifetimes,
    unused_qualifications,
    rustc::internal
)]

// FIXME: switch to something more ergonomic here, once available.
// (Currently there is no way to opt into sysroot crates without `extern crate`.)
extern crate rustc_ast;
extern crate rustc_ast_pretty;
extern crate rustc_attr;
extern crate rustc_const_eval;
extern crate rustc_data_structures;
// The `rustc_driver` crate seems to be required in order to use the `rust_ast` crate.
#[allow(unused_extern_crates)]
extern crate rustc_driver;
extern crate rustc_errors;
extern crate rustc_hir;
extern crate rustc_hir_typeck;
extern crate rustc_index;
extern crate rustc_infer;
extern crate rustc_lexer;
extern crate rustc_lint;
extern crate rustc_middle;
extern crate rustc_mir_dataflow;
extern crate rustc_session;
extern crate rustc_span;
extern crate rustc_target;
extern crate rustc_trait_selection;

#[macro_use]
pub mod sym_helper;

pub mod ast_utils;
pub mod attrs;
mod check_proc_macro;
pub mod comparisons;
pub mod consts;
pub mod diagnostics;
pub mod eager_or_lazy;
pub mod higher;
mod hir_utils;
pub mod macros;
pub mod mir;
pub mod numeric_literal;
pub mod paths;
pub mod ptr;
pub mod qualify_min_const_fn;
pub mod source;
pub mod str_utils;
pub mod sugg;
pub mod ty;
pub mod usage;
pub mod visitors;

pub use self::attrs::*;
pub use self::check_proc_macro::{is_from_proc_macro, is_span_if, is_span_match};
pub use self::hir_utils::{
    HirEqInterExpr, SpanlessEq, SpanlessHash, both, count_eq, eq_expr_value, hash_expr, hash_stmt, is_bool, over,
};

use core::mem;
use core::ops::ControlFlow;
use std::collections::hash_map::Entry;
use std::hash::BuildHasherDefault;
use std::iter::{once, repeat};
use std::sync::{Mutex, MutexGuard, OnceLock};

use clippy_config::types::DisallowedPath;
use itertools::Itertools;
use rustc_ast::ast::{self, LitKind, RangeLimits};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::packed::Pu128;
use rustc_data_structures::unhash::UnhashMap;
use rustc_hir::LangItem::{OptionNone, OptionSome, ResultErr, ResultOk};
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LOCAL_CRATE, LocalDefId, LocalModDefId};
use rustc_hir::definitions::{DefPath, DefPathData};
use rustc_hir::hir_id::{HirIdMap, HirIdSet};
use rustc_hir::intravisit::{FnKind, Visitor, walk_expr};
use rustc_hir::{
    self as hir, Arm, ArrayLen, BindingMode, Block, BlockCheckMode, Body, ByRef, Closure, ConstArgKind, ConstContext,
    Destination, Expr, ExprField, ExprKind, FnDecl, FnRetTy, GenericArgs, HirId, Impl, ImplItem, ImplItemKind,
    ImplItemRef, Item, ItemKind, LangItem, LetStmt, MatchSource, Mutability, Node, OwnerId, OwnerNode, Param, Pat,
    PatKind, Path, PathSegment, PrimTy, QPath, Stmt, StmtKind, TraitItem, TraitItemKind, TraitItemRef, TraitRef,
    TyKind, UnOp, def,
};
use rustc_lexer::{TokenKind, tokenize};
use rustc_lint::{LateContext, Level, Lint, LintContext};
use rustc_middle::hir::place::PlaceBase;
use rustc_middle::mir::Const;
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AutoBorrow};
use rustc_middle::ty::fast_reject::SimplifiedType;
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::{
    self as rustc_ty, Binder, BorrowKind, ClosureKind, EarlyBinder, FloatTy, GenericArgsRef, IntTy, ParamEnv,
    ParamEnvAnd, Ty, TyCtxt, TypeVisitableExt, UintTy, UpvarCapture,
};
use rustc_span::hygiene::{ExpnKind, MacroKind};
use rustc_span::source_map::SourceMap;
use rustc_span::symbol::{Ident, Symbol, kw};
use rustc_span::{InnerSpan, Span, sym};
use rustc_target::abi::Integer;
use visitors::Visitable;

use crate::consts::{ConstEvalCtxt, Constant, mir_to_const};
use crate::higher::Range;
use crate::ty::{adt_and_variant_of_res, can_partially_move_ty, expr_sig, is_copy, is_recursively_primitive_type};
use crate::visitors::for_each_expr_without_closures;
use rustc_middle::hir::nested_filter;

#[macro_export]
macro_rules! extract_msrv_attr {
    ($context:ident) => {
        fn check_attributes(&mut self, cx: &rustc_lint::$context<'_>, attrs: &[rustc_ast::ast::Attribute]) {
            let sess = rustc_lint::LintContext::sess(cx);
            self.msrv.check_attributes(sess, attrs);
        }

        fn check_attributes_post(&mut self, cx: &rustc_lint::$context<'_>, attrs: &[rustc_ast::ast::Attribute]) {
            let sess = rustc_lint::LintContext::sess(cx);
            self.msrv.check_attributes_post(sess, attrs);
        }
    };
}

/// If the given expression is a local binding, find the initializer expression.
/// If that initializer expression is another local binding, find its initializer again.
///
/// This process repeats as long as possible (but usually no more than once). Initializer
/// expressions with adjustments are ignored. If this is not desired, use [`find_binding_init`]
/// instead.
///
/// Examples:
/// ```no_run
/// let abc = 1;
/// //        ^ output
/// let def = abc;
/// dbg!(def);
/// //   ^^^ input
///
/// // or...
/// let abc = 1;
/// let def = abc + 2;
/// //        ^^^^^^^ output
/// dbg!(def);
/// //   ^^^ input
/// ```
pub fn expr_or_init<'a, 'b, 'tcx: 'b>(cx: &LateContext<'tcx>, mut expr: &'a Expr<'b>) -> &'a Expr<'b> {
    while let Some(init) = path_to_local(expr)
        .and_then(|id| find_binding_init(cx, id))
        .filter(|init| cx.typeck_results().expr_adjustments(init).is_empty())
    {
        expr = init;
    }
    expr
}

/// Finds the initializer expression for a local binding. Returns `None` if the binding is mutable.
///
/// By only considering immutable bindings, we guarantee that the returned expression represents the
/// value of the binding wherever it is referenced.
///
/// Example: For `let x = 1`, if the `HirId` of `x` is provided, the `Expr` `1` is returned.
/// Note: If you have an expression that references a binding `x`, use `path_to_local` to get the
/// canonical binding `HirId`.
pub fn find_binding_init<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Expr<'tcx>> {
    if let Node::Pat(pat) = cx.tcx.hir_node(hir_id)
        && matches!(pat.kind, PatKind::Binding(BindingMode::NONE, ..))
        && let Node::LetStmt(local) = cx.tcx.parent_hir_node(hir_id)
    {
        return local.init;
    }
    None
}

/// Checks if the given local has an initializer or is from something other than a `let` statement
///
/// e.g. returns true for `x` in `fn f(x: usize) { .. }` and `let x = 1;` but false for `let x;`
pub fn local_is_initialized(cx: &LateContext<'_>, local: HirId) -> bool {
    for (_, node) in cx.tcx.hir().parent_iter(local) {
        match node {
            Node::Pat(..) | Node::PatField(..) => {},
            Node::LetStmt(let_stmt) => return let_stmt.init.is_some(),
            _ => return true,
        }
    }

    false
}

/// Checks if we are currently in a const context (e.g. `const fn`, `static`/`const` initializer).
///
/// The current context is determined based on the current body which is set before calling a lint's
/// entry point (any function on `LateLintPass`). If you need to check in a different context use
/// `tcx.hir().is_inside_const_context(_)`.
///
/// Do not call this unless the `LateContext` has an enclosing body. For release build this case
/// will safely return `false`, but debug builds will ICE. Note that `check_expr`, `check_block`,
/// `check_pat` and a few other entry points will always have an enclosing body. Some entry points
/// like `check_path` or `check_ty` may or may not have one.
pub fn is_in_const_context(cx: &LateContext<'_>) -> bool {
    debug_assert!(cx.enclosing_body.is_some(), "`LateContext` has no enclosing body");
    cx.enclosing_body.is_some_and(|id| {
        cx.tcx
            .hir()
            .body_const_context(cx.tcx.hir().body_owner_def_id(id))
            .is_some()
    })
}

/// Returns `true` if the given `HirId` is inside an always constant context.
///
/// This context includes:
///  * const/static items
///  * const blocks (or inline consts)
///  * associated constants
pub fn is_inside_always_const_context(tcx: TyCtxt<'_>, hir_id: HirId) -> bool {
    use ConstContext::{Const, ConstFn, Static};
    let hir = tcx.hir();
    let Some(ctx) = hir.body_const_context(hir.enclosing_body_owner(hir_id)) else {
        return false;
    };
    match ctx {
        ConstFn => false,
        Static(_) | Const { inline: _ } => true,
    }
}

/// Checks if a `Res` refers to a constructor of a `LangItem`
/// For example, use this to check whether a function call or a pattern is `Some(..)`.
pub fn is_res_lang_ctor(cx: &LateContext<'_>, res: Res, lang_item: LangItem) -> bool {
    if let Res::Def(DefKind::Ctor(..), id) = res
        && let Some(lang_id) = cx.tcx.lang_items().get(lang_item)
        && let Some(id) = cx.tcx.opt_parent(id)
    {
        id == lang_id
    } else {
        false
    }
}

/// Checks if `{ctor_call_id}(...)` is `{enum_item}::{variant_name}(...)`.
pub fn is_enum_variant_ctor(
    cx: &LateContext<'_>,
    enum_item: Symbol,
    variant_name: Symbol,
    ctor_call_id: DefId,
) -> bool {
    let Some(enum_def_id) = cx.tcx.get_diagnostic_item(enum_item) else {
        return false;
    };

    let variants = cx.tcx.adt_def(enum_def_id).variants().iter();
    variants
        .filter(|variant| variant.name == variant_name)
        .filter_map(|variant| variant.ctor.as_ref())
        .any(|(_, ctor_def_id)| *ctor_def_id == ctor_call_id)
}

/// Checks if the `DefId` matches the given diagnostic item or it's constructor.
pub fn is_diagnostic_item_or_ctor(cx: &LateContext<'_>, did: DefId, item: Symbol) -> bool {
    let did = match cx.tcx.def_kind(did) {
        DefKind::Ctor(..) => cx.tcx.parent(did),
        // Constructors for types in external crates seem to have `DefKind::Variant`
        DefKind::Variant => match cx.tcx.opt_parent(did) {
            Some(did) if matches!(cx.tcx.def_kind(did), DefKind::Variant) => did,
            _ => did,
        },
        _ => did,
    };

    cx.tcx.is_diagnostic_item(item, did)
}

/// Checks if the `DefId` matches the given `LangItem` or it's constructor.
pub fn is_lang_item_or_ctor(cx: &LateContext<'_>, did: DefId, item: LangItem) -> bool {
    let did = match cx.tcx.def_kind(did) {
        DefKind::Ctor(..) => cx.tcx.parent(did),
        // Constructors for types in external crates seem to have `DefKind::Variant`
        DefKind::Variant => match cx.tcx.opt_parent(did) {
            Some(did) if matches!(cx.tcx.def_kind(did), DefKind::Variant) => did,
            _ => did,
        },
        _ => did,
    };

    cx.tcx.lang_items().get(item) == Some(did)
}

pub fn is_unit_expr(expr: &Expr<'_>) -> bool {
    matches!(
        expr.kind,
        ExprKind::Block(
            Block {
                stmts: [],
                expr: None,
                ..
            },
            _
        ) | ExprKind::Tup([])
    )
}

/// Checks if given pattern is a wildcard (`_`)
pub fn is_wild(pat: &Pat<'_>) -> bool {
    matches!(pat.kind, PatKind::Wild)
}

/// Checks if the given `QPath` belongs to a type alias.
pub fn is_ty_alias(qpath: &QPath<'_>) -> bool {
    match *qpath {
        QPath::Resolved(_, path) => matches!(path.res, Res::Def(DefKind::TyAlias | DefKind::AssocTy, ..)),
        QPath::TypeRelative(ty, _) if let TyKind::Path(qpath) = ty.kind => is_ty_alias(&qpath),
        _ => false,
    }
}

/// Checks if the method call given in `expr` belongs to the given trait.
/// This is a deprecated function, consider using [`is_trait_method`].
pub fn match_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, path: &[&str]) -> bool {
    cx.typeck_results()
        .type_dependent_def_id(expr.hir_id)
        .and_then(|defid| cx.tcx.trait_of_item(defid))
        .map_or(false, |trt_id| match_def_path(cx, trt_id, path))
}

/// Checks if the given method call expression calls an inherent method.
pub fn is_inherent_method_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
    if let Some(method_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) {
        cx.tcx.trait_of_item(method_id).is_none()
    } else {
        false
    }
}

/// Checks if a method is defined in an impl of a diagnostic item
pub fn is_diag_item_method(cx: &LateContext<'_>, def_id: DefId, diag_item: Symbol) -> bool {
    if let Some(impl_did) = cx.tcx.impl_of_method(def_id) {
        if let Some(adt) = cx.tcx.type_of(impl_did).instantiate_identity().ty_adt_def() {
            return cx.tcx.is_diagnostic_item(diag_item, adt.did());
        }
    }
    false
}

/// Checks if a method is in a diagnostic item trait
pub fn is_diag_trait_item(cx: &LateContext<'_>, def_id: DefId, diag_item: Symbol) -> bool {
    if let Some(trait_did) = cx.tcx.trait_of_item(def_id) {
        return cx.tcx.is_diagnostic_item(diag_item, trait_did);
    }
    false
}

/// Checks if the method call given in `expr` belongs to the given trait.
pub fn is_trait_method(cx: &LateContext<'_>, expr: &Expr<'_>, diag_item: Symbol) -> bool {
    cx.typeck_results()
        .type_dependent_def_id(expr.hir_id)
        .map_or(false, |did| is_diag_trait_item(cx, did, diag_item))
}

/// Checks if the `def_id` belongs to a function that is part of a trait impl.
pub fn is_def_id_trait_method(cx: &LateContext<'_>, def_id: LocalDefId) -> bool {
    if let Node::Item(item) = cx.tcx.parent_hir_node(cx.tcx.local_def_id_to_hir_id(def_id))
        && let ItemKind::Impl(imp) = item.kind
    {
        imp.of_trait.is_some()
    } else {
        false
    }
}

/// Checks if the given expression is a path referring an item on the trait
/// that is marked with the given diagnostic item.
///
/// For checking method call expressions instead of path expressions, use
/// [`is_trait_method`].
///
/// For example, this can be used to find if an expression like `u64::default`
/// refers to an item of the trait `Default`, which is associated with the
/// `diag_item` of `sym::Default`.
pub fn is_trait_item(cx: &LateContext<'_>, expr: &Expr<'_>, diag_item: Symbol) -> bool {
    if let ExprKind::Path(ref qpath) = expr.kind {
        cx.qpath_res(qpath, expr.hir_id)
            .opt_def_id()
            .map_or(false, |def_id| is_diag_trait_item(cx, def_id, diag_item))
    } else {
        false
    }
}

pub fn last_path_segment<'tcx>(path: &QPath<'tcx>) -> &'tcx PathSegment<'tcx> {
    match *path {
        QPath::Resolved(_, path) => path.segments.last().expect("A path must have at least one segment"),
        QPath::TypeRelative(_, seg) => seg,
        QPath::LangItem(..) => panic!("last_path_segment: lang item has no path segments"),
    }
}

pub fn qpath_generic_tys<'tcx>(qpath: &QPath<'tcx>) -> impl Iterator<Item = &'tcx hir::Ty<'tcx>> {
    last_path_segment(qpath)
        .args
        .map_or(&[][..], |a| a.args)
        .iter()
        .filter_map(|a| match a {
            hir::GenericArg::Type(ty) => Some(*ty),
            _ => None,
        })
}

/// THIS METHOD IS DEPRECATED. Matches a `QPath` against a slice of segment string literals.
///
/// This method is deprecated and will eventually be removed since it does not match against the
/// entire path or resolved `DefId`. Prefer using `match_def_path`. Consider getting a `DefId` from
/// `QPath::Resolved.1.res.opt_def_id()`.
///
/// There is also `match_path` if you are dealing with a `rustc_hir::Path` instead of a
/// `rustc_hir::QPath`.
///
/// # Examples
/// ```rust,ignore
/// match_qpath(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_qpath(path: &QPath<'_>, segments: &[&str]) -> bool {
    match *path {
        QPath::Resolved(_, path) => match_path(path, segments),
        QPath::TypeRelative(ty, segment) => match ty.kind {
            TyKind::Path(ref inner_path) => {
                if let [prefix @ .., end] = segments {
                    if match_qpath(inner_path, prefix) {
                        return segment.ident.name.as_str() == *end;
                    }
                }
                false
            },
            _ => false,
        },
        QPath::LangItem(..) => false,
    }
}

/// If the expression is a path, resolves it to a `DefId` and checks if it matches the given path.
///
/// Please use `is_path_diagnostic_item` if the target is a diagnostic item.
pub fn is_expr_path_def_path(cx: &LateContext<'_>, expr: &Expr<'_>, segments: &[&str]) -> bool {
    path_def_id(cx, expr).map_or(false, |id| match_def_path(cx, id, segments))
}

/// If `maybe_path` is a path node which resolves to an item, resolves it to a `DefId` and checks if
/// it matches the given lang item.
pub fn is_path_lang_item<'tcx>(cx: &LateContext<'_>, maybe_path: &impl MaybePath<'tcx>, lang_item: LangItem) -> bool {
    path_def_id(cx, maybe_path).map_or(false, |id| cx.tcx.lang_items().get(lang_item) == Some(id))
}

/// If `maybe_path` is a path node which resolves to an item, resolves it to a `DefId` and checks if
/// it matches the given diagnostic item.
pub fn is_path_diagnostic_item<'tcx>(
    cx: &LateContext<'_>,
    maybe_path: &impl MaybePath<'tcx>,
    diag_item: Symbol,
) -> bool {
    path_def_id(cx, maybe_path).map_or(false, |id| cx.tcx.is_diagnostic_item(diag_item, id))
}

/// THIS METHOD IS DEPRECATED. Matches a `Path` against a slice of segment string literals.
///
/// This method is deprecated and will eventually be removed since it does not match against the
/// entire path or resolved `DefId`. Prefer using `match_def_path`. Consider getting a `DefId` from
/// `QPath::Resolved.1.res.opt_def_id()`.
///
/// There is also `match_qpath` if you are dealing with a `rustc_hir::QPath` instead of a
/// `rustc_hir::Path`.
///
/// # Examples
///
/// ```rust,ignore
/// if match_path(&trait_ref.path, &paths::HASH) {
///     // This is the `std::hash::Hash` trait.
/// }
///
/// if match_path(ty_path, &["rustc", "lint", "Lint"]) {
///     // This is a `rustc_middle::lint::Lint`.
/// }
/// ```
pub fn match_path(path: &Path<'_>, segments: &[&str]) -> bool {
    path.segments
        .iter()
        .rev()
        .zip(segments.iter().rev())
        .all(|(a, b)| a.ident.name.as_str() == *b)
}

/// If the expression is a path to a local, returns the canonical `HirId` of the local.
pub fn path_to_local(expr: &Expr<'_>) -> Option<HirId> {
    if let ExprKind::Path(QPath::Resolved(None, path)) = expr.kind {
        if let Res::Local(id) = path.res {
            return Some(id);
        }
    }
    None
}

/// Returns true if the expression is a path to a local with the specified `HirId`.
/// Use this function to see if an expression matches a function argument or a match binding.
pub fn path_to_local_id(expr: &Expr<'_>, id: HirId) -> bool {
    path_to_local(expr) == Some(id)
}

pub trait MaybePath<'hir> {
    fn hir_id(&self) -> HirId;
    fn qpath_opt(&self) -> Option<&QPath<'hir>>;
}

macro_rules! maybe_path {
    ($ty:ident, $kind:ident) => {
        impl<'hir> MaybePath<'hir> for hir::$ty<'hir> {
            fn hir_id(&self) -> HirId {
                self.hir_id
            }
            fn qpath_opt(&self) -> Option<&QPath<'hir>> {
                match &self.kind {
                    hir::$kind::Path(qpath) => Some(qpath),
                    _ => None,
                }
            }
        }
    };
}
maybe_path!(Expr, ExprKind);
maybe_path!(Pat, PatKind);
maybe_path!(Ty, TyKind);

/// If `maybe_path` is a path node, resolves it, otherwise returns `Res::Err`
pub fn path_res<'tcx>(cx: &LateContext<'_>, maybe_path: &impl MaybePath<'tcx>) -> Res {
    match maybe_path.qpath_opt() {
        None => Res::Err,
        Some(qpath) => cx.qpath_res(qpath, maybe_path.hir_id()),
    }
}

/// If `maybe_path` is a path node which resolves to an item, retrieves the item ID
pub fn path_def_id<'tcx>(cx: &LateContext<'_>, maybe_path: &impl MaybePath<'tcx>) -> Option<DefId> {
    path_res(cx, maybe_path).opt_def_id()
}

fn find_primitive_impls<'tcx>(tcx: TyCtxt<'tcx>, name: &str) -> impl Iterator<Item = DefId> + 'tcx {
    let ty = match name {
        "bool" => SimplifiedType::Bool,
        "char" => SimplifiedType::Char,
        "str" => SimplifiedType::Str,
        "array" => SimplifiedType::Array,
        "slice" => SimplifiedType::Slice,
        // FIXME: rustdoc documents these two using just `pointer`.
        //
        // Maybe this is something we should do here too.
        "const_ptr" => SimplifiedType::Ptr(Mutability::Not),
        "mut_ptr" => SimplifiedType::Ptr(Mutability::Mut),
        "isize" => SimplifiedType::Int(IntTy::Isize),
        "i8" => SimplifiedType::Int(IntTy::I8),
        "i16" => SimplifiedType::Int(IntTy::I16),
        "i32" => SimplifiedType::Int(IntTy::I32),
        "i64" => SimplifiedType::Int(IntTy::I64),
        "i128" => SimplifiedType::Int(IntTy::I128),
        "usize" => SimplifiedType::Uint(UintTy::Usize),
        "u8" => SimplifiedType::Uint(UintTy::U8),
        "u16" => SimplifiedType::Uint(UintTy::U16),
        "u32" => SimplifiedType::Uint(UintTy::U32),
        "u64" => SimplifiedType::Uint(UintTy::U64),
        "u128" => SimplifiedType::Uint(UintTy::U128),
        "f32" => SimplifiedType::Float(FloatTy::F32),
        "f64" => SimplifiedType::Float(FloatTy::F64),
        _ => {
            return [].iter().copied();
        },
    };

    tcx.incoherent_impls(ty).iter().copied()
}

fn non_local_item_children_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: Symbol) -> Vec<Res> {
    match tcx.def_kind(def_id) {
        DefKind::Mod | DefKind::Enum | DefKind::Trait => tcx
            .module_children(def_id)
            .iter()
            .filter(|item| item.ident.name == name)
            .map(|child| child.res.expect_non_local())
            .collect(),
        DefKind::Impl { .. } => tcx
            .associated_item_def_ids(def_id)
            .iter()
            .copied()
            .filter(|assoc_def_id| tcx.item_name(*assoc_def_id) == name)
            .map(|assoc_def_id| Res::Def(tcx.def_kind(assoc_def_id), assoc_def_id))
            .collect(),
        _ => Vec::new(),
    }
}

fn local_item_children_by_name(tcx: TyCtxt<'_>, local_id: LocalDefId, name: Symbol) -> Vec<Res> {
    let hir = tcx.hir();

    let root_mod;
    let item_kind = match tcx.hir_node_by_def_id(local_id) {
        Node::Crate(r#mod) => {
            root_mod = ItemKind::Mod(r#mod);
            &root_mod
        },
        Node::Item(item) => &item.kind,
        _ => return Vec::new(),
    };

    let res = |ident: Ident, owner_id: OwnerId| {
        if ident.name == name {
            let def_id = owner_id.to_def_id();
            Some(Res::Def(tcx.def_kind(def_id), def_id))
        } else {
            None
        }
    };

    match item_kind {
        ItemKind::Mod(r#mod) => r#mod
            .item_ids
            .iter()
            .filter_map(|&item_id| res(hir.item(item_id).ident, item_id.owner_id))
            .collect(),
        ItemKind::Impl(r#impl) => r#impl
            .items
            .iter()
            .filter_map(|&ImplItemRef { ident, id, .. }| res(ident, id.owner_id))
            .collect(),
        ItemKind::Trait(.., trait_item_refs) => trait_item_refs
            .iter()
            .filter_map(|&TraitItemRef { ident, id, .. }| res(ident, id.owner_id))
            .collect(),
        _ => Vec::new(),
    }
}

fn item_children_by_name(tcx: TyCtxt<'_>, def_id: DefId, name: Symbol) -> Vec<Res> {
    if let Some(local_id) = def_id.as_local() {
        local_item_children_by_name(tcx, local_id, name)
    } else {
        non_local_item_children_by_name(tcx, def_id, name)
    }
}

/// Finds the crates called `name`, may be multiple due to multiple major versions.
pub fn find_crates(tcx: TyCtxt<'_>, name: Symbol) -> Vec<Res> {
    tcx.crates(())
        .iter()
        .copied()
        .filter(move |&num| tcx.crate_name(num) == name)
        .map(CrateNum::as_def_id)
        .map(|id| Res::Def(tcx.def_kind(id), id))
        .collect()
}

/// Resolves a def path like `std::vec::Vec`.
///
/// Can return multiple resolutions when there are multiple versions of the same crate, e.g.
/// `memchr::memchr` could return the functions from both memchr 1.0 and memchr 2.0.
///
/// Also returns multiple results when there are multiple paths under the same name e.g. `std::vec`
/// would have both a [`DefKind::Mod`] and [`DefKind::Macro`].
///
/// This function is expensive and should be used sparingly.
pub fn def_path_res(tcx: TyCtxt<'_>, path: &[&str]) -> Vec<Res> {
    let (base, path) = match *path {
        [primitive] => {
            return vec![PrimTy::from_name(Symbol::intern(primitive)).map_or(Res::Err, Res::PrimTy)];
        },
        [base, ref path @ ..] => (base, path),
        _ => return Vec::new(),
    };

    let base_sym = Symbol::intern(base);

    let local_crate = if tcx.crate_name(LOCAL_CRATE) == base_sym {
        Some(LOCAL_CRATE.as_def_id())
    } else {
        None
    };

    let crates = find_primitive_impls(tcx, base)
        .chain(local_crate)
        .map(|id| Res::Def(tcx.def_kind(id), id))
        .chain(find_crates(tcx, base_sym))
        .collect();

    def_path_res_with_base(tcx, crates, path)
}

/// Resolves a def path like `vec::Vec` with the base `std`.
///
/// This is lighter than [`def_path_res`], and should be called with [`find_crates`] looking up
/// items from the same crate repeatedly, although should still be used sparingly.
pub fn def_path_res_with_base(tcx: TyCtxt<'_>, mut base: Vec<Res>, mut path: &[&str]) -> Vec<Res> {
    while let [segment, rest @ ..] = path {
        path = rest;
        let segment = Symbol::intern(segment);

        base = base
            .into_iter()
            .filter_map(|res| res.opt_def_id())
            .flat_map(|def_id| {
                // When the current def_id is e.g. `struct S`, check the impl items in
                // `impl S { ... }`
                let inherent_impl_children = tcx
                    .inherent_impls(def_id)
                    .iter()
                    .flat_map(|&impl_def_id| item_children_by_name(tcx, impl_def_id, segment));

                let direct_children = item_children_by_name(tcx, def_id, segment);

                inherent_impl_children.chain(direct_children)
            })
            .collect();
    }

    base
}

/// Resolves a def path like `std::vec::Vec` to its [`DefId`]s, see [`def_path_res`].
pub fn def_path_def_ids(tcx: TyCtxt<'_>, path: &[&str]) -> impl Iterator<Item = DefId> {
    def_path_res(tcx, path).into_iter().filter_map(|res| res.opt_def_id())
}

/// Creates a map of disallowed items to the reason they were disallowed.
pub fn create_disallowed_map(
    tcx: TyCtxt<'_>,
    disallowed: &'static [DisallowedPath],
) -> DefIdMap<(&'static str, Option<&'static str>)> {
    disallowed
        .iter()
        .map(|x| (x.path(), x.path().split("::").collect::<Vec<_>>(), x.reason()))
        .flat_map(|(name, path, reason)| def_path_def_ids(tcx, &path).map(move |id| (id, (name, reason))))
        .collect()
}

/// Convenience function to get the `DefId` of a trait by path.
/// It could be a trait or trait alias.
///
/// This function is expensive and should be used sparingly.
pub fn get_trait_def_id(tcx: TyCtxt<'_>, path: &[&str]) -> Option<DefId> {
    def_path_res(tcx, path).into_iter().find_map(|res| match res {
        Res::Def(DefKind::Trait | DefKind::TraitAlias, trait_id) => Some(trait_id),
        _ => None,
    })
}

/// Gets the `hir::TraitRef` of the trait the given method is implemented for.
///
/// Use this if you want to find the `TraitRef` of the `Add` trait in this example:
///
/// ```no_run
/// struct Point(isize, isize);
///
/// impl std::ops::Add for Point {
///     type Output = Self;
///
///     fn add(self, other: Self) -> Self {
///         Point(0, 0)
///     }
/// }
/// ```
pub fn trait_ref_of_method<'tcx>(cx: &LateContext<'tcx>, def_id: LocalDefId) -> Option<&'tcx TraitRef<'tcx>> {
    // Get the implemented trait for the current function
    let hir_id = cx.tcx.local_def_id_to_hir_id(def_id);
    let parent_impl = cx.tcx.hir().get_parent_item(hir_id);
    if parent_impl != hir::CRATE_OWNER_ID
        && let Node::Item(item) = cx.tcx.hir_node_by_def_id(parent_impl.def_id)
        && let ItemKind::Impl(impl_) = &item.kind
    {
        return impl_.of_trait.as_ref();
    }
    None
}

/// This method will return tuple of projection stack and root of the expression,
/// used in `can_mut_borrow_both`.
///
/// For example, if `e` represents the `v[0].a.b[x]`
/// this method will return a tuple, composed of a `Vec`
/// containing the `Expr`s for `v[0], v[0].a, v[0].a.b, v[0].a.b[x]`
/// and an `Expr` for root of them, `v`
fn projection_stack<'a, 'hir>(mut e: &'a Expr<'hir>) -> (Vec<&'a Expr<'hir>>, &'a Expr<'hir>) {
    let mut result = vec![];
    let root = loop {
        match e.kind {
            ExprKind::Index(ep, _, _) | ExprKind::Field(ep, _) => {
                result.push(e);
                e = ep;
            },
            _ => break e,
        };
    };
    result.reverse();
    (result, root)
}

/// Gets the mutability of the custom deref adjustment, if any.
pub fn expr_custom_deref_adjustment(cx: &LateContext<'_>, e: &Expr<'_>) -> Option<Mutability> {
    cx.typeck_results()
        .expr_adjustments(e)
        .iter()
        .find_map(|a| match a.kind {
            Adjust::Deref(Some(d)) => Some(Some(d.mutbl)),
            Adjust::Deref(None) => None,
            _ => Some(None),
        })
        .and_then(|x| x)
}

/// Checks if two expressions can be mutably borrowed simultaneously
/// and they aren't dependent on borrowing same thing twice
pub fn can_mut_borrow_both(cx: &LateContext<'_>, e1: &Expr<'_>, e2: &Expr<'_>) -> bool {
    let (s1, r1) = projection_stack(e1);
    let (s2, r2) = projection_stack(e2);
    if !eq_expr_value(cx, r1, r2) {
        return true;
    }
    if expr_custom_deref_adjustment(cx, r1).is_some() || expr_custom_deref_adjustment(cx, r2).is_some() {
        return false;
    }

    for (x1, x2) in s1.iter().zip(s2.iter()) {
        if expr_custom_deref_adjustment(cx, x1).is_some() || expr_custom_deref_adjustment(cx, x2).is_some() {
            return false;
        }

        match (&x1.kind, &x2.kind) {
            (ExprKind::Field(_, i1), ExprKind::Field(_, i2)) => {
                if i1 != i2 {
                    return true;
                }
            },
            (ExprKind::Index(_, i1, _), ExprKind::Index(_, i2, _)) => {
                if !eq_expr_value(cx, i1, i2) {
                    return false;
                }
            },
            _ => return false,
        }
    }
    false
}

/// Returns true if the `def_id` associated with the `path` is recognized as a "default-equivalent"
/// constructor from the std library
fn is_default_equivalent_ctor(cx: &LateContext<'_>, def_id: DefId, path: &QPath<'_>) -> bool {
    let std_types_symbols = &[
        sym::Vec,
        sym::VecDeque,
        sym::LinkedList,
        sym::HashMap,
        sym::BTreeMap,
        sym::HashSet,
        sym::BTreeSet,
        sym::BinaryHeap,
    ];

    if let QPath::TypeRelative(_, method) = path {
        if method.ident.name == sym::new {
            if let Some(impl_did) = cx.tcx.impl_of_method(def_id) {
                if let Some(adt) = cx.tcx.type_of(impl_did).instantiate_identity().ty_adt_def() {
                    return std_types_symbols.iter().any(|&symbol| {
                        cx.tcx.is_diagnostic_item(symbol, adt.did()) || Some(adt.did()) == cx.tcx.lang_items().string()
                    });
                }
            }
        }
    }
    false
}

/// Returns true if the expr is equal to `Default::default` when evaluated.
pub fn is_default_equivalent_call(cx: &LateContext<'_>, repl_func: &Expr<'_>) -> bool {
    if let ExprKind::Path(ref repl_func_qpath) = repl_func.kind
        && let Some(repl_def_id) = cx.qpath_res(repl_func_qpath, repl_func.hir_id).opt_def_id()
        && (is_diag_trait_item(cx, repl_def_id, sym::Default)
            || is_default_equivalent_ctor(cx, repl_def_id, repl_func_qpath))
    {
        true
    } else {
        false
    }
}

/// Returns true if the expr is equal to `Default::default()` of it's type when evaluated.
///
/// It doesn't cover all cases, for example indirect function calls (some of std
/// functions are supported) but it is the best we have.
pub fn is_default_equivalent(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
    match &e.kind {
        ExprKind::Lit(lit) => match lit.node {
            LitKind::Bool(false) | LitKind::Int(Pu128(0), _) => true,
            LitKind::Str(s, _) => s.is_empty(),
            _ => false,
        },
        ExprKind::Tup(items) | ExprKind::Array(items) => items.iter().all(|x| is_default_equivalent(cx, x)),
        ExprKind::Repeat(x, ArrayLen::Body(len)) => {
            if let ConstArgKind::Anon(anon_const) = len.kind
                && let ExprKind::Lit(const_lit) = cx.tcx.hir().body(anon_const.body).value.kind
                && let LitKind::Int(v, _) = const_lit.node
                && v <= 32
                && is_default_equivalent(cx, x)
            {
                true
            } else {
                false
            }
        },
        ExprKind::Call(repl_func, []) => is_default_equivalent_call(cx, repl_func),
        ExprKind::Call(from_func, [ref arg]) => is_default_equivalent_from(cx, from_func, arg),
        ExprKind::Path(qpath) => is_res_lang_ctor(cx, cx.qpath_res(qpath, e.hir_id), OptionNone),
        ExprKind::AddrOf(rustc_hir::BorrowKind::Ref, _, expr) => matches!(expr.kind, ExprKind::Array([])),
        _ => false,
    }
}

fn is_default_equivalent_from(cx: &LateContext<'_>, from_func: &Expr<'_>, arg: &Expr<'_>) -> bool {
    if let ExprKind::Path(QPath::TypeRelative(ty, seg)) = from_func.kind
        && seg.ident.name == sym::from
    {
        match arg.kind {
            ExprKind::Lit(hir::Lit {
                node: LitKind::Str(ref sym, _),
                ..
            }) => return sym.is_empty() && is_path_lang_item(cx, ty, LangItem::String),
            ExprKind::Array([]) => return is_path_diagnostic_item(cx, ty, sym::Vec),
            ExprKind::Repeat(_, ArrayLen::Body(len)) => {
                if let ConstArgKind::Anon(anon_const) = len.kind
                    && let ExprKind::Lit(const_lit) = cx.tcx.hir().body(anon_const.body).value.kind
                    && let LitKind::Int(v, _) = const_lit.node
                {
                    return v == 0 && is_path_diagnostic_item(cx, ty, sym::Vec);
                }
            },
            _ => (),
        }
    }
    false
}

/// Checks if the top level expression can be moved into a closure as is.
/// Currently checks for:
/// * Break/Continue outside the given loop HIR ids.
/// * Yield/Return statements.
/// * Inline assembly.
/// * Usages of a field of a local where the type of the local can be partially moved.
///
/// For example, given the following function:
///
/// ```no_run
/// fn f<'a>(iter: &mut impl Iterator<Item = (usize, &'a mut String)>) {
///     for item in iter {
///         let s = item.1;
///         if item.0 > 10 {
///             continue;
///         } else {
///             s.clear();
///         }
///     }
/// }
/// ```
///
/// When called on the expression `item.0` this will return false unless the local `item` is in the
/// `ignore_locals` set. The type `(usize, &mut String)` can have the second element moved, so it
/// isn't always safe to move into a closure when only a single field is needed.
///
/// When called on the `continue` expression this will return false unless the outer loop expression
/// is in the `loop_ids` set.
///
/// Note that this check is not recursive, so passing the `if` expression will always return true
/// even though sub-expressions might return false.
pub fn can_move_expr_to_closure_no_visit<'tcx>(
    cx: &LateContext<'tcx>,
    expr: &'tcx Expr<'_>,
    loop_ids: &[HirId],
    ignore_locals: &HirIdSet,
) -> bool {
    match expr.kind {
        ExprKind::Break(Destination { target_id: Ok(id), .. }, _)
        | ExprKind::Continue(Destination { target_id: Ok(id), .. })
            if loop_ids.contains(&id) =>
        {
            true
        },
        ExprKind::Break(..)
        | ExprKind::Continue(_)
        | ExprKind::Ret(_)
        | ExprKind::Yield(..)
        | ExprKind::InlineAsm(_) => false,
        // Accessing a field of a local value can only be done if the type isn't
        // partially moved.
        ExprKind::Field(
            &Expr {
                hir_id,
                kind:
                    ExprKind::Path(QPath::Resolved(
                        _,
                        Path {
                            res: Res::Local(local_id),
                            ..
                        },
                    )),
                ..
            },
            _,
        ) if !ignore_locals.contains(local_id) && can_partially_move_ty(cx, cx.typeck_results().node_type(hir_id)) => {
            // TODO: check if the local has been partially moved. Assume it has for now.
            false
        },
        _ => true,
    }
}

/// How a local is captured by a closure
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum CaptureKind {
    Value,
    Ref(Mutability),
}
impl CaptureKind {
    pub fn is_imm_ref(self) -> bool {
        self == Self::Ref(Mutability::Not)
    }
}
impl std::ops::BitOr for CaptureKind {
    type Output = Self;
    fn bitor(self, rhs: Self) -> Self::Output {
        match (self, rhs) {
            (CaptureKind::Value, _) | (_, CaptureKind::Value) => CaptureKind::Value,
            (CaptureKind::Ref(Mutability::Mut), CaptureKind::Ref(_))
            | (CaptureKind::Ref(_), CaptureKind::Ref(Mutability::Mut)) => CaptureKind::Ref(Mutability::Mut),
            (CaptureKind::Ref(Mutability::Not), CaptureKind::Ref(Mutability::Not)) => CaptureKind::Ref(Mutability::Not),
        }
    }
}
impl std::ops::BitOrAssign for CaptureKind {
    fn bitor_assign(&mut self, rhs: Self) {
        *self = *self | rhs;
    }
}

/// Given an expression referencing a local, determines how it would be captured in a closure.
///
/// Note as this will walk up to parent expressions until the capture can be determined it should
/// only be used while making a closure somewhere a value is consumed. e.g. a block, match arm, or
/// function argument (other than a receiver).
pub fn capture_local_usage(cx: &LateContext<'_>, e: &Expr<'_>) -> CaptureKind {
    fn pat_capture_kind(cx: &LateContext<'_>, pat: &Pat<'_>) -> CaptureKind {
        let mut capture = CaptureKind::Ref(Mutability::Not);
        pat.each_binding_or_first(&mut |_, id, span, _| match cx
            .typeck_results()
            .extract_binding_mode(cx.sess(), id, span)
            .unwrap()
            .0
        {
            ByRef::No if !is_copy(cx, cx.typeck_results().node_type(id)) => {
                capture = CaptureKind::Value;
            },
            ByRef::Yes(Mutability::Mut) if capture != CaptureKind::Value => {
                capture = CaptureKind::Ref(Mutability::Mut);
            },
            _ => (),
        });
        capture
    }

    debug_assert!(matches!(
        e.kind,
        ExprKind::Path(QPath::Resolved(None, Path { res: Res::Local(_), .. }))
    ));

    let mut child_id = e.hir_id;
    let mut capture = CaptureKind::Value;
    let mut capture_expr_ty = e;

    for (parent_id, parent) in cx.tcx.hir().parent_iter(e.hir_id) {
        if let [
            Adjustment {
                kind: Adjust::Deref(_) | Adjust::Borrow(AutoBorrow::Ref(..)),
                target,
            },
            ref adjust @ ..,
        ] = *cx
            .typeck_results()
            .adjustments()
            .get(child_id)
            .map_or(&[][..], |x| &**x)
        {
            if let rustc_ty::RawPtr(_, mutability) | rustc_ty::Ref(_, _, mutability) =
                *adjust.last().map_or(target, |a| a.target).kind()
            {
                return CaptureKind::Ref(mutability);
            }
        }

        match parent {
            Node::Expr(e) => match e.kind {
                ExprKind::AddrOf(_, mutability, _) => return CaptureKind::Ref(mutability),
                ExprKind::Index(..) | ExprKind::Unary(UnOp::Deref, _) => capture = CaptureKind::Ref(Mutability::Not),
                ExprKind::Assign(lhs, ..) | ExprKind::AssignOp(_, lhs, _) if lhs.hir_id == child_id => {
                    return CaptureKind::Ref(Mutability::Mut);
                },
                ExprKind::Field(..) => {
                    if capture == CaptureKind::Value {
                        capture_expr_ty = e;
                    }
                },
                ExprKind::Let(let_expr) => {
                    let mutability = match pat_capture_kind(cx, let_expr.pat) {
                        CaptureKind::Value => Mutability::Not,
                        CaptureKind::Ref(m) => m,
                    };
                    return CaptureKind::Ref(mutability);
                },
                ExprKind::Match(_, arms, _) => {
                    let mut mutability = Mutability::Not;
                    for capture in arms.iter().map(|arm| pat_capture_kind(cx, arm.pat)) {
                        match capture {
                            CaptureKind::Value => break,
                            CaptureKind::Ref(Mutability::Mut) => mutability = Mutability::Mut,
                            CaptureKind::Ref(Mutability::Not) => (),
                        }
                    }
                    return CaptureKind::Ref(mutability);
                },
                _ => break,
            },
            Node::LetStmt(l) => match pat_capture_kind(cx, l.pat) {
                CaptureKind::Value => break,
                capture @ CaptureKind::Ref(_) => return capture,
            },
            _ => break,
        }

        child_id = parent_id;
    }

    if capture == CaptureKind::Value && is_copy(cx, cx.typeck_results().expr_ty(capture_expr_ty)) {
        // Copy types are never automatically captured by value.
        CaptureKind::Ref(Mutability::Not)
    } else {
        capture
    }
}

/// Checks if the expression can be moved into a closure as is. This will return a list of captures
/// if so, otherwise, `None`.
pub fn can_move_expr_to_closure<'tcx>(cx: &LateContext<'tcx>, expr: &'tcx Expr<'_>) -> Option<HirIdMap<CaptureKind>> {
    struct V<'cx, 'tcx> {
        cx: &'cx LateContext<'tcx>,
        // Stack of potential break targets contained in the expression.
        loops: Vec<HirId>,
        /// Local variables created in the expression. These don't need to be captured.
        locals: HirIdSet,
        /// Whether this expression can be turned into a closure.
        allow_closure: bool,
        /// Locals which need to be captured, and whether they need to be by value, reference, or
        /// mutable reference.
        captures: HirIdMap<CaptureKind>,
    }
    impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
        fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
            if !self.allow_closure {
                return;
            }

            match e.kind {
                ExprKind::Path(QPath::Resolved(None, &Path { res: Res::Local(l), .. })) => {
                    if !self.locals.contains(&l) {
                        let cap = capture_local_usage(self.cx, e);
                        self.captures.entry(l).and_modify(|e| *e |= cap).or_insert(cap);
                    }
                },
                ExprKind::Closure(closure) => {
                    for capture in self.cx.typeck_results().closure_min_captures_flattened(closure.def_id) {
                        let local_id = match capture.place.base {
                            PlaceBase::Local(id) => id,
                            PlaceBase::Upvar(var) => var.var_path.hir_id,
                            _ => continue,
                        };
                        if !self.locals.contains(&local_id) {
                            let capture = match capture.info.capture_kind {
                                UpvarCapture::ByValue => CaptureKind::Value,
                                UpvarCapture::ByRef(kind) => match kind {
                                    BorrowKind::ImmBorrow => CaptureKind::Ref(Mutability::Not),
                                    BorrowKind::UniqueImmBorrow | BorrowKind::MutBorrow => {
                                        CaptureKind::Ref(Mutability::Mut)
                                    },
                                },
                            };
                            self.captures
                                .entry(local_id)
                                .and_modify(|e| *e |= capture)
                                .or_insert(capture);
                        }
                    }
                },
                ExprKind::Loop(b, ..) => {
                    self.loops.push(e.hir_id);
                    self.visit_block(b);
                    self.loops.pop();
                },
                _ => {
                    self.allow_closure &= can_move_expr_to_closure_no_visit(self.cx, e, &self.loops, &self.locals);
                    walk_expr(self, e);
                },
            }
        }

        fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
            p.each_binding_or_first(&mut |_, id, _, _| {
                self.locals.insert(id);
            });
        }
    }

    let mut v = V {
        cx,
        allow_closure: true,
        loops: Vec::new(),
        locals: HirIdSet::default(),
        captures: HirIdMap::default(),
    };
    v.visit_expr(expr);
    v.allow_closure.then_some(v.captures)
}

/// Arguments of a method: the receiver and all the additional arguments.
pub type MethodArguments<'tcx> = Vec<(&'tcx Expr<'tcx>, &'tcx [Expr<'tcx>])>;

/// Returns the method names and argument list of nested method call expressions that make up
/// `expr`. method/span lists are sorted with the most recent call first.
pub fn method_calls<'tcx>(expr: &'tcx Expr<'tcx>, max_depth: usize) -> (Vec<Symbol>, MethodArguments<'tcx>, Vec<Span>) {
    let mut method_names = Vec::with_capacity(max_depth);
    let mut arg_lists = Vec::with_capacity(max_depth);
    let mut spans = Vec::with_capacity(max_depth);

    let mut current = expr;
    for _ in 0..max_depth {
        if let ExprKind::MethodCall(path, receiver, args, _) = &current.kind {
            if receiver.span.from_expansion() || args.iter().any(|e| e.span.from_expansion()) {
                break;
            }
            method_names.push(path.ident.name);
            arg_lists.push((*receiver, &**args));
            spans.push(path.ident.span);
            current = receiver;
        } else {
            break;
        }
    }

    (method_names, arg_lists, spans)
}

/// Matches an `Expr` against a chain of methods, and return the matched `Expr`s.
///
/// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`,
/// `method_chain_args(expr, &["bar", "baz"])` will return a `Vec`
/// containing the `Expr`s for
/// `.bar()` and `.baz()`
pub fn method_chain_args<'a>(expr: &'a Expr<'_>, methods: &[&str]) -> Option<Vec<(&'a Expr<'a>, &'a [Expr<'a>])>> {
    let mut current = expr;
    let mut matched = Vec::with_capacity(methods.len());
    for method_name in methods.iter().rev() {
        // method chains are stored last -> first
        if let ExprKind::MethodCall(path, receiver, args, _) = current.kind {
            if path.ident.name.as_str() == *method_name {
                if receiver.span.from_expansion() || args.iter().any(|e| e.span.from_expansion()) {
                    return None;
                }
                matched.push((receiver, args)); // build up `matched` backwards
                current = receiver; // go to parent expression
            } else {
                return None;
            }
        } else {
            return None;
        }
    }
    // Reverse `matched` so that it is in the same order as `methods`.
    matched.reverse();
    Some(matched)
}

/// Returns `true` if the provided `def_id` is an entrypoint to a program.
pub fn is_entrypoint_fn(cx: &LateContext<'_>, def_id: DefId) -> bool {
    cx.tcx
        .entry_fn(())
        .map_or(false, |(entry_fn_def_id, _)| def_id == entry_fn_def_id)
}

/// Returns `true` if the expression is in the program's `#[panic_handler]`.
pub fn is_in_panic_handler(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
    let parent = cx.tcx.hir().get_parent_item(e.hir_id);
    Some(parent.to_def_id()) == cx.tcx.lang_items().panic_impl()
}

/// Gets the name of the item the expression is in, if available.
pub fn get_item_name(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<Symbol> {
    let parent_id = cx.tcx.hir().get_parent_item(expr.hir_id).def_id;
    match cx.tcx.hir_node_by_def_id(parent_id) {
        Node::Item(Item { ident, .. })
        | Node::TraitItem(TraitItem { ident, .. })
        | Node::ImplItem(ImplItem { ident, .. }) => Some(ident.name),
        _ => None,
    }
}

pub struct ContainsName<'a, 'tcx> {
    pub cx: &'a LateContext<'tcx>,
    pub name: Symbol,
    pub result: bool,
}

impl<'tcx> Visitor<'tcx> for ContainsName<'_, 'tcx> {
    type NestedFilter = nested_filter::OnlyBodies;

    fn visit_name(&mut self, name: Symbol) {
        if self.name == name {
            self.result = true;
        }
    }

    fn nested_visit_map(&mut self) -> Self::Map {
        self.cx.tcx.hir()
    }
}

/// Checks if an `Expr` contains a certain name.
pub fn contains_name<'tcx>(name: Symbol, expr: &'tcx Expr<'_>, cx: &LateContext<'tcx>) -> bool {
    let mut cn = ContainsName {
        name,
        result: false,
        cx,
    };
    cn.visit_expr(expr);
    cn.result
}

/// Returns `true` if `expr` contains a return expression
pub fn contains_return<'tcx>(expr: impl Visitable<'tcx>) -> bool {
    for_each_expr_without_closures(expr, |e| {
        if matches!(e.kind, ExprKind::Ret(..)) {
            ControlFlow::Break(())
        } else {
            ControlFlow::Continue(())
        }
    })
    .is_some()
}

/// Gets the parent expression, if any –- this is useful to constrain a lint.
pub fn get_parent_expr<'tcx>(cx: &LateContext<'tcx>, e: &Expr<'_>) -> Option<&'tcx Expr<'tcx>> {
    get_parent_expr_for_hir(cx, e.hir_id)
}

/// This retrieves the parent for the given `HirId` if it's an expression. This is useful for
/// constraint lints
pub fn get_parent_expr_for_hir<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Expr<'tcx>> {
    match cx.tcx.parent_hir_node(hir_id) {
        Node::Expr(parent) => Some(parent),
        _ => None,
    }
}

/// Gets the enclosing block, if any.
pub fn get_enclosing_block<'tcx>(cx: &LateContext<'tcx>, hir_id: HirId) -> Option<&'tcx Block<'tcx>> {
    let map = &cx.tcx.hir();
    let enclosing_node = map
        .get_enclosing_scope(hir_id)
        .map(|enclosing_id| cx.tcx.hir_node(enclosing_id));
    enclosing_node.and_then(|node| match node {
        Node::Block(block) => Some(block),
        Node::Item(&Item {
            kind: ItemKind::Fn(_, _, eid),
            ..
        })
        | Node::ImplItem(&ImplItem {
            kind: ImplItemKind::Fn(_, eid),
            ..
        }) => match cx.tcx.hir().body(eid).value.kind {
            ExprKind::Block(block, _) => Some(block),
            _ => None,
        },
        _ => None,
    })
}

/// Gets the loop or closure enclosing the given expression, if any.
pub fn get_enclosing_loop_or_multi_call_closure<'tcx>(
    cx: &LateContext<'tcx>,
    expr: &Expr<'_>,
) -> Option<&'tcx Expr<'tcx>> {
    for (_, node) in cx.tcx.hir().parent_iter(expr.hir_id) {
        match node {
            Node::Expr(e) => match e.kind {
                ExprKind::Closure { .. }
                    if let rustc_ty::Closure(_, subs) = cx.typeck_results().expr_ty(e).kind()
                        && subs.as_closure().kind() == ClosureKind::FnOnce => {},

                // Note: A closure's kind is determined by how it's used, not it's captures.
                ExprKind::Closure { .. } | ExprKind::Loop(..) => return Some(e),
                _ => (),
            },
            Node::Stmt(_) | Node::Block(_) | Node::LetStmt(_) | Node::Arm(_) | Node::ExprField(_) => (),
            _ => break,
        }
    }
    None
}

/// Gets the parent node if it's an impl block.
pub fn get_parent_as_impl(tcx: TyCtxt<'_>, id: HirId) -> Option<&Impl<'_>> {
    match tcx.hir().parent_iter(id).next() {
        Some((
            _,
            Node::Item(Item {
                kind: ItemKind::Impl(imp),
                ..
            }),
        )) => Some(imp),
        _ => None,
    }
}

/// Removes blocks around an expression, only if the block contains just one expression
/// and no statements. Unsafe blocks are not removed.
///
/// Examples:
///  * `{}`               -> `{}`
///  * `{ x }`            -> `x`
///  * `{{ x }}`          -> `x`
///  * `{ x; }`           -> `{ x; }`
///  * `{ x; y }`         -> `{ x; y }`
///  * `{ unsafe { x } }` -> `unsafe { x }`
pub fn peel_blocks<'a>(mut expr: &'a Expr<'a>) -> &'a Expr<'a> {
    while let ExprKind::Block(
        Block {
            stmts: [],
            expr: Some(inner),
            rules: BlockCheckMode::DefaultBlock,
            ..
        },
        _,
    ) = expr.kind
    {
        expr = inner;
    }
    expr
}

/// Removes blocks around an expression, only if the block contains just one expression
/// or just one expression statement with a semicolon. Unsafe blocks are not removed.
///
/// Examples:
///  * `{}`               -> `{}`
///  * `{ x }`            -> `x`
///  * `{ x; }`           -> `x`
///  * `{{ x; }}`         -> `x`
///  * `{ x; y }`         -> `{ x; y }`
///  * `{ unsafe { x } }` -> `unsafe { x }`
pub fn peel_blocks_with_stmt<'a>(mut expr: &'a Expr<'a>) -> &'a Expr<'a> {
    while let ExprKind::Block(
        Block {
            stmts: [],
            expr: Some(inner),
            rules: BlockCheckMode::DefaultBlock,
            ..
        }
        | Block {
            stmts:
                [
                    Stmt {
                        kind: StmtKind::Expr(inner) | StmtKind::Semi(inner),
                        ..
                    },
                ],
            expr: None,
            rules: BlockCheckMode::DefaultBlock,
            ..
        },
        _,
    ) = expr.kind
    {
        expr = inner;
    }
    expr
}

/// Checks if the given expression is the else clause of either an `if` or `if let` expression.
pub fn is_else_clause(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
    let mut iter = tcx.hir().parent_iter(expr.hir_id);
    match iter.next() {
        Some((
            _,
            Node::Expr(Expr {
                kind: ExprKind::If(_, _, Some(else_expr)),
                ..
            }),
        )) => else_expr.hir_id == expr.hir_id,
        _ => false,
    }
}

/// Checks if the given expression is a part of `let else`
/// returns `true` for both the `init` and the `else` part
pub fn is_inside_let_else(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
    let mut child_id = expr.hir_id;
    for (parent_id, node) in tcx.hir().parent_iter(child_id) {
        if let Node::LetStmt(LetStmt {
            init: Some(init),
            els: Some(els),
            ..
        }) = node
            && (init.hir_id == child_id || els.hir_id == child_id)
        {
            return true;
        }

        child_id = parent_id;
    }

    false
}

/// Checks if the given expression is the else clause of a `let else` expression
pub fn is_else_clause_in_let_else(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
    let mut child_id = expr.hir_id;
    for (parent_id, node) in tcx.hir().parent_iter(child_id) {
        if let Node::LetStmt(LetStmt { els: Some(els), .. }) = node
            && els.hir_id == child_id
        {
            return true;
        }

        child_id = parent_id;
    }

    false
}

/// Checks whether the given `Expr` is a range equivalent to a `RangeFull`.
///
/// For the lower bound, this means that:
/// - either there is none
/// - or it is the smallest value that can be represented by the range's integer type
///
/// For the upper bound, this means that:
/// - either there is none
/// - or it is the largest value that can be represented by the range's integer type and is
///   inclusive
/// - or it is a call to some container's `len` method and is exclusive, and the range is passed to
///   a method call on that same container (e.g. `v.drain(..v.len())`)
///
/// If the given `Expr` is not some kind of range, the function returns `false`.
pub fn is_range_full(cx: &LateContext<'_>, expr: &Expr<'_>, container_path: Option<&Path<'_>>) -> bool {
    let ty = cx.typeck_results().expr_ty(expr);
    if let Some(Range { start, end, limits }) = Range::hir(expr) {
        let start_is_none_or_min = start.map_or(true, |start| {
            if let rustc_ty::Adt(_, subst) = ty.kind()
                && let bnd_ty = subst.type_at(0)
                && let Some(min_val) = bnd_ty.numeric_min_val(cx.tcx)
                && let Some(min_const) = mir_to_const(cx.tcx, Const::from_ty_const(min_val, bnd_ty, cx.tcx))
                && let Some(start_const) = ConstEvalCtxt::new(cx).eval(start)
            {
                start_const == min_const
            } else {
                false
            }
        });
        let end_is_none_or_max = end.map_or(true, |end| match limits {
            RangeLimits::Closed => {
                if let rustc_ty::Adt(_, subst) = ty.kind()
                    && let bnd_ty = subst.type_at(0)
                    && let Some(max_val) = bnd_ty.numeric_max_val(cx.tcx)
                    && let Some(max_const) = mir_to_const(cx.tcx, Const::from_ty_const(max_val, bnd_ty, cx.tcx))
                    && let Some(end_const) = ConstEvalCtxt::new(cx).eval(end)
                {
                    end_const == max_const
                } else {
                    false
                }
            },
            RangeLimits::HalfOpen => {
                if let Some(container_path) = container_path
                    && let ExprKind::MethodCall(name, self_arg, [], _) = end.kind
                    && name.ident.name == sym::len
                    && let ExprKind::Path(QPath::Resolved(None, path)) = self_arg.kind
                {
                    container_path.res == path.res
                } else {
                    false
                }
            },
        });
        return start_is_none_or_min && end_is_none_or_max;
    }
    false
}

/// Checks whether the given expression is a constant integer of the given value.
/// unlike `is_integer_literal`, this version does const folding
pub fn is_integer_const(cx: &LateContext<'_>, e: &Expr<'_>, value: u128) -> bool {
    if is_integer_literal(e, value) {
        return true;
    }
    let enclosing_body = cx.tcx.hir().enclosing_body_owner(e.hir_id);
    if let Some(Constant::Int(v)) =
        ConstEvalCtxt::with_env(cx.tcx, cx.tcx.param_env(enclosing_body), cx.tcx.typeck(enclosing_body)).eval(e)
    {
        return value == v;
    }
    false
}

/// Checks whether the given expression is a constant literal of the given value.
pub fn is_integer_literal(expr: &Expr<'_>, value: u128) -> bool {
    // FIXME: use constant folding
    if let ExprKind::Lit(spanned) = expr.kind {
        if let LitKind::Int(v, _) = spanned.node {
            return v == value;
        }
    }
    false
}

/// Returns `true` if the given `Expr` has been coerced before.
///
/// Examples of coercions can be found in the Nomicon at
/// <https://doc.rust-lang.org/nomicon/coercions.html>.
///
/// See `rustc_middle::ty::adjustment::Adjustment` and `rustc_hir_analysis::check::coercion` for
/// more information on adjustments and coercions.
pub fn is_adjusted(cx: &LateContext<'_>, e: &Expr<'_>) -> bool {
    cx.typeck_results().adjustments().get(e.hir_id).is_some()
}

/// Returns the pre-expansion span if this comes from an expansion of the
/// macro `name`.
/// See also [`is_direct_expn_of`].
#[must_use]
pub fn is_expn_of(mut span: Span, name: &str) -> Option<Span> {
    loop {
        if span.from_expansion() {
            let data = span.ctxt().outer_expn_data();
            let new_span = data.call_site;

            if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind {
                if mac_name.as_str() == name {
                    return Some(new_span);
                }
            }

            span = new_span;
        } else {
            return None;
        }
    }
}

/// Returns the pre-expansion span if the span directly comes from an expansion
/// of the macro `name`.
/// The difference with [`is_expn_of`] is that in
/// ```no_run
/// # macro_rules! foo { ($name:tt!$args:tt) => { $name!$args } }
/// # macro_rules! bar { ($e:expr) => { $e } }
/// foo!(bar!(42));
/// ```
/// `42` is considered expanded from `foo!` and `bar!` by `is_expn_of` but only
/// from `bar!` by `is_direct_expn_of`.
#[must_use]
pub fn is_direct_expn_of(span: Span, name: &str) -> Option<Span> {
    if span.from_expansion() {
        let data = span.ctxt().outer_expn_data();
        let new_span = data.call_site;

        if let ExpnKind::Macro(MacroKind::Bang, mac_name) = data.kind {
            if mac_name.as_str() == name {
                return Some(new_span);
            }
        }
    }

    None
}

/// Convenience function to get the return type of a function.
pub fn return_ty<'tcx>(cx: &LateContext<'tcx>, fn_def_id: OwnerId) -> Ty<'tcx> {
    let ret_ty = cx.tcx.fn_sig(fn_def_id).instantiate_identity().output();
    cx.tcx.instantiate_bound_regions_with_erased(ret_ty)
}

/// Convenience function to get the nth argument type of a function.
pub fn nth_arg<'tcx>(cx: &LateContext<'tcx>, fn_def_id: OwnerId, nth: usize) -> Ty<'tcx> {
    let arg = cx.tcx.fn_sig(fn_def_id).instantiate_identity().input(nth);
    cx.tcx.instantiate_bound_regions_with_erased(arg)
}

/// Checks if an expression is constructing a tuple-like enum variant or struct
pub fn is_ctor_or_promotable_const_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
    if let ExprKind::Call(fun, _) = expr.kind {
        if let ExprKind::Path(ref qp) = fun.kind {
            let res = cx.qpath_res(qp, fun.hir_id);
            return match res {
                Res::Def(DefKind::Variant | DefKind::Ctor(..), ..) => true,
                Res::Def(_, def_id) => cx.tcx.is_promotable_const_fn(def_id),
                _ => false,
            };
        }
    }
    false
}

/// Returns `true` if a pattern is refutable.
// TODO: should be implemented using rustc/mir_build/thir machinery
pub fn is_refutable(cx: &LateContext<'_>, pat: &Pat<'_>) -> bool {
    fn is_enum_variant(cx: &LateContext<'_>, qpath: &QPath<'_>, id: HirId) -> bool {
        matches!(
            cx.qpath_res(qpath, id),
            Res::Def(DefKind::Variant, ..) | Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), _)
        )
    }

    fn are_refutable<'a, I: IntoIterator<Item = &'a Pat<'a>>>(cx: &LateContext<'_>, i: I) -> bool {
        i.into_iter().any(|pat| is_refutable(cx, pat))
    }

    match pat.kind {
        PatKind::Wild | PatKind::Never => false, // If `!` typechecked then the type is empty, so not refutable.
        PatKind::Binding(_, _, _, pat) => pat.map_or(false, |pat| is_refutable(cx, pat)),
        PatKind::Box(pat) | PatKind::Deref(pat) | PatKind::Ref(pat, _) => is_refutable(cx, pat),
        PatKind::Path(ref qpath) => is_enum_variant(cx, qpath, pat.hir_id),
        PatKind::Or(pats) => {
            // TODO: should be the honest check, that pats is exhaustive set
            are_refutable(cx, pats)
        },
        PatKind::Tuple(pats, _) => are_refutable(cx, pats),
        PatKind::Struct(ref qpath, fields, _) => {
            is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, fields.iter().map(|field| field.pat))
        },
        PatKind::TupleStruct(ref qpath, pats, _) => is_enum_variant(cx, qpath, pat.hir_id) || are_refutable(cx, pats),
        PatKind::Slice(head, middle, tail) => {
            match &cx.typeck_results().node_type(pat.hir_id).kind() {
                rustc_ty::Slice(..) => {
                    // [..] is the only irrefutable slice pattern.
                    !head.is_empty() || middle.is_none() || !tail.is_empty()
                },
                rustc_ty::Array(..) => are_refutable(cx, head.iter().chain(middle).chain(tail.iter())),
                _ => {
                    // unreachable!()
                    true
                },
            }
        },
        PatKind::Lit(..) | PatKind::Range(..) | PatKind::Err(_) => true,
    }
}

/// If the pattern is an `or` pattern, call the function once for each sub pattern. Otherwise, call
/// the function once on the given pattern.
pub fn recurse_or_patterns<'tcx, F: FnMut(&'tcx Pat<'tcx>)>(pat: &'tcx Pat<'tcx>, mut f: F) {
    if let PatKind::Or(pats) = pat.kind {
        pats.iter().for_each(f);
    } else {
        f(pat);
    }
}

pub fn is_self(slf: &Param<'_>) -> bool {
    if let PatKind::Binding(.., name, _) = slf.pat.kind {
        name.name == kw::SelfLower
    } else {
        false
    }
}

pub fn is_self_ty(slf: &hir::Ty<'_>) -> bool {
    if let TyKind::Path(QPath::Resolved(None, path)) = slf.kind {
        if let Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } = path.res {
            return true;
        }
    }
    false
}

pub fn iter_input_pats<'tcx>(decl: &FnDecl<'_>, body: &'tcx Body<'_>) -> impl Iterator<Item = &'tcx Param<'tcx>> {
    (0..decl.inputs.len()).map(move |i| &body.params[i])
}

/// Checks if a given expression is a match expression expanded from the `?`
/// operator or the `try` macro.
pub fn is_try<'tcx>(cx: &LateContext<'_>, expr: &'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>> {
    fn is_ok(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool {
        if let PatKind::TupleStruct(ref path, pat, ddpos) = arm.pat.kind
            && ddpos.as_opt_usize().is_none()
            && is_res_lang_ctor(cx, cx.qpath_res(path, arm.pat.hir_id), ResultOk)
            && let PatKind::Binding(_, hir_id, _, None) = pat[0].kind
            && path_to_local_id(arm.body, hir_id)
        {
            return true;
        }
        false
    }

    fn is_err(cx: &LateContext<'_>, arm: &Arm<'_>) -> bool {
        if let PatKind::TupleStruct(ref path, _, _) = arm.pat.kind {
            is_res_lang_ctor(cx, cx.qpath_res(path, arm.pat.hir_id), ResultErr)
        } else {
            false
        }
    }

    if let ExprKind::Match(_, arms, ref source) = expr.kind {
        // desugared from a `?` operator
        if let MatchSource::TryDesugar(_) = *source {
            return Some(expr);
        }

        if arms.len() == 2
            && arms[0].guard.is_none()
            && arms[1].guard.is_none()
            && ((is_ok(cx, &arms[0]) && is_err(cx, &arms[1])) || (is_ok(cx, &arms[1]) && is_err(cx, &arms[0])))
        {
            return Some(expr);
        }
    }

    None
}

/// Returns `true` if the lint is `#[allow]`ed or `#[expect]`ed at any of the `ids`, fulfilling all
/// of the expectations in `ids`
///
/// This should only be used when the lint would otherwise be emitted, for a way to check if a lint
/// is allowed early to skip work see [`is_lint_allowed`]
///
/// To emit at a lint at a different context than the one current see
/// [`span_lint_hir`](diagnostics::span_lint_hir) or
/// [`span_lint_hir_and_then`](diagnostics::span_lint_hir_and_then)
pub fn fulfill_or_allowed(cx: &LateContext<'_>, lint: &'static Lint, ids: impl IntoIterator<Item = HirId>) -> bool {
    let mut suppress_lint = false;

    for id in ids {
        let (level, _) = cx.tcx.lint_level_at_node(lint, id);
        if let Some(expectation) = level.get_expectation_id() {
            cx.fulfill_expectation(expectation);
        }

        match level {
            Level::Allow | Level::Expect(_) => suppress_lint = true,
            Level::Warn | Level::ForceWarn(_) | Level::Deny | Level::Forbid => {},
        }
    }

    suppress_lint
}

/// Returns `true` if the lint is allowed in the current context. This is useful for
/// skipping long running code when it's unnecessary
///
/// This function should check the lint level for the same node, that the lint will
/// be emitted at. If the information is buffered to be emitted at a later point, please
/// make sure to use `span_lint_hir` functions to emit the lint. This ensures that
/// expectations at the checked nodes will be fulfilled.
pub fn is_lint_allowed(cx: &LateContext<'_>, lint: &'static Lint, id: HirId) -> bool {
    cx.tcx.lint_level_at_node(lint, id).0 == Level::Allow
}

pub fn strip_pat_refs<'hir>(mut pat: &'hir Pat<'hir>) -> &'hir Pat<'hir> {
    while let PatKind::Ref(subpat, _) = pat.kind {
        pat = subpat;
    }
    pat
}

pub fn int_bits(tcx: TyCtxt<'_>, ity: IntTy) -> u64 {
    Integer::from_int_ty(&tcx, ity).size().bits()
}

#[expect(clippy::cast_possible_wrap)]
/// Turn a constant int byte representation into an i128
pub fn sext(tcx: TyCtxt<'_>, u: u128, ity: IntTy) -> i128 {
    let amt = 128 - int_bits(tcx, ity);
    ((u as i128) << amt) >> amt
}

#[expect(clippy::cast_sign_loss)]
/// clip unused bytes
pub fn unsext(tcx: TyCtxt<'_>, u: i128, ity: IntTy) -> u128 {
    let amt = 128 - int_bits(tcx, ity);
    ((u as u128) << amt) >> amt
}

/// clip unused bytes
pub fn clip(tcx: TyCtxt<'_>, u: u128, ity: UintTy) -> u128 {
    let bits = Integer::from_uint_ty(&tcx, ity).size().bits();
    let amt = 128 - bits;
    (u << amt) >> amt
}

pub fn has_attr(attrs: &[ast::Attribute], symbol: Symbol) -> bool {
    attrs.iter().any(|attr| attr.has_name(symbol))
}

pub fn has_repr_attr(cx: &LateContext<'_>, hir_id: HirId) -> bool {
    has_attr(cx.tcx.hir().attrs(hir_id), sym::repr)
}

pub fn any_parent_has_attr(tcx: TyCtxt<'_>, node: HirId, symbol: Symbol) -> bool {
    let map = &tcx.hir();
    let mut prev_enclosing_node = None;
    let mut enclosing_node = node;
    while Some(enclosing_node) != prev_enclosing_node {
        if has_attr(map.attrs(enclosing_node), symbol) {
            return true;
        }
        prev_enclosing_node = Some(enclosing_node);
        enclosing_node = map.get_parent_item(enclosing_node).into();
    }

    false
}

/// Checks if the given HIR node is inside an `impl` block with the `automatically_derived`
/// attribute.
pub fn in_automatically_derived(tcx: TyCtxt<'_>, id: HirId) -> bool {
    tcx.hir()
        .parent_owner_iter(id)
        .filter(|(_, node)| matches!(node, OwnerNode::Item(item) if matches!(item.kind, ItemKind::Impl(_))))
        .any(|(id, _)| {
            has_attr(
                tcx.hir().attrs(tcx.local_def_id_to_hir_id(id.def_id)),
                sym::automatically_derived,
            )
        })
}

/// Matches a function call with the given path and returns the arguments.
///
/// Usage:
///
/// ```rust,ignore
/// if let Some(args) = match_function_call(cx, cmp_max_call, &paths::CMP_MAX);
/// ```
/// This function is deprecated. Use [`match_function_call_with_def_id`].
pub fn match_function_call<'tcx>(
    cx: &LateContext<'tcx>,
    expr: &'tcx Expr<'_>,
    path: &[&str],
) -> Option<&'tcx [Expr<'tcx>]> {
    if let ExprKind::Call(fun, args) = expr.kind
        && let ExprKind::Path(ref qpath) = fun.kind
        && let Some(fun_def_id) = cx.qpath_res(qpath, fun.hir_id).opt_def_id()
        && match_def_path(cx, fun_def_id, path)
    {
        return Some(args);
    };
    None
}

pub fn match_function_call_with_def_id<'tcx>(
    cx: &LateContext<'tcx>,
    expr: &'tcx Expr<'_>,
    fun_def_id: DefId,
) -> Option<&'tcx [Expr<'tcx>]> {
    if let ExprKind::Call(fun, args) = expr.kind
        && let ExprKind::Path(ref qpath) = fun.kind
        && cx.qpath_res(qpath, fun.hir_id).opt_def_id() == Some(fun_def_id)
    {
        return Some(args);
    };
    None
}

/// Checks if the given `DefId` matches any of the paths. Returns the index of matching path, if
/// any.
///
/// Please use `tcx.get_diagnostic_name` if the targets are all diagnostic items.
pub fn match_any_def_paths(cx: &LateContext<'_>, did: DefId, paths: &[&[&str]]) -> Option<usize> {
    let search_path = cx.get_def_path(did);
    paths
        .iter()
        .position(|p| p.iter().map(|x| Symbol::intern(x)).eq(search_path.iter().copied()))
}

/// Checks if the given `DefId` matches the path.
pub fn match_def_path(cx: &LateContext<'_>, did: DefId, syms: &[&str]) -> bool {
    // We should probably move to Symbols in Clippy as well rather than interning every time.
    let path = cx.get_def_path(did);
    syms.iter().map(|x| Symbol::intern(x)).eq(path.iter().copied())
}

/// Checks if the given `DefId` matches the `libc` item.
pub fn match_libc_symbol(cx: &LateContext<'_>, did: DefId, name: &str) -> bool {
    let path = cx.get_def_path(did);
    // libc is meant to be used as a flat list of names, but they're all actually defined in different
    // modules based on the target platform. Ignore everything but crate name and the item name.
    path.first().map_or(false, |s| s.as_str() == "libc") && path.last().map_or(false, |s| s.as_str() == name)
}

/// Returns the list of condition expressions and the list of blocks in a
/// sequence of `if/else`.
/// E.g., this returns `([a, b], [c, d, e])` for the expression
/// `if a { c } else if b { d } else { e }`.
pub fn if_sequence<'tcx>(mut expr: &'tcx Expr<'tcx>) -> (Vec<&'tcx Expr<'tcx>>, Vec<&'tcx Block<'tcx>>) {
    let mut conds = Vec::new();
    let mut blocks: Vec<&Block<'_>> = Vec::new();

    while let Some(higher::IfOrIfLet { cond, then, r#else }) = higher::IfOrIfLet::hir(expr) {
        conds.push(cond);
        if let ExprKind::Block(block, _) = then.kind {
            blocks.push(block);
        } else {
            panic!("ExprKind::If node is not an ExprKind::Block");
        }

        if let Some(else_expr) = r#else {
            expr = else_expr;
        } else {
            break;
        }
    }

    // final `else {..}`
    if !blocks.is_empty() {
        if let ExprKind::Block(block, _) = expr.kind {
            blocks.push(block);
        }
    }

    (conds, blocks)
}

/// Checks if the given function kind is an async function.
pub fn is_async_fn(kind: FnKind<'_>) -> bool {
    match kind {
        FnKind::ItemFn(_, _, header) => header.asyncness.is_async(),
        FnKind::Method(_, sig) => sig.header.asyncness.is_async(),
        FnKind::Closure => false,
    }
}

/// Peels away all the compiler generated code surrounding the body of an async function,
pub fn get_async_fn_body<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'_>) -> Option<&'tcx Expr<'tcx>> {
    if let ExprKind::Closure(&Closure { body, .. }) = body.value.kind {
        if let ExprKind::Block(
            Block {
                stmts: [],
                expr:
                    Some(Expr {
                        kind: ExprKind::DropTemps(expr),
                        ..
                    }),
                ..
            },
            _,
        ) = tcx.hir().body(body).value.kind
        {
            return Some(expr);
        }
    };
    None
}

// check if expr is calling method or function with #[must_use] attribute
pub fn is_must_use_func_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
    let did = match expr.kind {
        ExprKind::Call(path, _) => {
            if let ExprKind::Path(ref qpath) = path.kind
                && let Res::Def(_, did) = cx.qpath_res(qpath, path.hir_id)
            {
                Some(did)
            } else {
                None
            }
        },
        ExprKind::MethodCall(..) => cx.typeck_results().type_dependent_def_id(expr.hir_id),
        _ => None,
    };

    did.map_or(false, |did| cx.tcx.has_attr(did, sym::must_use))
}

/// Checks if a function's body represents the identity function. Looks for bodies of the form:
/// * `|x| x`
/// * `|x| return x`
/// * `|x| { return x }`
/// * `|x| { return x; }`
/// * `|(x, y)| (x, y)`
///
/// Consider calling [`is_expr_untyped_identity_function`] or [`is_expr_identity_function`] instead.
fn is_body_identity_function(cx: &LateContext<'_>, func: &Body<'_>) -> bool {
    fn check_pat(cx: &LateContext<'_>, pat: &Pat<'_>, expr: &Expr<'_>) -> bool {
        if cx
            .typeck_results()
            .pat_binding_modes()
            .get(pat.hir_id)
            .is_some_and(|mode| matches!(mode.0, ByRef::Yes(_)))
        {
            // If a tuple `(x, y)` is of type `&(i32, i32)`, then due to match ergonomics,
            // the inner patterns become references. Don't consider this the identity function
            // as that changes types.
            return false;
        }

        match (pat.kind, expr.kind) {
            (PatKind::Binding(_, id, _, _), _) => {
                path_to_local_id(expr, id) && cx.typeck_results().expr_adjustments(expr).is_empty()
            },
            (PatKind::Tuple(pats, dotdot), ExprKind::Tup(tup))
                if dotdot.as_opt_usize().is_none() && pats.len() == tup.len() =>
            {
                pats.iter().zip(tup).all(|(pat, expr)| check_pat(cx, pat, expr))
            },
            _ => false,
        }
    }

    let [param] = func.params else {
        return false;
    };

    let mut expr = func.value;
    loop {
        match expr.kind {
            ExprKind::Block(
                &Block {
                    stmts: [],
                    expr: Some(e),
                    ..
                },
                _,
            )
            | ExprKind::Ret(Some(e)) => expr = e,
            ExprKind::Block(
                &Block {
                    stmts: [stmt],
                    expr: None,
                    ..
                },
                _,
            ) => {
                if let StmtKind::Semi(e) | StmtKind::Expr(e) = stmt.kind
                    && let ExprKind::Ret(Some(ret_val)) = e.kind
                {
                    expr = ret_val;
                } else {
                    return false;
                }
            },
            _ => return check_pat(cx, param.pat, expr),
        }
    }
}

/// This is the same as [`is_expr_identity_function`], but does not consider closures
/// with type annotations for its bindings (or similar) as identity functions:
/// * `|x: u8| x`
/// * `std::convert::identity::<u8>`
pub fn is_expr_untyped_identity_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
    match expr.kind {
        ExprKind::Closure(&Closure { body, fn_decl, .. })
            if fn_decl.inputs.iter().all(|ty| matches!(ty.kind, TyKind::Infer)) =>
        {
            is_body_identity_function(cx, cx.tcx.hir().body(body))
        },
        ExprKind::Path(QPath::Resolved(_, path))
            if path.segments.iter().all(|seg| seg.infer_args)
                && let Some(did) = path.res.opt_def_id() =>
        {
            cx.tcx.is_diagnostic_item(sym::convert_identity, did)
        },
        _ => false,
    }
}

/// Checks if an expression represents the identity function
/// Only examines closures and `std::convert::identity`
///
/// NOTE: If you want to use this function to find out if a closure is unnecessary, you likely want
/// to call [`is_expr_untyped_identity_function`] instead, which makes sure that the closure doesn't
/// have type annotations. This is important because removing a closure with bindings can
/// remove type information that helped type inference before, which can then lead to compile
/// errors.
pub fn is_expr_identity_function(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
    match expr.kind {
        ExprKind::Closure(&Closure { body, .. }) => is_body_identity_function(cx, cx.tcx.hir().body(body)),
        _ => path_def_id(cx, expr).map_or(false, |id| cx.tcx.is_diagnostic_item(sym::convert_identity, id)),
    }
}

/// Gets the node where an expression is either used, or it's type is unified with another branch.
/// Returns both the node and the `HirId` of the closest child node.
pub fn get_expr_use_or_unification_node<'tcx>(tcx: TyCtxt<'tcx>, expr: &Expr<'_>) -> Option<(Node<'tcx>, HirId)> {
    let mut child_id = expr.hir_id;
    let mut iter = tcx.hir().parent_iter(child_id);
    loop {
        match iter.next() {
            None => break None,
            Some((id, Node::Block(_))) => child_id = id,
            Some((id, Node::Arm(arm))) if arm.body.hir_id == child_id => child_id = id,
            Some((_, Node::Expr(expr))) => match expr.kind {
                ExprKind::Match(_, [arm], _) if arm.hir_id == child_id => child_id = expr.hir_id,
                ExprKind::Block(..) | ExprKind::DropTemps(_) => child_id = expr.hir_id,
                ExprKind::If(_, then_expr, None) if then_expr.hir_id == child_id => break None,
                _ => break Some((Node::Expr(expr), child_id)),
            },
            Some((_, node)) => break Some((node, child_id)),
        }
    }
}

/// Checks if the result of an expression is used, or it's type is unified with another branch.
pub fn is_expr_used_or_unified(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
    !matches!(
        get_expr_use_or_unification_node(tcx, expr),
        None | Some((
            Node::Stmt(Stmt {
                kind: StmtKind::Expr(_)
                    | StmtKind::Semi(_)
                    | StmtKind::Let(LetStmt {
                        pat: Pat {
                            kind: PatKind::Wild,
                            ..
                        },
                        ..
                    }),
                ..
            }),
            _
        ))
    )
}

/// Checks if the expression is the final expression returned from a block.
pub fn is_expr_final_block_expr(tcx: TyCtxt<'_>, expr: &Expr<'_>) -> bool {
    matches!(tcx.parent_hir_node(expr.hir_id), Node::Block(..))
}

pub fn std_or_core(cx: &LateContext<'_>) -> Option<&'static str> {
    if !is_no_std_crate(cx) {
        Some("std")
    } else if !is_no_core_crate(cx) {
        Some("core")
    } else {
        None
    }
}

pub fn is_no_std_crate(cx: &LateContext<'_>) -> bool {
    cx.tcx.hir().attrs(hir::CRATE_HIR_ID).iter().any(|attr| {
        if let ast::AttrKind::Normal(ref normal) = attr.kind {
            normal.item.path == sym::no_std
        } else {
            false
        }
    })
}

pub fn is_no_core_crate(cx: &LateContext<'_>) -> bool {
    cx.tcx.hir().attrs(hir::CRATE_HIR_ID).iter().any(|attr| {
        if let ast::AttrKind::Normal(ref normal) = attr.kind {
            normal.item.path == sym::no_core
        } else {
            false
        }
    })
}

/// Check if parent of a hir node is a trait implementation block.
/// For example, `f` in
/// ```no_run
/// # struct S;
/// # trait Trait { fn f(); }
/// impl Trait for S {
///     fn f() {}
/// }
/// ```
pub fn is_trait_impl_item(cx: &LateContext<'_>, hir_id: HirId) -> bool {
    if let Node::Item(item) = cx.tcx.parent_hir_node(hir_id) {
        matches!(item.kind, ItemKind::Impl(Impl { of_trait: Some(_), .. }))
    } else {
        false
    }
}

/// Check if it's even possible to satisfy the `where` clause for the item.
///
/// `trivial_bounds` feature allows functions with unsatisfiable bounds, for example:
///
/// ```ignore
/// fn foo() where i32: Iterator {
///     for _ in 2i32 {}
/// }
/// ```
pub fn fn_has_unsatisfiable_preds(cx: &LateContext<'_>, did: DefId) -> bool {
    use rustc_trait_selection::traits;
    let predicates = cx
        .tcx
        .predicates_of(did)
        .predicates
        .iter()
        .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
    traits::impossible_predicates(cx.tcx, traits::elaborate(cx.tcx, predicates).collect::<Vec<_>>())
}

/// Returns the `DefId` of the callee if the given expression is a function or method call.
pub fn fn_def_id(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<DefId> {
    fn_def_id_with_node_args(cx, expr).map(|(did, _)| did)
}

/// Returns the `DefId` of the callee if the given expression is a function or method call,
/// as well as its node args.
pub fn fn_def_id_with_node_args<'tcx>(
    cx: &LateContext<'tcx>,
    expr: &Expr<'_>,
) -> Option<(DefId, GenericArgsRef<'tcx>)> {
    let typeck = cx.typeck_results();
    match &expr.kind {
        ExprKind::MethodCall(..) => Some((
            typeck.type_dependent_def_id(expr.hir_id)?,
            typeck.node_args(expr.hir_id),
        )),
        ExprKind::Call(
            Expr {
                kind: ExprKind::Path(qpath),
                hir_id: path_hir_id,
                ..
            },
            ..,
        ) => {
            // Only return Fn-like DefIds, not the DefIds of statics/consts/etc that contain or
            // deref to fn pointers, dyn Fn, impl Fn - #8850
            if let Res::Def(DefKind::Fn | DefKind::Ctor(..) | DefKind::AssocFn, id) =
                typeck.qpath_res(qpath, *path_hir_id)
            {
                Some((id, typeck.node_args(*path_hir_id)))
            } else {
                None
            }
        },
        _ => None,
    }
}

/// Returns `Option<String>` where String is a textual representation of the type encapsulated in
/// the slice iff the given expression is a slice of primitives.
///
/// (As defined in the `is_recursively_primitive_type` function.) Returns `None` otherwise.
pub fn is_slice_of_primitives(cx: &LateContext<'_>, expr: &Expr<'_>) -> Option<String> {
    let expr_type = cx.typeck_results().expr_ty_adjusted(expr);
    let expr_kind = expr_type.kind();
    let is_primitive = match expr_kind {
        rustc_ty::Slice(element_type) => is_recursively_primitive_type(*element_type),
        rustc_ty::Ref(_, inner_ty, _) if matches!(inner_ty.kind(), &rustc_ty::Slice(_)) => {
            if let rustc_ty::Slice(element_type) = inner_ty.kind() {
                is_recursively_primitive_type(*element_type)
            } else {
                unreachable!()
            }
        },
        _ => false,
    };

    if is_primitive {
        // if we have wrappers like Array, Slice or Tuple, print these
        // and get the type enclosed in the slice ref
        match expr_type.peel_refs().walk().nth(1).unwrap().expect_ty().kind() {
            rustc_ty::Slice(..) => return Some("slice".into()),
            rustc_ty::Array(..) => return Some("array".into()),
            rustc_ty::Tuple(..) => return Some("tuple".into()),
            _ => {
                // is_recursively_primitive_type() should have taken care
                // of the rest and we can rely on the type that is found
                let refs_peeled = expr_type.peel_refs();
                return Some(refs_peeled.walk().last().unwrap().to_string());
            },
        }
    }
    None
}

/// Returns list of all pairs `(a, b)` where `eq(a, b) == true`
/// and `a` is before `b` in `exprs` for all `a` and `b` in
/// `exprs`
///
/// Given functions `eq` and `hash` such that `eq(a, b) == true`
/// implies `hash(a) == hash(b)`
pub fn search_same<T, Hash, Eq>(exprs: &[T], mut hash: Hash, mut eq: Eq) -> Vec<(&T, &T)>
where
    Hash: FnMut(&T) -> u64,
    Eq: FnMut(&T, &T) -> bool,
{
    match exprs {
        [a, b] if eq(a, b) => return vec![(a, b)],
        _ if exprs.len() <= 2 => return vec![],
        _ => {},
    }

    let mut match_expr_list: Vec<(&T, &T)> = Vec::new();

    let mut map: UnhashMap<u64, Vec<&_>> =
        UnhashMap::with_capacity_and_hasher(exprs.len(), BuildHasherDefault::default());

    for expr in exprs {
        match map.entry(hash(expr)) {
            Entry::Occupied(mut o) => {
                for o in o.get() {
                    if eq(o, expr) {
                        match_expr_list.push((o, expr));
                    }
                }
                o.get_mut().push(expr);
            },
            Entry::Vacant(v) => {
                v.insert(vec![expr]);
            },
        }
    }

    match_expr_list
}

/// Peels off all references on the pattern. Returns the underlying pattern and the number of
/// references removed.
pub fn peel_hir_pat_refs<'a>(pat: &'a Pat<'a>) -> (&'a Pat<'a>, usize) {
    fn peel<'a>(pat: &'a Pat<'a>, count: usize) -> (&'a Pat<'a>, usize) {
        if let PatKind::Ref(pat, _) = pat.kind {
            peel(pat, count + 1)
        } else {
            (pat, count)
        }
    }
    peel(pat, 0)
}

/// Peels of expressions while the given closure returns `Some`.
pub fn peel_hir_expr_while<'tcx>(
    mut expr: &'tcx Expr<'tcx>,
    mut f: impl FnMut(&'tcx Expr<'tcx>) -> Option<&'tcx Expr<'tcx>>,
) -> &'tcx Expr<'tcx> {
    while let Some(e) = f(expr) {
        expr = e;
    }
    expr
}

/// Peels off up to the given number of references on the expression. Returns the underlying
/// expression and the number of references removed.
pub fn peel_n_hir_expr_refs<'a>(expr: &'a Expr<'a>, count: usize) -> (&'a Expr<'a>, usize) {
    let mut remaining = count;
    let e = peel_hir_expr_while(expr, |e| match e.kind {
        ExprKind::AddrOf(ast::BorrowKind::Ref, _, e) if remaining != 0 => {
            remaining -= 1;
            Some(e)
        },
        _ => None,
    });
    (e, count - remaining)
}

/// Peels off all unary operators of an expression. Returns the underlying expression and the number
/// of operators removed.
pub fn peel_hir_expr_unary<'a>(expr: &'a Expr<'a>) -> (&'a Expr<'a>, usize) {
    let mut count: usize = 0;
    let mut curr_expr = expr;
    while let ExprKind::Unary(_, local_expr) = curr_expr.kind {
        count = count.wrapping_add(1);
        curr_expr = local_expr;
    }
    (curr_expr, count)
}

/// Peels off all references on the expression. Returns the underlying expression and the number of
/// references removed.
pub fn peel_hir_expr_refs<'a>(expr: &'a Expr<'a>) -> (&'a Expr<'a>, usize) {
    let mut count = 0;
    let e = peel_hir_expr_while(expr, |e| match e.kind {
        ExprKind::AddrOf(ast::BorrowKind::Ref, _, e) => {
            count += 1;
            Some(e)
        },
        _ => None,
    });
    (e, count)
}

/// Peels off all references on the type. Returns the underlying type and the number of references
/// removed.
pub fn peel_hir_ty_refs<'a>(mut ty: &'a hir::Ty<'a>) -> (&'a hir::Ty<'a>, usize) {
    let mut count = 0;
    loop {
        match &ty.kind {
            TyKind::Ref(_, ref_ty) => {
                ty = ref_ty.ty;
                count += 1;
            },
            _ => break (ty, count),
        }
    }
}

/// Peels off all references on the type. Returns the underlying type and the number of references
/// removed.
pub fn peel_middle_ty_refs(mut ty: Ty<'_>) -> (Ty<'_>, usize) {
    let mut count = 0;
    while let rustc_ty::Ref(_, dest_ty, _) = ty.kind() {
        ty = *dest_ty;
        count += 1;
    }
    (ty, count)
}

/// Removes `AddrOf` operators (`&`) or deref operators (`*`), but only if a reference type is
/// dereferenced. An overloaded deref such as `Vec` to slice would not be removed.
pub fn peel_ref_operators<'hir>(cx: &LateContext<'_>, mut expr: &'hir Expr<'hir>) -> &'hir Expr<'hir> {
    loop {
        match expr.kind {
            ExprKind::AddrOf(_, _, e) => expr = e,
            ExprKind::Unary(UnOp::Deref, e) if cx.typeck_results().expr_ty(e).is_ref() => expr = e,
            _ => break,
        }
    }
    expr
}

pub fn is_hir_ty_cfg_dependant(cx: &LateContext<'_>, ty: &hir::Ty<'_>) -> bool {
    if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind {
        if let Res::Def(_, def_id) = path.res {
            return cx.tcx.has_attr(def_id, sym::cfg) || cx.tcx.has_attr(def_id, sym::cfg_attr);
        }
    }
    false
}

static TEST_ITEM_NAMES_CACHE: OnceLock<Mutex<FxHashMap<LocalModDefId, Vec<Symbol>>>> = OnceLock::new();

fn with_test_item_names(tcx: TyCtxt<'_>, module: LocalModDefId, f: impl Fn(&[Symbol]) -> bool) -> bool {
    let cache = TEST_ITEM_NAMES_CACHE.get_or_init(|| Mutex::new(FxHashMap::default()));
    let mut map: MutexGuard<'_, FxHashMap<LocalModDefId, Vec<Symbol>>> = cache.lock().unwrap();
    let value = map.entry(module);
    match value {
        Entry::Occupied(entry) => f(entry.get()),
        Entry::Vacant(entry) => {
            let mut names = Vec::new();
            for id in tcx.hir().module_items(module) {
                if matches!(tcx.def_kind(id.owner_id), DefKind::Const)
                    && let item = tcx.hir().item(id)
                    && let ItemKind::Const(ty, _generics, _body) = item.kind
                {
                    if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind {
                        // We could also check for the type name `test::TestDescAndFn`
                        if let Res::Def(DefKind::Struct, _) = path.res {
                            let has_test_marker = tcx
                                .hir()
                                .attrs(item.hir_id())
                                .iter()
                                .any(|a| a.has_name(sym::rustc_test_marker));
                            if has_test_marker {
                                names.push(item.ident.name);
                            }
                        }
                    }
                }
            }
            names.sort_unstable();
            f(entry.insert(names))
        },
    }
}

/// Checks if the function containing the given `HirId` is a `#[test]` function
///
/// Note: Add `//@compile-flags: --test` to UI tests with a `#[test]` function
pub fn is_in_test_function(tcx: TyCtxt<'_>, id: HirId) -> bool {
    with_test_item_names(tcx, tcx.parent_module(id), |names| {
        let node = tcx.hir_node(id);
        once((id, node))
            .chain(tcx.hir().parent_iter(id))
            // Since you can nest functions we need to collect all until we leave
            // function scope
            .any(|(_id, node)| {
                if let Node::Item(item) = node {
                    if let ItemKind::Fn(_, _, _) = item.kind {
                        // Note that we have sorted the item names in the visitor,
                        // so the binary_search gets the same as `contains`, but faster.
                        return names.binary_search(&item.ident.name).is_ok();
                    }
                }
                false
            })
    })
}

/// Checks if `id` has a `#[cfg(test)]` attribute applied
///
/// This only checks directly applied attributes, to see if a node is inside a `#[cfg(test)]` parent
/// use [`is_in_cfg_test`]
pub fn is_cfg_test(tcx: TyCtxt<'_>, id: HirId) -> bool {
    tcx.hir().attrs(id).iter().any(|attr| {
        if attr.has_name(sym::cfg)
            && let Some(items) = attr.meta_item_list()
            && let [item] = &*items
            && item.has_name(sym::test)
        {
            true
        } else {
            false
        }
    })
}

/// Checks if any parent node of `HirId` has `#[cfg(test)]` attribute applied
pub fn is_in_cfg_test(tcx: TyCtxt<'_>, id: HirId) -> bool {
    tcx.hir()
        .parent_id_iter(id)
        .any(|parent_id| is_cfg_test(tcx, parent_id))
}

/// Checks if the node is in a `#[test]` function or has any parent node marked `#[cfg(test)]`
pub fn is_in_test(tcx: TyCtxt<'_>, hir_id: HirId) -> bool {
    is_in_test_function(tcx, hir_id) || is_in_cfg_test(tcx, hir_id)
}

/// Checks if the item of any of its parents has `#[cfg(...)]` attribute applied.
pub fn inherits_cfg(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
    let hir = tcx.hir();

    tcx.has_attr(def_id, sym::cfg)
        || hir
            .parent_iter(tcx.local_def_id_to_hir_id(def_id))
            .flat_map(|(parent_id, _)| hir.attrs(parent_id))
            .any(|attr| attr.has_name(sym::cfg))
}

/// Walks up the HIR tree from the given expression in an attempt to find where the value is
/// consumed.
///
/// Termination has three conditions:
/// - The given function returns `Break`. This function will return the value.
/// - The consuming node is found. This function will return `Continue(use_node, child_id)`.
/// - No further parent nodes are found. This will trigger a debug assert or return `None`.
///
/// This allows walking through `if`, `match`, `break`, and block expressions to find where the
/// value produced by the expression is consumed.
pub fn walk_to_expr_usage<'tcx, T>(
    cx: &LateContext<'tcx>,
    e: &Expr<'tcx>,
    mut f: impl FnMut(HirId, Node<'tcx>, HirId) -> ControlFlow<T>,
) -> Option<ControlFlow<T, (Node<'tcx>, HirId)>> {
    let map = cx.tcx.hir();
    let mut iter = map.parent_iter(e.hir_id);
    let mut child_id = e.hir_id;

    while let Some((parent_id, parent)) = iter.next() {
        if let ControlFlow::Break(x) = f(parent_id, parent, child_id) {
            return Some(ControlFlow::Break(x));
        }
        let parent_expr = match parent {
            Node::Expr(e) => e,
            Node::Block(Block { expr: Some(body), .. }) | Node::Arm(Arm { body, .. }) if body.hir_id == child_id => {
                child_id = parent_id;
                continue;
            },
            Node::Arm(a) if a.body.hir_id == child_id => {
                child_id = parent_id;
                continue;
            },
            _ => return Some(ControlFlow::Continue((parent, child_id))),
        };
        match parent_expr.kind {
            ExprKind::If(child, ..) | ExprKind::Match(child, ..) if child.hir_id != child_id => child_id = parent_id,
            ExprKind::Break(Destination { target_id: Ok(id), .. }, _) => {
                child_id = id;
                iter = map.parent_iter(id);
            },
            ExprKind::Block(..) | ExprKind::DropTemps(_) => child_id = parent_id,
            _ => return Some(ControlFlow::Continue((parent, child_id))),
        }
    }
    debug_assert!(false, "no parent node found for `{child_id:?}`");
    None
}

/// A type definition as it would be viewed from within a function.
#[derive(Clone, Copy)]
pub enum DefinedTy<'tcx> {
    // Used for locals and closures defined within the function.
    Hir(&'tcx hir::Ty<'tcx>),
    /// Used for function signatures, and constant and static values. This includes the `ParamEnv`
    /// from the definition site.
    Mir(ParamEnvAnd<'tcx, Binder<'tcx, Ty<'tcx>>>),
}

/// The context an expressions value is used in.
pub struct ExprUseCtxt<'tcx> {
    /// The parent node which consumes the value.
    pub node: Node<'tcx>,
    /// The child id of the node the value came from.
    pub child_id: HirId,
    /// Any adjustments applied to the type.
    pub adjustments: &'tcx [Adjustment<'tcx>],
    /// Whether the type must unify with another code path.
    pub is_ty_unified: bool,
    /// Whether the value will be moved before it's used.
    pub moved_before_use: bool,
    /// Whether the use site has the same `SyntaxContext` as the value.
    pub same_ctxt: bool,
}
impl<'tcx> ExprUseCtxt<'tcx> {
    pub fn use_node(&self, cx: &LateContext<'tcx>) -> ExprUseNode<'tcx> {
        match self.node {
            Node::LetStmt(l) => ExprUseNode::LetStmt(l),
            Node::ExprField(field) => ExprUseNode::Field(field),

            Node::Item(&Item {
                kind: ItemKind::Static(..) | ItemKind::Const(..),
                owner_id,
                ..
            })
            | Node::TraitItem(&TraitItem {
                kind: TraitItemKind::Const(..),
                owner_id,
                ..
            })
            | Node::ImplItem(&ImplItem {
                kind: ImplItemKind::Const(..),
                owner_id,
                ..
            }) => ExprUseNode::ConstStatic(owner_id),

            Node::Item(&Item {
                kind: ItemKind::Fn(..),
                owner_id,
                ..
            })
            | Node::TraitItem(&TraitItem {
                kind: TraitItemKind::Fn(..),
                owner_id,
                ..
            })
            | Node::ImplItem(&ImplItem {
                kind: ImplItemKind::Fn(..),
                owner_id,
                ..
            }) => ExprUseNode::Return(owner_id),

            Node::Expr(use_expr) => match use_expr.kind {
                ExprKind::Ret(_) => ExprUseNode::Return(OwnerId {
                    def_id: cx.tcx.hir().body_owner_def_id(cx.enclosing_body.unwrap()),
                }),

                ExprKind::Closure(closure) => ExprUseNode::Return(OwnerId { def_id: closure.def_id }),
                ExprKind::Call(func, args) => match args.iter().position(|arg| arg.hir_id == self.child_id) {
                    Some(i) => ExprUseNode::FnArg(func, i),
                    None => ExprUseNode::Callee,
                },
                ExprKind::MethodCall(name, _, args, _) => ExprUseNode::MethodArg(
                    use_expr.hir_id,
                    name.args,
                    args.iter()
                        .position(|arg| arg.hir_id == self.child_id)
                        .map_or(0, |i| i + 1),
                ),
                ExprKind::Field(_, name) => ExprUseNode::FieldAccess(name),
                ExprKind::AddrOf(kind, mutbl, _) => ExprUseNode::AddrOf(kind, mutbl),
                _ => ExprUseNode::Other,
            },
            _ => ExprUseNode::Other,
        }
    }
}

/// The node which consumes a value.
pub enum ExprUseNode<'tcx> {
    /// Assignment to, or initializer for, a local
    LetStmt(&'tcx LetStmt<'tcx>),
    /// Initializer for a const or static item.
    ConstStatic(OwnerId),
    /// Implicit or explicit return from a function.
    Return(OwnerId),
    /// Initialization of a struct field.
    Field(&'tcx ExprField<'tcx>),
    /// An argument to a function.
    FnArg(&'tcx Expr<'tcx>, usize),
    /// An argument to a method.
    MethodArg(HirId, Option<&'tcx GenericArgs<'tcx>>, usize),
    /// The callee of a function call.
    Callee,
    /// Access of a field.
    FieldAccess(Ident),
    /// Borrow expression.
    AddrOf(ast::BorrowKind, Mutability),
    Other,
}
impl<'tcx> ExprUseNode<'tcx> {
    /// Checks if the value is returned from the function.
    pub fn is_return(&self) -> bool {
        matches!(self, Self::Return(_))
    }

    /// Checks if the value is used as a method call receiver.
    pub fn is_recv(&self) -> bool {
        matches!(self, Self::MethodArg(_, _, 0))
    }

    /// Gets the needed type as it's defined without any type inference.
    pub fn defined_ty(&self, cx: &LateContext<'tcx>) -> Option<DefinedTy<'tcx>> {
        match *self {
            Self::LetStmt(LetStmt { ty: Some(ty), .. }) => Some(DefinedTy::Hir(ty)),
            Self::ConstStatic(id) => Some(DefinedTy::Mir(
                cx.param_env
                    .and(Binder::dummy(cx.tcx.type_of(id).instantiate_identity())),
            )),
            Self::Return(id) => {
                if let Node::Expr(Expr {
                    kind: ExprKind::Closure(c),
                    ..
                }) = cx.tcx.hir_node_by_def_id(id.def_id)
                {
                    match c.fn_decl.output {
                        FnRetTy::DefaultReturn(_) => None,
                        FnRetTy::Return(ty) => Some(DefinedTy::Hir(ty)),
                    }
                } else {
                    Some(DefinedTy::Mir(
                        cx.param_env.and(cx.tcx.fn_sig(id).instantiate_identity().output()),
                    ))
                }
            },
            Self::Field(field) => match get_parent_expr_for_hir(cx, field.hir_id) {
                Some(Expr {
                    hir_id,
                    kind: ExprKind::Struct(path, ..),
                    ..
                }) => adt_and_variant_of_res(cx, cx.qpath_res(path, *hir_id))
                    .and_then(|(adt, variant)| {
                        variant
                            .fields
                            .iter()
                            .find(|f| f.name == field.ident.name)
                            .map(|f| (adt, f))
                    })
                    .map(|(adt, field_def)| {
                        DefinedTy::Mir(
                            cx.tcx
                                .param_env(adt.did())
                                .and(Binder::dummy(cx.tcx.type_of(field_def.did).instantiate_identity())),
                        )
                    }),
                _ => None,
            },
            Self::FnArg(callee, i) => {
                let sig = expr_sig(cx, callee)?;
                let (hir_ty, ty) = sig.input_with_hir(i)?;
                Some(match hir_ty {
                    Some(hir_ty) => DefinedTy::Hir(hir_ty),
                    None => DefinedTy::Mir(
                        sig.predicates_id()
                            .map_or(ParamEnv::empty(), |id| cx.tcx.param_env(id))
                            .and(ty),
                    ),
                })
            },
            Self::MethodArg(id, _, i) => {
                let id = cx.typeck_results().type_dependent_def_id(id)?;
                let sig = cx.tcx.fn_sig(id).skip_binder();
                Some(DefinedTy::Mir(cx.tcx.param_env(id).and(sig.input(i))))
            },
            Self::LetStmt(_) | Self::FieldAccess(..) | Self::Callee | Self::Other | Self::AddrOf(..) => None,
        }
    }
}

/// Gets the context an expression's value is used in.
pub fn expr_use_ctxt<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'tcx>) -> ExprUseCtxt<'tcx> {
    let mut adjustments = [].as_slice();
    let mut is_ty_unified = false;
    let mut moved_before_use = false;
    let mut same_ctxt = true;
    let ctxt = e.span.ctxt();
    let node = walk_to_expr_usage(cx, e, &mut |parent_id, parent, child_id| -> ControlFlow<!> {
        if adjustments.is_empty()
            && let Node::Expr(e) = cx.tcx.hir_node(child_id)
        {
            adjustments = cx.typeck_results().expr_adjustments(e);
        }
        same_ctxt &= cx.tcx.hir().span(parent_id).ctxt() == ctxt;
        if let Node::Expr(e) = parent {
            match e.kind {
                ExprKind::If(e, _, _) | ExprKind::Match(e, _, _) if e.hir_id != child_id => {
                    is_ty_unified = true;
                    moved_before_use = true;
                },
                ExprKind::Block(_, Some(_)) | ExprKind::Break(..) => {
                    is_ty_unified = true;
                    moved_before_use = true;
                },
                ExprKind::Block(..) => moved_before_use = true,
                _ => {},
            }
        }
        ControlFlow::Continue(())
    });
    match node {
        Some(ControlFlow::Continue((node, child_id))) => ExprUseCtxt {
            node,
            child_id,
            adjustments,
            is_ty_unified,
            moved_before_use,
            same_ctxt,
        },
        #[allow(unreachable_patterns)]
        Some(ControlFlow::Break(_)) => unreachable!("type of node is ControlFlow<!>"),
        None => ExprUseCtxt {
            node: Node::Crate(cx.tcx.hir().root_module()),
            child_id: HirId::INVALID,
            adjustments: &[],
            is_ty_unified: true,
            moved_before_use: true,
            same_ctxt: false,
        },
    }
}

/// Tokenizes the input while keeping the text associated with each token.
pub fn tokenize_with_text(s: &str) -> impl Iterator<Item = (TokenKind, &str, InnerSpan)> {
    let mut pos = 0;
    tokenize(s).map(move |t| {
        let end = pos + t.len;
        let range = pos as usize..end as usize;
        let inner = InnerSpan::new(range.start, range.end);
        pos = end;
        (t.kind, s.get(range).unwrap_or_default(), inner)
    })
}

/// Checks whether a given span has any comment token
/// This checks for all types of comment: line "//", block "/**", doc "///" "//!"
pub fn span_contains_comment(sm: &SourceMap, span: Span) -> bool {
    let Ok(snippet) = sm.span_to_snippet(span) else {
        return false;
    };
    return tokenize(&snippet).any(|token| {
        matches!(
            token.kind,
            TokenKind::BlockComment { .. } | TokenKind::LineComment { .. }
        )
    });
}

/// Returns all the comments a given span contains
///
/// Comments are returned wrapped with their relevant delimiters
pub fn span_extract_comment(sm: &SourceMap, span: Span) -> String {
    let snippet = sm.span_to_snippet(span).unwrap_or_default();
    let res = tokenize_with_text(&snippet)
        .filter(|(t, ..)| matches!(t, TokenKind::BlockComment { .. } | TokenKind::LineComment { .. }))
        .map(|(_, s, _)| s)
        .join("\n");
    res
}

pub fn span_find_starting_semi(sm: &SourceMap, span: Span) -> Span {
    sm.span_take_while(span, |&ch| ch == ' ' || ch == ';')
}

/// Returns whether the given let pattern and else body can be turned into a question mark
///
/// For this example:
/// ```ignore
/// let FooBar { a, b } = if let Some(a) = ex { a } else { return None };
/// ```
/// We get as parameters:
/// ```ignore
/// pat: Some(a)
/// else_body: return None
/// ```
///
/// And for this example:
/// ```ignore
/// let Some(FooBar { a, b }) = ex else { return None };
/// ```
/// We get as parameters:
/// ```ignore
/// pat: Some(FooBar { a, b })
/// else_body: return None
/// ```
///
/// We output `Some(a)` in the first instance, and `Some(FooBar { a, b })` in the second, because
/// the question mark operator is applicable here. Callers have to check whether we are in a
/// constant or not.
pub fn pat_and_expr_can_be_question_mark<'a, 'hir>(
    cx: &LateContext<'_>,
    pat: &'a Pat<'hir>,
    else_body: &Expr<'_>,
) -> Option<&'a Pat<'hir>> {
    if let PatKind::TupleStruct(pat_path, [inner_pat], _) = pat.kind
        && is_res_lang_ctor(cx, cx.qpath_res(&pat_path, pat.hir_id), OptionSome)
        && !is_refutable(cx, inner_pat)
        && let else_body = peel_blocks(else_body)
        && let ExprKind::Ret(Some(ret_val)) = else_body.kind
        && let ExprKind::Path(ret_path) = ret_val.kind
        && is_res_lang_ctor(cx, cx.qpath_res(&ret_path, ret_val.hir_id), OptionNone)
    {
        Some(inner_pat)
    } else {
        None
    }
}

macro_rules! op_utils {
    ($($name:ident $assign:ident)*) => {
        /// Binary operation traits like `LangItem::Add`
        pub static BINOP_TRAITS: &[LangItem] = &[$(LangItem::$name,)*];

        /// Operator-Assign traits like `LangItem::AddAssign`
        pub static OP_ASSIGN_TRAITS: &[LangItem] = &[$(LangItem::$assign,)*];

        /// Converts `BinOpKind::Add` to `(LangItem::Add, LangItem::AddAssign)`, for example
        pub fn binop_traits(kind: hir::BinOpKind) -> Option<(LangItem, LangItem)> {
            match kind {
                $(hir::BinOpKind::$name => Some((LangItem::$name, LangItem::$assign)),)*
                _ => None,
            }
        }
    };
}

op_utils! {
    Add    AddAssign
    Sub    SubAssign
    Mul    MulAssign
    Div    DivAssign
    Rem    RemAssign
    BitXor BitXorAssign
    BitAnd BitAndAssign
    BitOr  BitOrAssign
    Shl    ShlAssign
    Shr    ShrAssign
}

/// Returns `true` if the pattern is a `PatWild`, or is an ident prefixed with `_`
/// that is not locally used.
pub fn pat_is_wild<'tcx>(cx: &LateContext<'tcx>, pat: &'tcx PatKind<'_>, body: impl Visitable<'tcx>) -> bool {
    match *pat {
        PatKind::Wild => true,
        PatKind::Binding(_, id, ident, None) if ident.as_str().starts_with('_') => {
            !visitors::is_local_used(cx, body, id)
        },
        _ => false,
    }
}

#[derive(Clone, Copy)]
pub enum RequiresSemi {
    Yes,
    No,
}
impl RequiresSemi {
    pub fn requires_semi(self) -> bool {
        matches!(self, Self::Yes)
    }
}

/// Check if the expression return `!`, a type coerced from `!`, or could return `!` if the final
/// expression were turned into a statement.
#[expect(clippy::too_many_lines)]
pub fn is_never_expr<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> Option<RequiresSemi> {
    struct BreakTarget {
        id: HirId,
        unused: bool,
    }

    struct V<'cx, 'tcx> {
        cx: &'cx LateContext<'tcx>,
        break_targets: Vec<BreakTarget>,
        break_targets_for_result_ty: u32,
        in_final_expr: bool,
        requires_semi: bool,
        is_never: bool,
    }

    impl V<'_, '_> {
        fn push_break_target(&mut self, id: HirId) {
            self.break_targets.push(BreakTarget { id, unused: true });
            self.break_targets_for_result_ty += u32::from(self.in_final_expr);
        }
    }

    impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
        fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
            // Note: Part of the complexity here comes from the fact that
            // coercions are applied to the innermost expression.
            // e.g. In `let x: u32 = { break () };` the never-to-any coercion
            // is applied to the break expression. This means we can't just
            // check the block's type as it will be `u32` despite the fact
            // that the block always diverges.

            // The rest of the complexity comes from checking blocks which
            // syntactically return a value, but will always diverge before
            // reaching that point.
            // e.g. In `let x = { foo(panic!()) };` the block's type will be the
            // return type of `foo` even though it will never actually run. This
            // can be trivially fixed by adding a semicolon after the call, but
            // we must first detect that a semicolon is needed to make that
            // suggestion.

            if self.is_never && self.break_targets.is_empty() {
                if self.in_final_expr && !self.requires_semi {
                    // This expression won't ever run, but we still need to check
                    // if it can affect the type of the final expression.
                    match e.kind {
                        ExprKind::DropTemps(e) => self.visit_expr(e),
                        ExprKind::If(_, then, Some(else_)) => {
                            self.visit_expr(then);
                            self.visit_expr(else_);
                        },
                        ExprKind::Match(_, arms, _) => {
                            for arm in arms {
                                self.visit_expr(arm.body);
                            }
                        },
                        ExprKind::Loop(b, ..) => {
                            self.push_break_target(e.hir_id);
                            self.in_final_expr = false;
                            self.visit_block(b);
                            self.break_targets.pop();
                        },
                        ExprKind::Block(b, _) => {
                            if b.targeted_by_break {
                                self.push_break_target(b.hir_id);
                                self.visit_block(b);
                                self.break_targets.pop();
                            } else {
                                self.visit_block(b);
                            }
                        },
                        _ => {
                            self.requires_semi = !self.cx.typeck_results().expr_ty(e).is_never();
                        },
                    }
                }
                return;
            }
            match e.kind {
                ExprKind::DropTemps(e) => self.visit_expr(e),
                ExprKind::Ret(None) | ExprKind::Continue(_) => self.is_never = true,
                ExprKind::Ret(Some(e)) | ExprKind::Become(e) => {
                    self.in_final_expr = false;
                    self.visit_expr(e);
                    self.is_never = true;
                },
                ExprKind::Break(dest, e) => {
                    if let Some(e) = e {
                        self.in_final_expr = false;
                        self.visit_expr(e);
                    }
                    if let Ok(id) = dest.target_id
                        && let Some((i, target)) = self
                            .break_targets
                            .iter_mut()
                            .enumerate()
                            .find(|(_, target)| target.id == id)
                    {
                        target.unused &= self.is_never;
                        if i < self.break_targets_for_result_ty as usize {
                            self.requires_semi = true;
                        }
                    }
                    self.is_never = true;
                },
                ExprKind::If(cond, then, else_) => {
                    let in_final_expr = mem::replace(&mut self.in_final_expr, false);
                    self.visit_expr(cond);
                    self.in_final_expr = in_final_expr;

                    if self.is_never {
                        self.visit_expr(then);
                        if let Some(else_) = else_ {
                            self.visit_expr(else_);
                        }
                    } else {
                        self.visit_expr(then);
                        let is_never = mem::replace(&mut self.is_never, false);
                        if let Some(else_) = else_ {
                            self.visit_expr(else_);
                            self.is_never &= is_never;
                        }
                    }
                },
                ExprKind::Match(scrutinee, arms, _) => {
                    let in_final_expr = mem::replace(&mut self.in_final_expr, false);
                    self.visit_expr(scrutinee);
                    self.in_final_expr = in_final_expr;

                    if self.is_never {
                        for arm in arms {
                            self.visit_arm(arm);
                        }
                    } else {
                        let mut is_never = true;
                        for arm in arms {
                            self.is_never = false;
                            if let Some(guard) = arm.guard {
                                let in_final_expr = mem::replace(&mut self.in_final_expr, false);
                                self.visit_expr(guard);
                                self.in_final_expr = in_final_expr;
                                // The compiler doesn't consider diverging guards as causing the arm to diverge.
                                self.is_never = false;
                            }
                            self.visit_expr(arm.body);
                            is_never &= self.is_never;
                        }
                        self.is_never = is_never;
                    }
                },
                ExprKind::Loop(b, _, _, _) => {
                    self.push_break_target(e.hir_id);
                    self.in_final_expr = false;
                    self.visit_block(b);
                    self.is_never = self.break_targets.pop().unwrap().unused;
                },
                ExprKind::Block(b, _) => {
                    if b.targeted_by_break {
                        self.push_break_target(b.hir_id);
                        self.visit_block(b);
                        self.is_never &= self.break_targets.pop().unwrap().unused;
                    } else {
                        self.visit_block(b);
                    }
                },
                _ => {
                    self.in_final_expr = false;
                    walk_expr(self, e);
                    self.is_never |= self.cx.typeck_results().expr_ty(e).is_never();
                },
            }
        }

        fn visit_block(&mut self, b: &'tcx Block<'_>) {
            let in_final_expr = mem::replace(&mut self.in_final_expr, false);
            for s in b.stmts {
                self.visit_stmt(s);
            }
            self.in_final_expr = in_final_expr;
            if let Some(e) = b.expr {
                self.visit_expr(e);
            }
        }

        fn visit_local(&mut self, l: &'tcx LetStmt<'_>) {
            if let Some(e) = l.init {
                self.visit_expr(e);
            }
            if let Some(else_) = l.els {
                let is_never = self.is_never;
                self.visit_block(else_);
                self.is_never = is_never;
            }
        }

        fn visit_arm(&mut self, arm: &Arm<'tcx>) {
            if let Some(guard) = arm.guard {
                let in_final_expr = mem::replace(&mut self.in_final_expr, false);
                self.visit_expr(guard);
                self.in_final_expr = in_final_expr;
            }
            self.visit_expr(arm.body);
        }
    }

    if cx.typeck_results().expr_ty(e).is_never() {
        Some(RequiresSemi::No)
    } else if let ExprKind::Block(b, _) = e.kind
        && !b.targeted_by_break
        && b.expr.is_none()
    {
        // If a block diverges without a final expression then it's type is `!`.
        None
    } else {
        let mut v = V {
            cx,
            break_targets: Vec::new(),
            break_targets_for_result_ty: 0,
            in_final_expr: true,
            requires_semi: false,
            is_never: false,
        };
        v.visit_expr(e);
        v.is_never
            .then_some(if v.requires_semi && matches!(e.kind, ExprKind::Block(..)) {
                RequiresSemi::Yes
            } else {
                RequiresSemi::No
            })
    }
}

/// Produces a path from a local caller to the type of the called method. Suitable for user
/// output/suggestions.
///
/// Returned path can be either absolute (for methods defined non-locally), or relative (for local
/// methods).
pub fn get_path_from_caller_to_method_type<'tcx>(
    tcx: TyCtxt<'tcx>,
    from: LocalDefId,
    method: DefId,
    args: GenericArgsRef<'tcx>,
) -> String {
    let assoc_item = tcx.associated_item(method);
    let def_id = assoc_item.container_id(tcx);
    match assoc_item.container {
        rustc_ty::TraitContainer => get_path_to_callee(tcx, from, def_id),
        rustc_ty::ImplContainer => {
            let ty = tcx.type_of(def_id).instantiate_identity();
            get_path_to_ty(tcx, from, ty, args)
        },
    }
}

fn get_path_to_ty<'tcx>(tcx: TyCtxt<'tcx>, from: LocalDefId, ty: Ty<'tcx>, args: GenericArgsRef<'tcx>) -> String {
    match ty.kind() {
        rustc_ty::Adt(adt, _) => get_path_to_callee(tcx, from, adt.did()),
        // TODO these types need to be recursively resolved as well
        rustc_ty::Array(..)
        | rustc_ty::Dynamic(..)
        | rustc_ty::Never
        | rustc_ty::RawPtr(_, _)
        | rustc_ty::Ref(..)
        | rustc_ty::Slice(_)
        | rustc_ty::Tuple(_) => format!("<{}>", EarlyBinder::bind(ty).instantiate(tcx, args)),
        _ => ty.to_string(),
    }
}

/// Produce a path from some local caller to the callee. Suitable for user output/suggestions.
fn get_path_to_callee(tcx: TyCtxt<'_>, from: LocalDefId, callee: DefId) -> String {
    // only search for a relative path if the call is fully local
    if callee.is_local() {
        let callee_path = tcx.def_path(callee);
        let caller_path = tcx.def_path(from.to_def_id());
        maybe_get_relative_path(&caller_path, &callee_path, 2)
    } else {
        tcx.def_path_str(callee)
    }
}

/// Tries to produce a relative path from `from` to `to`; if such a path would contain more than
/// `max_super` `super` items, produces an absolute path instead. Both `from` and `to` should be in
/// the local crate.
///
/// Suitable for user output/suggestions.
///
/// This ignores use items, and assumes that the target path is visible from the source
/// path (which _should_ be a reasonable assumption since we in order to be able to use an object of
/// certain type T, T is required to be visible).
///
/// TODO make use of `use` items. Maybe we should have something more sophisticated like
/// rust-analyzer does? <https://docs.rs/ra_ap_hir_def/0.0.169/src/ra_ap_hir_def/find_path.rs.html#19-27>
fn maybe_get_relative_path(from: &DefPath, to: &DefPath, max_super: usize) -> String {
    use itertools::EitherOrBoth::{Both, Left, Right};

    // 1. skip the segments common for both paths (regardless of their type)
    let unique_parts = to
        .data
        .iter()
        .zip_longest(from.data.iter())
        .skip_while(|el| matches!(el, Both(l, r) if l == r))
        .map(|el| match el {
            Both(l, r) => Both(l.data, r.data),
            Left(l) => Left(l.data),
            Right(r) => Right(r.data),
        });

    // 2. for the remaining segments, construct relative path using only mod names and `super`
    let mut go_up_by = 0;
    let mut path = Vec::new();
    for el in unique_parts {
        match el {
            Both(l, r) => {
                // consider:
                // a::b::sym:: ::    refers to
                // c::d::e  ::f::sym
                // result should be super::super::c::d::e::f
                //
                // alternatively:
                // a::b::c  ::d::sym refers to
                // e::f::sym:: ::
                // result should be super::super::super::super::e::f
                if let DefPathData::TypeNs(s) = l {
                    path.push(s.to_string());
                }
                if let DefPathData::TypeNs(_) = r {
                    go_up_by += 1;
                }
            },
            // consider:
            // a::b::sym:: ::    refers to
            // c::d::e  ::f::sym
            // when looking at `f`
            Left(DefPathData::TypeNs(sym)) => path.push(sym.to_string()),
            // consider:
            // a::b::c  ::d::sym refers to
            // e::f::sym:: ::
            // when looking at `d`
            Right(DefPathData::TypeNs(_)) => go_up_by += 1,
            _ => {},
        }
    }

    if go_up_by > max_super {
        // `super` chain would be too long, just use the absolute path instead
        once(String::from("crate"))
            .chain(to.data.iter().filter_map(|el| {
                if let DefPathData::TypeNs(sym) = el.data {
                    Some(sym.to_string())
                } else {
                    None
                }
            }))
            .join("::")
    } else {
        repeat(String::from("super")).take(go_up_by).chain(path).join("::")
    }
}

/// Returns true if the specified `HirId` is the top-level expression of a statement or the only
/// expression in a block.
pub fn is_parent_stmt(cx: &LateContext<'_>, id: HirId) -> bool {
    matches!(
        cx.tcx.parent_hir_node(id),
        Node::Stmt(..) | Node::Block(Block { stmts: &[], .. })
    )
}

/// Returns true if the given `expr` is a block or resembled as a block,
/// such as `if`, `loop`, `match` expressions etc.
pub fn is_block_like(expr: &Expr<'_>) -> bool {
    matches!(
        expr.kind,
        ExprKind::Block(..) | ExprKind::ConstBlock(..) | ExprKind::If(..) | ExprKind::Loop(..) | ExprKind::Match(..)
    )
}

/// Returns true if the given `expr` is binary expression that needs to be wrapped in parentheses.
pub fn binary_expr_needs_parentheses(expr: &Expr<'_>) -> bool {
    fn contains_block(expr: &Expr<'_>, is_operand: bool) -> bool {
        match expr.kind {
            ExprKind::Binary(_, lhs, _) => contains_block(lhs, true),
            _ if is_block_like(expr) => is_operand,
            _ => false,
        }
    }

    contains_block(expr, false)
}

/// Returns true if the specified expression is in a receiver position.
pub fn is_receiver_of_method_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
    if let Some(parent_expr) = get_parent_expr(cx, expr)
        && let ExprKind::MethodCall(_, receiver, ..) = parent_expr.kind
        && receiver.hir_id == expr.hir_id
    {
        return true;
    }
    false
}