1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//! Trait resolution: given a trait reference, we track which local clause caused it to be true.
//! This module is independent from the rest of hax, in particular it doesn't use its
//! state-tracking machinery.

use itertools::Itertools;
use std::collections::{hash_map::Entry, HashMap};

use rustc_hir::def_id::DefId;
use rustc_middle::ty::*;

use crate::traits::utils::erase_and_norm;

#[derive(Debug, Clone)]
pub enum PathChunk<'tcx> {
    AssocItem {
        item: AssocItem,
        /// The arguments provided to the item (for GATs).
        generic_args: &'tcx [GenericArg<'tcx>],
        /// The impl exprs that must be satisfied to apply the given arguments to the item. E.g.
        /// `T: Clone` in the following example:
        /// ```ignore
        /// trait Foo {
        ///     type Type<T: Clone>: Debug;
        /// }
        /// ```
        impl_exprs: Vec<ImplExpr<'tcx>>,
        /// The implemented predicate.
        predicate: PolyTraitPredicate<'tcx>,
        /// The index of this predicate in the list returned by `tcx.item_bounds`.
        index: usize,
    },
    Parent {
        /// The implemented predicate.
        predicate: PolyTraitPredicate<'tcx>,
        /// The index of this predicate in the list returned by `tcx.predicates_of`.
        index: usize,
    },
}
pub type Path<'tcx> = Vec<PathChunk<'tcx>>;

#[derive(Debug, Clone)]
pub enum ImplExprAtom<'tcx> {
    /// A concrete `impl Trait for Type {}` item.
    Concrete {
        def_id: DefId,
        generics: GenericArgsRef<'tcx>,
    },
    /// A context-bound clause like `where T: Trait`.
    LocalBound {
        predicate: Predicate<'tcx>,
        /// The nth (non-self) predicate found for this item. We use predicates from
        /// `tcx.predicates_defined_on` starting from the parentmost item. If the item is an
        /// opaque type, we also append the predicates from `explicit_item_bounds` to this
        /// list.
        index: usize,
        r#trait: PolyTraitRef<'tcx>,
        path: Path<'tcx>,
    },
    /// The automatic clause `Self: Trait` present inside a `impl Trait for Type {}` item.
    SelfImpl {
        r#trait: PolyTraitRef<'tcx>,
        path: Path<'tcx>,
    },
    /// `dyn Trait` is a wrapped value with a virtual table for trait
    /// `Trait`.  In other words, a value `dyn Trait` is a dependent
    /// triple that gathers a type τ, a value of type τ and an
    /// instance of type `Trait`.
    /// `dyn Trait` implements `Trait` using a built-in implementation; this refers to that
    /// built-in implementation.
    Dyn,
    /// A built-in trait whose implementation is computed by the compiler, such as `Sync`.
    Builtin { r#trait: PolyTraitRef<'tcx> },
    /// An error happened while resolving traits.
    Error(String),
}

#[derive(Clone, Debug)]
pub struct ImplExpr<'tcx> {
    /// The trait this is an impl for.
    pub r#trait: PolyTraitRef<'tcx>,
    /// The kind of implemention of the root of the tree.
    pub r#impl: ImplExprAtom<'tcx>,
    /// A list of `ImplExpr`s required to fully specify the trait references in `impl`.
    pub args: Vec<Self>,
}

/// Items have various predicates in scope. `path_to` uses them as a starting point for trait
/// resolution. This tracks where each of them comes from.
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub enum BoundPredicateOrigin {
    /// The `Self: Trait` predicate implicitly present within trait declarations (note: we
    /// don't add it for trait implementations, should we?).
    SelfPred,
    /// The nth (non-self) predicate found for this item. We use predicates from
    /// `tcx.predicates_defined_on` starting from the parentmost item. If the item is an opaque
    /// type, we also append the predicates from `explicit_item_bounds` to this list.
    Item(usize),
}

#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub struct AnnotatedTraitPred<'tcx> {
    pub origin: BoundPredicateOrigin,
    pub clause: PolyTraitPredicate<'tcx>,
}

/// The predicates to use as a starting point for resolving trait references within this
/// item. This is just like `TyCtxt::predicates_of`, but in the case of a trait or impl
/// item or closures, also includes the predicates defined on the parents.
fn initial_search_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    did: rustc_span::def_id::DefId,
) -> Vec<AnnotatedTraitPred<'tcx>> {
    let (predicates, self_pred) = super::utils::predicates_of_or_above(tcx, did);
    let predicates = predicates
        .into_iter()
        .enumerate()
        .map(|(i, clause)| AnnotatedTraitPred {
            origin: BoundPredicateOrigin::Item(i),
            clause,
        });
    let self_pred = self_pred.map(|clause| AnnotatedTraitPred {
        origin: BoundPredicateOrigin::SelfPred,
        clause,
    });

    self_pred.into_iter().chain(predicates).collect()
}

#[tracing::instrument(level = "trace", skip(tcx))]
fn parents_trait_predicates<'tcx>(
    tcx: TyCtxt<'tcx>,
    pred: PolyTraitPredicate<'tcx>,
) -> Vec<PolyTraitPredicate<'tcx>> {
    let self_trait_ref = pred.to_poly_trait_ref();
    tcx.predicates_of(pred.def_id())
        .predicates
        .iter()
        // Substitute with the `self` args so that the clause makes sense in the
        // outside context.
        .map(|(clause, _span)| clause.instantiate_supertrait(tcx, self_trait_ref))
        .filter_map(|pred| pred.as_trait_clause())
        .collect()
}

/// A candidate projects `self` along a path reaching some predicate. A candidate is
/// selected when its predicate is the one expected, aka `target`.
#[derive(Debug, Clone)]
struct Candidate<'tcx> {
    path: Path<'tcx>,
    pred: PolyTraitPredicate<'tcx>,
    origin: AnnotatedTraitPred<'tcx>,
}

/// Stores a set of predicates along with where they came from.
pub struct PredicateSearcher<'tcx> {
    tcx: TyCtxt<'tcx>,
    param_env: rustc_middle::ty::ParamEnv<'tcx>,
    /// Local clauses available in the current context.
    candidates: HashMap<PolyTraitPredicate<'tcx>, Candidate<'tcx>>,
}

impl<'tcx> PredicateSearcher<'tcx> {
    /// Initialize the elaborator with the predicates accessible within this item.
    pub fn new_for_owner(tcx: TyCtxt<'tcx>, owner_id: DefId) -> Self {
        let mut out = Self {
            tcx,
            param_env: tcx.param_env(owner_id).with_reveal_all_normalized(tcx),
            candidates: Default::default(),
        };
        out.extend(
            initial_search_predicates(tcx, owner_id)
                .into_iter()
                .map(|clause| Candidate {
                    path: vec![],
                    pred: clause.clause,
                    origin: clause,
                }),
        );
        out
    }

    /// Insert new candidates and all their parent predicates. This deduplicates predicates
    /// to avoid divergence.
    fn extend(&mut self, candidates: impl IntoIterator<Item = Candidate<'tcx>>) {
        let tcx = self.tcx;
        // Filter out duplicated candidates.
        let mut new_candidates = Vec::new();
        for mut candidate in candidates {
            // Normalize and erase all lifetimes.
            candidate.pred = erase_and_norm(tcx, self.param_env, candidate.pred);
            if let Entry::Vacant(entry) = self.candidates.entry(candidate.pred) {
                entry.insert(candidate.clone());
                new_candidates.push(candidate);
            }
        }
        if !new_candidates.is_empty() {
            self.extend_parents(new_candidates);
        }
    }

    /// Add the parents of these candidates. This is a separate function to avoid
    /// polymorphic recursion due to the closures capturing the type parameters of this
    /// function.
    fn extend_parents(&mut self, new_candidates: Vec<Candidate<'tcx>>) {
        let tcx = self.tcx;
        // Then recursively add their parents. This way ensures a breadth-first order,
        // which means we select the shortest path when looking up predicates.
        self.extend(new_candidates.into_iter().flat_map(|candidate| {
            parents_trait_predicates(tcx, candidate.pred)
                .into_iter()
                .enumerate()
                .map(move |(index, parent_pred)| {
                    let mut parent_candidate = Candidate {
                        pred: parent_pred,
                        path: candidate.path.clone(),
                        origin: candidate.origin,
                    };
                    parent_candidate.path.push(PathChunk::Parent {
                        predicate: parent_pred,
                        index,
                    });
                    parent_candidate
                })
        }));
    }

    /// If the type is a trait associated type, we add any relevant bounds to our context.
    fn add_associated_type_refs(
        &mut self,
        ty: Binder<'tcx, Ty<'tcx>>,
        // Call back into hax-related code to display a nice warning.
        warn: &impl Fn(&str),
    ) -> Result<(), String> {
        let tcx = self.tcx;
        // Note: We skip a binder but rebind it just after.
        let TyKind::Alias(AliasTyKind::Projection, alias_ty) = ty.skip_binder().kind() else {
            return Ok(());
        };
        let (trait_ref, item_args) = alias_ty.trait_ref_and_own_args(tcx);
        let trait_ref = ty.rebind(trait_ref).upcast(tcx);

        // The predicate we're looking for is is `<T as Trait>::Type: OtherTrait`. We look up `T as
        // Trait` in the current context and add all the bounds on `Trait::Type` to our context.
        let Some(trait_candidate) = self.resolve_local(trait_ref, warn)? else {
            return Ok(());
        };

        // The bounds that the associated type must validate.
        let item_bounds = tcx
            // TODO: `item_bounds` can contain parent traits, we don't want them
            .item_bounds(alias_ty.def_id)
            .instantiate(tcx, alias_ty.args)
            .iter()
            .filter_map(|pred| pred.as_trait_clause())
            .enumerate();

        // Resolve predicates required to mention the item.
        let nested_impl_exprs: Vec<_> = tcx
            .predicates_defined_on(alias_ty.def_id)
            .predicates
            .iter()
            .filter_map(|(clause, _span)| clause.as_trait_clause())
            .map(|trait_pred| trait_pred.map_bound(|p| p.trait_ref))
            .map(|trait_ref| self.resolve(&trait_ref, warn))
            .collect::<Result<_, _>>()?;

        // Add all the bounds on the corresponding associated item.
        self.extend(item_bounds.map(|(index, pred)| {
            let mut candidate = Candidate {
                path: trait_candidate.path.clone(),
                pred,
                origin: trait_candidate.origin,
            };
            candidate.path.push(PathChunk::AssocItem {
                item: tcx.associated_item(alias_ty.def_id),
                generic_args: item_args,
                impl_exprs: nested_impl_exprs.clone(),
                predicate: pred,
                index,
            });
            candidate
        }));

        Ok(())
    }

    /// Resolve a local clause by looking it up in this set. If the predicate applies to an
    /// associated type, we add the relevant implied associated type bounds to the set as well.
    fn resolve_local(
        &mut self,
        target: PolyTraitPredicate<'tcx>,
        // Call back into hax-related code to display a nice warning.
        warn: &impl Fn(&str),
    ) -> Result<Option<Candidate<'tcx>>, String> {
        tracing::trace!("Looking for {target:?}");

        // Look up the predicate
        let ret = self.candidates.get(&target).cloned();
        if ret.is_some() {
            return Ok(ret);
        }

        // Add clauses related to associated type in the `Self` type of the predicate.
        self.add_associated_type_refs(target.self_ty(), warn)?;

        let ret = self.candidates.get(&target).cloned();
        if ret.is_none() {
            tracing::trace!(
                "Couldn't find {target:?} in: [\n{}]",
                self.candidates
                    .iter()
                    .map(|(_, c)| format!("  - {:?}\n", c.pred))
                    .join("")
            );
        }
        Ok(ret)
    }

    /// Resolve the given trait reference in the local context.
    #[tracing::instrument(level = "trace", skip(self, warn))]
    pub fn resolve(
        &mut self,
        tref: &PolyTraitRef<'tcx>,
        // Call back into hax-related code to display a nice warning.
        warn: &impl Fn(&str),
    ) -> Result<ImplExpr<'tcx>, String> {
        use rustc_trait_selection::traits::{
            BuiltinImplSource, ImplSource, ImplSourceUserDefinedData,
        };

        let erased_tref = erase_and_norm(self.tcx, self.param_env, *tref);

        let tcx = self.tcx;
        let impl_source =
            copy_paste_from_rustc::codegen_select_candidate(tcx, (self.param_env, erased_tref));
        let atom = match impl_source {
            Ok(ImplSource::UserDefined(ImplSourceUserDefinedData {
                impl_def_id,
                args: generics,
                ..
            })) => ImplExprAtom::Concrete {
                def_id: impl_def_id,
                generics,
            },
            Ok(ImplSource::Param(_)) => match self
                .resolve_local(erased_tref.upcast(self.tcx), warn)?
            {
                Some(candidate) => {
                    let path = candidate.path;
                    let r#trait = candidate.origin.clause.to_poly_trait_ref();
                    match candidate.origin.origin {
                        BoundPredicateOrigin::SelfPred => ImplExprAtom::SelfImpl { r#trait, path },
                        BoundPredicateOrigin::Item(index) => ImplExprAtom::LocalBound {
                            predicate: candidate.origin.clause.upcast(tcx),
                            index,
                            r#trait,
                            path,
                        },
                    }
                }
                None => {
                    let msg =
                        format!("Could not find a clause for `{tref:?}` in the item parameters");
                    warn(&msg);
                    ImplExprAtom::Error(msg)
                }
            },
            Ok(ImplSource::Builtin(BuiltinImplSource::Object { .. }, _)) => ImplExprAtom::Dyn,
            Ok(ImplSource::Builtin(_, _)) => ImplExprAtom::Builtin { r#trait: *tref },
            Err(e) => {
                let msg = format!(
                    "Could not find a clause for `{tref:?}` in the current context: `{e:?}`"
                );
                warn(&msg);
                ImplExprAtom::Error(msg)
            }
        };

        let nested = match &impl_source {
            Ok(ImplSource::UserDefined(ImplSourceUserDefinedData { nested, .. })) => {
                // The nested obligations of depth 1 correspond (we hope) to the predicates on the
                // relevant impl that need to be satisfied.
                nested
                    .iter()
                    .filter(|obligation| obligation.recursion_depth == 1)
                    .filter_map(|obligation| {
                        obligation.predicate.as_trait_clause().map(|trait_ref| {
                            self.resolve(&trait_ref.map_bound(|p| p.trait_ref), warn)
                        })
                    })
                    .collect::<Result<_, _>>()?
            }
            // Nested obligations can happen e.g. for GATs. We ignore these as we resolve local
            // clauses ourselves.
            Ok(ImplSource::Param(_)) => vec![],
            // We ignore the contained obligations here. For example for `(): Send`, the
            // obligations contained would be `[(): Send]`, which leads to an infinite loop. There
            // might be important obligations here in other cases; we'll have to see if that comes
            // up.
            Ok(ImplSource::Builtin(..)) => vec![],
            Err(_) => vec![],
        };

        Ok(ImplExpr {
            r#impl: atom,
            args: nested,
            r#trait: *tref,
        })
    }
}

mod copy_paste_from_rustc {
    use rustc_infer::infer::TyCtxtInferExt;
    use rustc_middle::traits::CodegenObligationError;
    use rustc_middle::ty::{self, TyCtxt, TypeVisitableExt};
    use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
    use rustc_trait_selection::traits::{
        Obligation, ObligationCause, ObligationCtxt, ScrubbedTraitError, SelectionContext,
        Unimplemented,
    };

    /// Attempts to resolve an obligation to an `ImplSource`. The result is
    /// a shallow `ImplSource` resolution, meaning that we do not
    /// (necessarily) resolve all nested obligations on the impl. Note
    /// that type check should guarantee to us that all nested
    /// obligations *could be* resolved if we wanted to.
    ///
    /// This also expects that `trait_ref` is fully normalized.
    pub fn codegen_select_candidate<'tcx>(
        tcx: TyCtxt<'tcx>,
        (param_env, trait_ref): (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>),
    ) -> Result<rustc_trait_selection::traits::Selection<'tcx>, CodegenObligationError> {
        // Do the initial selection for the obligation. This yields the
        // shallow result we are looking for -- that is, what specific impl.
        let infcx = tcx.infer_ctxt().ignoring_regions().build();
        let mut selcx = SelectionContext::new(&infcx);

        let obligation_cause = ObligationCause::dummy();
        let obligation = Obligation::new(tcx, obligation_cause, param_env, trait_ref);

        let selection = match selcx.poly_select(&obligation) {
            Ok(Some(selection)) => selection,
            Ok(None) => return Err(CodegenObligationError::Ambiguity),
            Err(Unimplemented) => return Err(CodegenObligationError::Unimplemented),
            Err(e) => {
                panic!(
                    "Encountered error `{:?}` selecting `{:?}` during codegen",
                    e, trait_ref
                )
            }
        };

        // Currently, we use a fulfillment context to completely resolve
        // all nested obligations. This is because they can inform the
        // inference of the impl's type parameters.
        // FIXME(-Znext-solver): Doesn't need diagnostics if new solver.
        let ocx = ObligationCtxt::new(&infcx);
        let impl_source = selection.map(|obligation| {
            ocx.register_obligation(obligation.clone());
            obligation
        });

        // In principle, we only need to do this so long as `impl_source`
        // contains unbound type parameters. It could be a slight
        // optimization to stop iterating early.
        let errors = ocx.select_all_or_error();
        if !errors.is_empty() {
            // `rustc_monomorphize::collector` assumes there are no type errors.
            // Cycle errors are the only post-monomorphization errors possible; emit them now so
            // `rustc_ty_utils::resolve_associated_item` doesn't return `None` post-monomorphization.
            for err in errors {
                if let ScrubbedTraitError::Cycle(cycle) = err {
                    infcx.err_ctxt().report_overflow_obligation_cycle(&cycle);
                }
            }
            return Err(CodegenObligationError::FulfillmentError);
        }

        let impl_source = infcx.resolve_vars_if_possible(impl_source);
        let impl_source = infcx.tcx.erase_regions(impl_source);

        if impl_source.has_infer() {
            // Unused lifetimes on an impl get replaced with inference vars, but never resolved,
            // causing the return value of a query to contain inference vars. We do not have a concept
            // for this and will in fact ICE in stable hashing of the return value. So bail out instead.
            infcx.tcx.dcx().has_errors().unwrap();
            return Err(CodegenObligationError::FulfillmentError);
        }

        Ok(impl_source)
    }
}