hax_lib_protocol_macros/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
use quote::quote;
use syn::{parse, parse_macro_input};
/// This macro takes an `fn` as the basis of an `InitialState` implementation
/// for the state type that is returned by the `fn` (on success).
///
/// The `fn` is expected to build the state type specified as a `Path` attribute
/// argument from a `Vec<u8>`, i.e. the signature should be compatible with
/// `TryFrom<Vec<u8>>` for the state type given as argument to the macro.
///
/// Example:
/// ```ignore
/// pub struct A0 {
/// data: u8,
/// }
///
/// #[hax_lib_protocol_macros::init(A0)]
/// fn init_a(prologue: Vec<u8>) -> ::hax_lib_protocol::ProtocolResult<A0> {
/// if prologue.len() < 1 {
/// return Err(::hax_lib_protocol::ProtocolError::InvalidPrologue);
/// }
/// Ok(A0 { data: prologue[0] })
/// }
///
/// // The following is generated by the macro:
/// #[hax_lib::exclude]
/// impl TryFrom<Vec<u8>> for A0 {
/// type Error = ::hax_lib_protocol::ProtocolError;
/// fn try_from(value: Vec<u8>) -> Result<Self, Self::Error> {
/// init_a(value)
/// }
/// }
/// #[hax_lib::exclude]
/// impl InitialState for A0 {
/// fn init(prologue: Option<Vec<u8>>) -> ::hax_lib_protocol::ProtocolResult<Self> {
/// if let Some(prologue) = prologue {
/// prologue.try_into()
/// } else {
/// Err(::hax_lib_protocol::ProtocolError::InvalidPrologue)
/// }
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn init(
attr: proc_macro::TokenStream,
item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let mut output = quote!(#[hax_lib::process_init]);
output.extend(proc_macro2::TokenStream::from(item.clone()));
let input: syn::ItemFn = parse_macro_input!(item);
let return_type: syn::Path = parse_macro_input!(attr);
let name = input.sig.ident;
let expanded = quote!(
#[hax_lib::exclude]
impl TryFrom<Vec<u8>> for #return_type {
type Error = ::hax_lib_protocol::ProtocolError;
fn try_from(value: Vec<u8>) -> Result<Self, Self::Error> {
#name(value)
}
}
#[hax_lib::exclude]
impl InitialState for #return_type {
fn init(prologue: Option<Vec<u8>>) -> ::hax_lib_protocol::ProtocolResult<Self> {
if let Some(prologue) = prologue {
prologue.try_into()
} else {
Err(::hax_lib_protocol::ProtocolError::InvalidPrologue)
}
}
}
);
output.extend(expanded);
output.into()
}
/// This macro takes an `fn` as the basis of an `InitialState` implementation
/// for the state type that is returned by the `fn` (on success).
///
/// The `fn` is expected to build the state type specified as a `Path` attribute
/// argument without additional input.
/// Example:
/// ```ignore
/// pub struct B0 {}
///
/// #[hax_lib_protocol_macros::init_empty(B0)]
/// fn init_b() -> ::hax_lib_protocol::ProtocolResult<B0> {
/// Ok(B0 {})
/// }
///
/// // The following is generated by the macro:
/// #[hax_lib::exclude]
/// impl InitialState for B0 {
/// fn init(prologue: Option<Vec<u8>>) -> ::hax_lib_protocol::ProtocolResult<Self> {
/// if let Some(_) = prologue {
/// Err(::hax_lib_protocol::ProtocolError::InvalidPrologue)
/// } else {
/// init_b()
/// }
/// }
/// }
/// ```
#[proc_macro_error::proc_macro_error]
#[proc_macro_attribute]
pub fn init_empty(
attr: proc_macro::TokenStream,
item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let mut output = quote!(#[hax_lib::process_init]);
output.extend(proc_macro2::TokenStream::from(item.clone()));
let input: syn::ItemFn = parse_macro_input!(item);
let return_type: syn::Path = parse_macro_input!(attr);
let name = input.sig.ident;
let expanded = quote!(
#[hax_lib::exclude]
impl InitialState for #return_type {
fn init(prologue: Option<Vec<u8>>) -> ::hax_lib_protocol::ProtocolResult<Self> {
if let Some(_) = prologue {
Err(::hax_lib_protocol::ProtocolError::InvalidPrologue)
} else {
#name()
}
}
}
);
output.extend(expanded);
return output.into();
}
/// A structure to parse transition tuples from `read` and `write` macros.
struct Transition {
/// `Path` to the current state type of the transition.
pub current_state: syn::Path,
/// `Path` to the destination state type of the transition.
pub next_state: syn::Path,
/// `Path` to the message type this transition is based on.
pub message_type: syn::Path,
}
impl syn::parse::Parse for Transition {
fn parse(input: parse::ParseStream) -> syn::Result<Self> {
use syn::spanned::Spanned;
let punctuated =
syn::punctuated::Punctuated::<syn::Path, syn::Token![,]>::parse_terminated(input)?;
if punctuated.len() != 3 {
Err(syn::Error::new(
punctuated.span(),
"Insufficient number of arguments",
))
} else {
let mut args = punctuated.into_iter();
Ok(Self {
current_state: args.next().unwrap(),
next_state: args.next().unwrap(),
message_type: args.next().unwrap(),
})
}
}
}
/// Macro deriving a `WriteState` implementation for the origin state type,
/// generating a message of `message_type` and a new state, as indicated by the
/// transition tuple.
///
/// Example:
/// ```ignore
/// #[hax_lib_protocol_macros::write(A0, A1, Message)]
/// fn write_ping(state: A0) -> ::hax_lib_protocol::ProtocolResult<(A1, Message)> {
/// Ok((A1 {}, Message::Ping(state.data)))
/// }
///
/// // The following is generated by the macro:
/// #[hax_lib::exclude]
/// impl TryFrom<A0> for (A1, Message) {
/// type Error = ::hax_lib_protocol::ProtocolError;
///
/// fn try_from(value: A0) -> Result<Self, Self::Error> {
/// write_ping(value)
/// }
/// }
///
/// #[hax_lib::exclude]
/// impl WriteState for A0 {
/// type NextState = A1;
/// type Message = Message;
///
/// fn write(self) -> ::hax_lib_protocol::ProtocolResult<(Self::NextState, Message)> {
/// self.try_into()
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn write(
attr: proc_macro::TokenStream,
item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let mut output = quote!(#[hax_lib::process_write]);
output.extend(proc_macro2::TokenStream::from(item.clone()));
let input: syn::ItemFn = parse_macro_input!(item);
let Transition {
current_state,
next_state,
message_type,
} = parse_macro_input!(attr);
let name = input.sig.ident;
let expanded = quote!(
#[hax_lib::exclude]
impl TryFrom<#current_state> for (#next_state, #message_type) {
type Error = ::hax_lib_protocol::ProtocolError;
fn try_from(value: #current_state) -> Result<Self, Self::Error> {
#name(value)
}
}
#[hax_lib::exclude]
impl WriteState for #current_state {
type NextState = #next_state;
type Message = #message_type;
fn write(self) -> ::hax_lib_protocol::ProtocolResult<(Self::NextState, Self::Message)> {
self.try_into()
}
}
);
output.extend(expanded);
output.into()
}
/// Macro deriving a `ReadState` implementation for the destination state type,
/// consuming a message of `message_type` and the current state, as indicated by
/// the transition tuple.
///
/// Example:
/// ```ignore
/// #[hax_lib_protocol_macros::read(A1, A2, Message)]
/// fn read_pong(_state: A1, msg: Message) -> ::hax_lib_protocol::ProtocolResult<A2> {
/// match msg {
/// Message::Ping(_) => Err(::hax_lib_protocol::ProtocolError::InvalidMessage),
/// Message::Pong(received) => Ok(A2 { received }),
/// }
/// }
/// // The following is generated by the macro:
/// #[hax_lib::exclude]
/// impl TryFrom<(A1, Message)> for A2 {
/// type Error = ::hax_lib_protocol::ProtocolError;
/// fn try_from((state, msg): (A1, Message)) -> Result<Self, Self::Error> {
/// read_pong(state, msg)
/// }
/// }
/// #[hax_lib::exclude]
/// impl ReadState<A2> for A1 {
/// type Message = Message;
/// fn read(self, msg: Message) -> ::hax_lib_protocol::ProtocolResult<A2> {
/// A2::try_from((self, msg))
/// }
/// }
/// ```
#[proc_macro_attribute]
pub fn read(
attr: proc_macro::TokenStream,
item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let mut output = quote!(#[hax_lib::process_read]);
output.extend(proc_macro2::TokenStream::from(item.clone()));
let input: syn::ItemFn = parse_macro_input!(item);
let Transition {
current_state,
next_state,
message_type,
} = parse_macro_input!(attr);
let name = input.sig.ident;
let expanded = quote!(
#[hax_lib::exclude]
impl TryFrom<(#current_state, #message_type)> for #next_state {
type Error = ::hax_lib_protocol::ProtocolError;
fn try_from((state, msg): (#current_state, #message_type)) -> Result<Self, Self::Error> {
#name(state, msg)
}
}
#[hax_lib::exclude]
impl ReadState<#next_state> for #current_state {
type Message = #message_type;
fn read(self, msg: Self::Message) -> ::hax_lib_protocol::ProtocolResult<#next_state> {
#next_state::try_from((self, msg))
}
}
);
output.extend(expanded);
output.into()
}