libcrux/drbg.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
//! # NIST DRBG
//!
//! Deterministic Random Bit Generator (DRBG) (NIST, SP 800-90A).
use crate::hacl::drbg;
// re-export here for convenience
pub use rand::{CryptoRng, RngCore};
#[derive(Debug)]
pub enum Error {
/// Invalid input.
InvalidInput,
/// The requested digest is not supported.
UnsupportedAlgorithm,
/// Unable to generate the requested randomness.
UnableToGenerate,
}
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!("{self:?}"))
}
}
impl std::error::Error for Error {}
pub struct Drbg {
state: drbg::Drbg,
ctr: u32, // automatic reseed after 512 invocations. It has to happen at least every 1024 times.
}
impl Drbg {
/// Create a new DRBG state with the given hash function.
///
/// The DRBG state is initialized with 128 bit entropy from the OS.
///
/// This function requires the `rand` feature.
#[cfg(feature = "rand")]
pub fn new(alg: super::digest::Algorithm) -> Result<Self, Error> {
let mut entropy = [0u8; 16];
rand::rngs::OsRng.fill_bytes(&mut entropy);
Self::personalized(alg, &entropy, &[], "os seeded libcrux")
}
/// Create a new DRBG state with the given hash function.
/// This also initializes the DRBG state with the given entropy.
pub fn new_with_entropy(alg: super::digest::Algorithm, entropy: &[u8]) -> Result<Self, Error> {
Self::personalized(alg, entropy, &[], "libcrux")
}
/// Create a new DRBG state with the given hash function.
/// This also initializes the DRBG state with the given entropy, nonce and
/// personalization string.
pub fn personalized(
alg: super::digest::Algorithm,
entropy: &[u8],
nonce: &[u8],
personalization: &str,
) -> Result<Self, Error> {
let algorithm = match alg {
crate::digest::Algorithm::Sha1 => drbg::Algorithm::Sha1,
crate::digest::Algorithm::Sha256 => drbg::Algorithm::Sha2_256,
crate::digest::Algorithm::Sha384 => drbg::Algorithm::Sha2_384,
crate::digest::Algorithm::Sha512 => drbg::Algorithm::Sha2_512,
crate::digest::Algorithm::Sha224
| crate::digest::Algorithm::Blake2s
| crate::digest::Algorithm::Blake2b
| crate::digest::Algorithm::Sha3_224
| crate::digest::Algorithm::Sha3_256
| crate::digest::Algorithm::Sha3_384
| crate::digest::Algorithm::Sha3_512 => return Err(Error::UnsupportedAlgorithm),
};
let state = drbg::Drbg::new(algorithm, entropy, nonce, personalization)
.map_err(|_| Error::InvalidInput)?;
Ok(Self { state, ctr: 0 })
}
/// Automatically reseed after a while.
#[cfg(feature = "rand")]
#[inline(always)]
fn auto_reseed(&mut self) -> Result<(), Error> {
if self.ctr > 512 {
let mut entropy = [0u8; 16];
rand::rngs::OsRng.fill_bytes(&mut entropy);
self.reseed(&entropy, b"reseed")?;
self.ctr = 0;
} else {
self.ctr += 1;
}
Ok(())
}
#[cfg(not(feature = "rand"))]
#[inline(always)]
fn auto_reseed(&mut self) -> Result<(), Error> {
Ok(())
}
/// Reseed the DRBG state.
pub fn reseed(&mut self, entropy: &[u8], additional_input: &[u8]) -> Result<(), Error> {
self.state
.reseed(entropy, additional_input)
.map_err(|_| Error::InvalidInput)
}
/// Generate random bytes.
///
/// Note that you will need to call `reseed()` when `reseed_required` is true
/// and the `rand` feature is not enabled. If the `rand` feature is enabled,
/// the Drbg reseeds itself when needed, using `OsRng`.
pub fn generate(&mut self, output: &mut [u8]) -> Result<(), Error> {
self.auto_reseed()?;
self.state
.generate(output, &[])
.map_err(|_| Error::UnableToGenerate)
}
/// Generate random bytes with additional input mixed into the state.
///
/// Note that you will need to call `reseed()` when `reseed_required` is true
/// and the `rand` feature is not enabled. If the `rand` feature is enabled,
/// the Drbg reseeds itself when needed, using `OsRng`.
pub fn generate_with_input(
&mut self,
output: &mut [u8],
additional_input: &[u8],
) -> Result<(), Error> {
self.auto_reseed()?;
self.state
.generate(output, additional_input)
.map_err(|_| Error::UnableToGenerate)
}
/// Generate random bytes.
/// Allocates the vector of length `len`.
///
/// Note that you will need to call `reseed()` when `reseed_required` is true
/// and the `rand` feature is not enabled. If the `rand` feature is enabled,
/// the Drbg reseeds itself when needed, using `OsRng`.
pub fn generate_vec(&mut self, len: usize) -> Result<Vec<u8>, Error> {
self.auto_reseed()?;
let mut output = vec![0u8; len];
self.state
.generate(&mut output, &[])
.map_err(|_| Error::UnableToGenerate)
.map(|()| output)
}
/// Generate random bytes.
/// Allocates the array of length `LEN`.
///
/// Note that you will need to call `reseed()` when `reseed_required` is true
/// and the `rand` feature is not enabled. If the `rand` feature is enabled,
/// the Drbg reseeds itself when needed, using `OsRng`.
pub fn generate_array<const LEN: usize>(&mut self) -> Result<[u8; LEN], Error> {
self.auto_reseed()?;
let mut output = [0u8; LEN];
self.state
.generate(&mut output, &[])
.map_err(|_| Error::UnableToGenerate)
.map(|()| output)
}
/// Returns true if a reseed is required and false otherwise.
pub fn reseed_required(&self) -> bool {
self.ctr > 512
}
}
/// Implementation of the [`RngCore`] trait for the [`Drbg`].
impl RngCore for Drbg {
fn next_u32(&mut self) -> u32 {
todo!()
}
fn next_u64(&mut self) -> u64 {
todo!()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.generate(dest).unwrap()
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
self.generate(dest).map_err(rand::Error::new)
}
}
impl CryptoRng for Drbg {}