libcrux/hpke/
hpke.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
#![allow(non_camel_case_types, non_snake_case, unused_imports)]

use super::aead::*;
use super::kdf::*;
use super::kem::*;

use super::errors::*;

// === Constants ===

///  A one-byte value indicating the HPKE mode, defined in the following table.
///
/// | Mode          | Value |
/// | ------------- | ----- |
/// | mode_base     | 0x00  |
/// | mode_psk      | 0x01  |
/// | mode_auth     | 0x02  |
/// | mode_auth_psk | 0x03  |
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum Mode {
    /// 0x00
    mode_base,
    /// 0x01
    mode_psk,
    /// 0x02
    mode_auth,
    /// 0x03
    mode_auth_psk,
}

// === Types ===

#[derive(Clone, Copy, Debug)]
pub struct HPKEConfig(pub Mode, pub KEM, pub KDF, pub AEAD);

pub type KemOutput = Vec<u8>;
pub type Ciphertext = Vec<u8>;
pub struct HPKECiphertext(pub KemOutput, pub Ciphertext);

pub type HpkePrivateKey = [u8];
pub type HpkePublicKey = [u8];
pub struct HPKEKeyPair(pub Vec<u8>, pub Vec<u8>); // Private, Public

pub type AdditionalData = [u8];
pub type Psk = [u8];
pub type PskId = [u8];

// === String labels ===

/// "info_hash" label for [`LabeledExtract()`].
///
/// See [`KeySchedule`] for details.
fn info_hash_label() -> Vec<u8> {
    vec![
        0x69u8, 0x6eu8, 0x66u8, 0x6fu8, 0x5fu8, 0x68u8, 0x61u8, 0x73u8, 0x68u8,
    ]
}

/// "psk_id_hash" label for [`LabeledExtract()`].
///
/// See [`KeySchedule`] for details.
fn psk_id_hash_label() -> Vec<u8> {
    vec![
        0x70u8, 0x73u8, 0x6bu8, 0x5fu8, 0x69u8, 0x64u8, 0x5fu8, 0x68u8, 0x61u8, 0x73u8, 0x68u8,
    ]
}

/// "secret" label for [`LabeledExtract()`].
///
/// See [`KeySchedule`] for details.
fn secret_label() -> Vec<u8> {
    vec![0x73u8, 0x65u8, 0x63u8, 0x72u8, 0x65u8, 0x74u8]
}

/// "key" label for [`LabeledExpand()`].
///
/// See [`KeySchedule`] for details.
fn key_label() -> Vec<u8> {
    vec![0x6bu8, 0x65u8, 0x79u8]
}

/// "base_nonce" label for [`LabeledExpand()`].
///
/// See [`KeySchedule`] for details.
fn base_nonce_label() -> Vec<u8> {
    vec![
        0x62u8, 0x61u8, 0x73u8, 0x65u8, 0x5fu8, 0x6eu8, 0x6fu8, 0x6eu8, 0x63u8, 0x65u8,
    ]
}

/// "exp" label for [`LabeledExpand()`].
///
/// See [`KeySchedule`] for details.
fn exp_label() -> Vec<u8> {
    vec![0x65u8, 0x78u8, 0x70u8]
}

/// "sec" label for [`LabeledExpand()`].
///
/// See [`Context_Export`] for details.
fn sec_label() -> Vec<u8> {
    vec![0x73u8, 0x65u8, 0x63u8]
}

/// Get the numeric value of the `mode`.
///
/// See [`Mode`] for details.
fn hpke_mode_label(mode: Mode) -> Vec<u8> {
    match mode {
        Mode::mode_base => vec![0x00u8],
        Mode::mode_psk => vec![0x01u8],
        Mode::mode_auth => vec![0x02u8],
        Mode::mode_auth_psk => vec![0x03u8],
    }
}

/// Get the numeric value of the `aead_id`.
///
/// See [`AEAD`] for details.
fn hpke_aead_value(aead_id: AEAD) -> u16 {
    match aead_id {
        AEAD::AES_128_GCM => 0x0001u16,
        AEAD::AES_256_GCM => 0x0002u16,
        AEAD::ChaCha20Poly1305 => 0x0003u16,
        AEAD::Export_only => 0xFFFFu16,
    }
}

/// Get the KEM algorithm from the config
fn kem(config: HPKEConfig) -> KEM {
    let HPKEConfig(_, kem, _, _) = config;
    kem
}

// === Context Helper ===

type EncodedHpkePublicKey = Vec<u8>;
type EncodedHpkePublicKeyIn = [u8];
type ExporterSecret = Vec<u8>;
type SequenceCounter = u32;
type Context = (Key, Nonce, SequenceCounter, ExporterSecret);
type SenderContext = (EncodedHpkePublicKey, Context);

pub type SenderContextResult = Result<SenderContext, HpkeError>;
pub type ContextResult = Result<Context, HpkeError>;
pub type EmptyResult = Result<(), HpkeError>;

/// Cipher suite identifier
///
/// See [`KeySchedule`] for more details.
///
/// The implicit `suite_id` value used within `LabeledExtract` and `LabeledExpand`
/// is defined based on them as follows:
///
/// ```text
/// suite_id = concat(
///     "HPKE",
///     I2OSP(kem_id, 2),
///     I2OSP(kdf_id, 2),
///     I2OSP(aead_id, 2)
///   )
/// ```
fn suite_id(config: HPKEConfig) -> Vec<u8> {
    let HPKEConfig(_, kem, kdf, aead) = config;
    let mut suite_id = vec![0x48u8, 0x50u8, 0x4bu8, 0x45u8]; // "HPKE"
    suite_id.extend_from_slice(&kem_value(kem).to_be_bytes());
    suite_id.extend_from_slice(&kdf_value(kdf).to_be_bytes());
    suite_id.extend_from_slice(&hpke_aead_value(aead).to_be_bytes());
    suite_id
}

/// The default PSK ""
///
/// ```text
/// default_psk = ""
/// ```
///
/// See [`KeySchedule`] for more details.
fn default_psk() -> Vec<u8> {
    Vec::new()
}

/// The default PSK ID ""
///
/// ```text
/// default_psk_id = ""
/// ```
///
/// See [`KeySchedule`] for more details.
fn default_psk_id() -> Vec<u8> {
    Vec::new()
}

fn empty_bytes() -> Vec<u8> {
    Vec::new()
}

/// Creating the Encryption Context
///
/// ...
///
/// ```text
/// def VerifyPSKInputs(mode, psk, psk_id):
///   got_psk = (psk != default_psk)
///   got_psk_id = (psk_id != default_psk_id)
///   if got_psk != got_psk_id:
///     raise Exception("Inconsistent PSK inputs")
///
///   if got_psk and (mode in [mode_base, mode_auth]):
///     raise Exception("PSK input provided when not needed")
///   if (not got_psk) and (mode in [mode_psk, mode_auth_psk]):
///     raise Exception("Missing required PSK input")
/// ```
///
/// See [`KeySchedule`] for detail.
pub fn VerifyPSKInputs(config: HPKEConfig, psk: &Psk, psk_id: &PskId) -> EmptyResult {
    let HPKEConfig(mode, _kem, _kdf, _aead) = config;
    let got_psk = psk.len() != 0;
    let got_psk_id = psk_id.len() != 0;
    if got_psk != got_psk_id {
        EmptyResult::Err(HpkeError::InconsistentPskInputs)
    } else {
        // FIXME: https://github.com/hacspec/hacspec/issues/85
        if got_psk && (mode == Mode::mode_base || mode == Mode::mode_auth) {
            EmptyResult::Err(HpkeError::UnnecessaryPsk)
        } else {
            if !got_psk && (mode == Mode::mode_psk || mode == Mode::mode_auth_psk) {
                EmptyResult::Err(HpkeError::MissingPsk)
            } else {
                EmptyResult::Ok(())
            }
        }
    }
}

/// ## Creating the Encryption Context
///
///
/// The variants of HPKE defined in this document share a common
/// key schedule that translates the protocol inputs into an encryption
/// context. The key schedule inputs are as follows:
///
/// * `mode` - A one-byte value indicating the HPKE mode, defined in [`Mode`].
/// * `shared_secret` - A KEM shared secret generated for this transaction.
/// * `info` - Application-supplied information (optional; default value
///   "").
/// * `psk` - A pre-shared key (PSK) held by both the sender
///   and the recipient (optional; default value "").
/// * `psk_id` - An identifier for the PSK (optional; default value "").
///
/// Senders and recipients MUST validate KEM inputs and outputs as described
/// in [`KEM`].
///
/// The `psk` and `psk_id` fields MUST appear together or not at all.
/// That is, if a non-default value is provided for one of them, then
/// the other MUST be set to a non-default value. This requirement is
/// encoded in [`VerifyPSKInputs()`] below.
///
/// The `psk`, `psk_id`, and `info` fields have maximum lengths that depend
/// on the KDF itself, on the definition of [`LabeledExtract()`], and on the
/// constant labels used together with them. See [KDF Input Length](mod@crate::hpke::kdf#input-length-restrictions) for
/// precise limits on these lengths.
///
/// The `key`, `base_nonce`, and `exporter_secret` computed by the key schedule
/// have the property that they are only known to the holder of the recipient
/// private key, and the entity that used the KEM to generate `shared_secret` and
/// `enc`.
///
/// In the Auth and AuthPSK modes, the recipient is assured that the sender
/// held the private key `skS`. This assurance is limited for the DHKEM
/// variants defined in this document because of key-compromise impersonation,
/// as described in [`mod@crate::hpke::kem#dh-based-kem`] and the [security properties section](crate#security-properties). If in the PSK and
/// AuthPSK modes, the `psk` and `psk_id` arguments are provided as required,
/// then the recipient is assured that the sender held the corresponding
/// pre-shared key. See the security properties section on the [module page](`crate`) for more details.
///
/// The HPKE algorithm identifiers, i.e., the KEM `kem_id`, KDF `kdf_id`, and
/// AEAD `aead_id` 2-byte code points as defined in [`KEM`], [`KDF`],
/// and [`AEAD`], respectively, are assumed implicit from the implementation
/// and not passed as parameters.
/// ```text
/// def KeySchedule<ROLE>(mode, shared_secret, info, psk, psk_id):
///   VerifyPSKInputs(mode, psk, psk_id)
///
///   psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id)
///   info_hash = LabeledExtract("", "info_hash", info)
///   key_schedule_context = concat(mode, psk_id_hash, info_hash)
///
///   secret = LabeledExtract(shared_secret, "secret", psk)
///
///   key = LabeledExpand(secret, "key", key_schedule_context, Nk)
///   base_nonce = LabeledExpand(secret, "base_nonce",
///                              key_schedule_context, Nn)
///   exporter_secret = LabeledExpand(secret, "exp",
///                                   key_schedule_context, Nh)
///
///   return Context<ROLE>(key, base_nonce, 0, exporter_secret)
/// ```
///
/// The `ROLE` template parameter is either S or R, depending on the role of
/// sender or recipient, respectively. See [HPKE DEM](`ContextS_Seal`) for a discussion of the
/// key schedule output, including the role-specific `Context` structure and its API.
///
/// Note that the `key_schedule_context` construction in [`KeySchedule()`] is
/// equivalent to serializing a structure of the following form in the TLS presentation
/// syntax:
///
/// ~~~text
/// struct {
///     uint8 mode;
///     opaque psk_id_hash[Nh];
///     opaque info_hash[Nh];
/// } KeyScheduleContext;
/// ~~~
///
/// This function takes the `<MODE>` as argument in [`HPKEConfig`].
pub fn KeySchedule(
    config: HPKEConfig,
    shared_secret: &SharedSecret,
    info: &Info,
    psk: &Psk,
    psk_id: &PskId,
) -> ContextResult {
    VerifyPSKInputs(config, &psk, psk_id)?;
    let HPKEConfig(mode, _kem, kdf, aead) = config;

    let psk_id_hash = LabeledExtract(
        kdf,
        suite_id(config),
        &empty_bytes(),
        psk_id_hash_label(),
        psk_id,
    )?;
    let info_hash = LabeledExtract(
        kdf,
        suite_id(config),
        &empty_bytes(),
        info_hash_label(),
        info,
    )?;
    let mut key_schedule_context = hpke_mode_label(mode);
    key_schedule_context.extend_from_slice(&psk_id_hash);
    key_schedule_context.extend_from_slice(&info_hash);

    let secret = LabeledExtract(kdf, suite_id(config), shared_secret, secret_label(), psk)?;

    let key = LabeledExpand(
        kdf,
        suite_id(config),
        &secret,
        key_label(),
        &key_schedule_context,
        Nk(aead),
    )?;
    let base_nonce = LabeledExpand(
        kdf,
        suite_id(config),
        &secret,
        base_nonce_label(),
        &key_schedule_context,
        Nn(aead),
    )?;
    let exporter_secret = LabeledExpand(
        kdf,
        suite_id(config),
        &secret,
        exp_label(),
        &key_schedule_context,
        Nh(kdf),
    )?;

    Ok((key, base_nonce, 0u32, exporter_secret))
}

/// ## Encryption to a Public Key - Sender
///
/// The most basic function of an HPKE scheme is to enable encryption to the
/// holder of a given KEM private key. The [`SetupBaseS()`] and [`SetupBaseR()`]
/// procedures establish contexts that can be used to encrypt and decrypt,
/// respectively, for a given private key. The KEM shared secret is combined via
/// the KDF with information describing the key exchange, as well as the explicit
/// info parameter provided by the caller.The parameter pkR is a public key,
/// and enc is an encapsulated KEM shared secret.
///
/// ```text
/// def SetupBaseS(pkR, info):
///   shared_secret, enc = Encap(pkR)
///   return enc, KeyScheduleS(mode_base, shared_secret, info,
///                            default_psk, default_psk_id)
/// ```
pub fn SetupBaseS(
    config: HPKEConfig,
    pkR: &HpkePublicKey,
    info: &Info,
    randomness: Randomness,
) -> SenderContextResult {
    let (shared_secret, enc) = Encap(kem(config), pkR, randomness)?;
    let key_schedule = KeySchedule(
        config,
        &shared_secret,
        info,
        &default_psk(),
        &default_psk_id(),
    )?;
    Ok((enc, key_schedule))
}

/// ## Encryption to a Public Key - Receiver
///
/// See [`SetupBaseS`] for more details.
///
/// ```text
/// def SetupBaseR(enc, skR, info):
///   shared_secret = Decap(enc, skR)
///   return KeyScheduleR(mode_base, shared_secret, info,
///                       default_psk, default_psk_id)
/// ```
pub fn SetupBaseR(
    config: HPKEConfig,
    enc: &EncodedHpkePublicKeyIn,
    skR: &HpkePrivateKey,
    info: &Info,
) -> ContextResult {
    let shared_secret = Decap(kem(config), enc, skR)?;
    let key_schedule = KeySchedule(
        config,
        &shared_secret,
        info,
        &default_psk(),
        &default_psk_id(),
    )?;
    Ok(key_schedule)
}

/// ## Authentication using a Pre-Shared Key - Sender
///
/// This variant extends the base mechanism by allowing the recipient to
/// authenticate that the sender possessed a given PSK. The PSK also improves
/// confidentiality guarantees in certain adversary models, as described in the
/// [security properties](crate#security-properties). We assume that both parties have been provisioned with
/// both the PSK value psk and another byte string `psk_id` that is used to identify
/// which PSK should be used.
/// The primary difference from the base case is that the psk and psk_id values
/// are used as `ikm` inputs to the KDF (instead of using the empty string). The
/// PSK MUST have at least 32 bytes of entropy and SHOULD be of length Nh bytes
/// or longer. See the [PSK Recommendations](crate#pre-shared-key-recommendations) for a more detailed discussion.
///
/// ```text
/// def SetupPSKS(pkR, info, psk, psk_id):
///   shared_secret, enc = Encap(pkR)
///   return enc, KeyScheduleS(mode_psk, shared_secret, info, psk, psk_id)
/// ```
pub fn SetupPSKS(
    config: HPKEConfig,
    pkR: &HpkePublicKey,
    info: &Info,
    psk: &Psk,
    psk_id: &PskId,
    randomness: Randomness,
) -> SenderContextResult {
    let (shared_secret, enc) = Encap(kem(config), pkR, randomness)?;
    let key_schedule = KeySchedule(config, &shared_secret, info, psk, psk_id)?;
    Ok((enc, key_schedule))
}

/// ## Authentication using a Pre-Shared Key - Receiver
///
/// See [`SetupPSKS`] for more details.
///
/// ```text
/// def SetupPSKR(enc, skR, info, psk, psk_id):
///   shared_secret = Decap(enc, skR)
///   return KeyScheduleR(mode_psk, shared_secret, info, psk, psk_id)
/// ```
pub fn SetupPSKR(
    config: HPKEConfig,
    enc: &EncodedHpkePublicKeyIn,
    skR: &HpkePrivateKey,
    info: &Info,
    psk: &Psk,
    psk_id: &PskId,
) -> ContextResult {
    let shared_secret = Decap(kem(config), enc, skR)?;
    let key_schedule = KeySchedule(config, &shared_secret, info, psk, psk_id)?;
    Ok(key_schedule)
}

/// ## Authentication using an Asymmetric Key - Sender
///
/// This variant extends the base mechanism by allowing the recipient
/// to authenticate that the sender possessed a given KEM private key.
/// This is because [`AuthDecap(enc, skR, pkS)`](`crate::hpke::kem::AuthDecap()`) produces the correct KEM
/// shared secret only if the encapsulated value `enc` was produced by
/// [`AuthEncap(pkR, skS)`](`crate::hpke::kem::AuthEncap()`), where `skS` is the private key corresponding
/// to `pkS`.  In other words, at most two entities (precisely two, in the case
/// of DHKEM) could have produced this secret, so if the recipient is at most one, then
/// the sender is the other with overwhelming probability.
///
/// The primary difference from the base case is that the calls to
/// `Encap()` and `Decap()` are replaced with calls to [`AuthEncap()`](`crate::hpke::kem::AuthEncap()`) and
/// [`AuthDecap()`](`crate::hpke::kem::AuthDecap()`), which add the sender public key to their internal
/// context string. The function parameters `pkR` and `pkS` are
/// public keys, and `enc` is an encapsulated KEM shared secret.
///
/// Obviously, this variant can only be used with a KEM that provides
/// [`AuthEncap()`](`crate::hpke::kem::AuthEncap()`) and [`AuthDecap()`](`crate::hpke::kem::AuthDecap()`) procedures.
///
/// This mechanism authenticates only the key pair of the sender, not
/// any other identifier.  If an application wishes to bind HPKE
/// ciphertexts or exported secrets to another identity for the sender
/// (e.g., an email address or domain name), then this identifier should be
/// included in the `info` parameter to avoid identity mis-binding issues [IMB].
///
/// ```text
/// def SetupAuthS(pkR, info, skS):
///   shared_secret, enc = AuthEncap(pkR, skS)
///   return enc, KeyScheduleS(mode_auth, shared_secret, info,
///                            default_psk, default_psk_id)
/// ```
///
/// [IMB]: https://doi.org/10.1007/bf00124891
pub fn SetupAuthS(
    config: HPKEConfig,
    pkR: &HpkePublicKey,
    info: &Info,
    skS: &PrivateKeyIn,
    randomness: Randomness,
) -> SenderContextResult {
    let (shared_secret, enc) = AuthEncap(kem(config), pkR, skS, randomness)?;
    let key_schedule = KeySchedule(
        config,
        &shared_secret,
        info,
        &default_psk(),
        &default_psk_id(),
    )?;
    Ok((enc, key_schedule))
}

/// ## Authentication using an Asymmetric Key - Receiver
///
/// See [`SetupAuthS`] for more details.
///
/// ```text
/// def SetupAuthR(enc, skR, info, pkS):
///   shared_secret = AuthDecap(enc, skR, pkS)
///   return KeyScheduleR(mode_auth, shared_secret, info,
///                       default_psk, default_psk_id)
/// ```
pub fn SetupAuthR(
    config: HPKEConfig,
    enc: &EncodedHpkePublicKeyIn,
    skR: &HpkePrivateKey,
    info: &Info,
    pkS: &PublicKeyIn,
) -> ContextResult {
    let shared_secret = AuthDecap(kem(config), enc, skR, pkS)?;
    let key_schedule = KeySchedule(
        config,
        &shared_secret,
        info,
        &default_psk(),
        &default_psk_id(),
    )?;
    Ok(key_schedule)
}

/// ## Authentication using both a PSK and an Asymmetric Key - Sender
///
/// This mode is a straightforward combination of the PSK and
/// authenticated modes.  The PSK is passed through to the key schedule
/// as in the former, and as in the latter, we use the authenticated KEM
/// variants.
///
/// ```text
/// def SetupAuthPSKS(pkR, info, psk, psk_id, skS):
///   shared_secret, enc = AuthEncap(pkR, skS)
///   return enc, KeyScheduleS(mode_auth_psk, shared_secret, info,
///                            psk, psk_id)
/// ```
///
/// The PSK MUST have at least 32 bytes of entropy and SHOULD be of length `Nh`
/// bytes or longer.
pub fn SetupAuthPSKS(
    config: HPKEConfig,
    pkR: &HpkePublicKey,
    info: &Info,
    psk: &Psk,
    psk_id: &PskId,
    skS: &HpkePrivateKey,
    randomness: Randomness,
) -> SenderContextResult {
    let (shared_secret, enc) = AuthEncap(kem(config), pkR, skS, randomness)?;
    let key_schedule = KeySchedule(config, &shared_secret, info, psk, psk_id)?;
    Ok((enc, key_schedule))
}

/// ## Authentication using both a PSK and an Asymmetric Key - Receiver
///
/// See [`SetupAuthPSKS`] for more details.
///
/// ```text
/// def SetupAuthPSKR(enc, skR, info, psk, psk_id, pkS):
///   shared_secret = AuthDecap(enc, skR, pkS)
///   return KeyScheduleR(mode_auth_psk, shared_sec
/// ```
pub fn SetupAuthPSKR(
    config: HPKEConfig,
    enc: &EncodedHpkePublicKeyIn,
    skR: &HpkePrivateKey,
    info: &Info,
    psk: &Psk,
    psk_id: &PskId,
    pkS: &PublicKeyIn,
) -> ContextResult {
    let shared_secret = AuthDecap(kem(config), enc, skR, pkS)?;
    let key_schedule = KeySchedule(config, &shared_secret, info, psk, psk_id)?;
    Ok(key_schedule)
}

// === Stateful API ===

fn bitxor(mut lhs: Vec<u8>, rhs: Vec<u8>) -> Vec<u8> {
    assert_eq!(lhs.len(), rhs.len());
    for i in 0..lhs.len() {
        lhs[i] = lhs[i] ^ rhs[i]
    }
    lhs
}

/// ### Compute Nonce
///
/// The sequence number provides nonce uniqueness: The nonce used for
/// each encryption or decryption operation is the result of XORing
/// `base_nonce` with the current sequence number, encoded as a big-endian
/// integer of the same length as `base_nonce`. Implementations MAY use a
/// sequence number that is shorter than the nonce length (padding on the left
/// with zero), but MUST raise an error if the sequence number overflows.
///
/// ```text
/// def Context<ROLE>.ComputeNonce(seq):
///   seq_bytes = I2OSP(seq, Nn)
///   return xor(self.base_nonce, seq_bytes)
/// ```
pub fn ComputeNonce(aead_id: AEAD, base_nonce: &Nonce, seq: SequenceCounter) -> Vec<u8> {
    let seq = seq.to_be_bytes();
    let Nn = Nn(aead_id);
    let mut seq_bytes = vec![0u8; Nn - 4];
    seq_bytes.extend_from_slice(&seq);
    bitxor(base_nonce.clone(), seq_bytes)
}

/// ## Encryption and Decryption
///
/// HPKE allows multiple encryption operations to be done based on a
/// given setup transaction.  Since the public-key operations involved
/// in setup are typically more expensive than symmetric encryption or
/// decryption, this allows applications to amortize the cost of the
/// public-key operations, reducing the overall overhead.
///
/// In order to avoid nonce reuse, however, this encryption must be
/// stateful. Each of the setup procedures above produces a role-specific
/// context object that stores the AEAD and Secret Export parameters.
/// The AEAD parameters consist of:
///
/// * The AEAD algorithm in use
/// * A secret `key`
/// * A base nonce `base_nonce`
/// * A sequence number (initially 0)
///
/// The Secret Export parameters consist of:
///
/// * The HPKE ciphersuite in use
/// * An `exporter_secret` used for the Secret Export interface; see [`Context_Export`].
///
/// All these parameters except the AEAD sequence number are constant.
/// The sequence number provides nonce uniqueness: The nonce used for
/// each encryption or decryption operation is the result of XORing
/// `base_nonce` with the current sequence number, encoded as a big-endian
/// integer of the same length as `base_nonce`. Implementations MAY use a
/// sequence number that is shorter than the nonce length (padding on the left
/// with zero), but MUST raise an error if the sequence number overflows. The AEAD
/// algorithm produces ciphertext that is Nt bytes longer than the plaintext.
/// Nt = 16 for AEAD algorithms defined in this document.
///
/// Encryption is unidirectional from sender to recipient. The sender's
/// context can encrypt a plaintext `pt` with associated data `aad` as
/// follows:
///
/// ```text
/// def ContextS.Seal(aad, pt):
///   ct = Seal(self.key, self.ComputeNonce(self.seq), aad, pt)
///   self.IncrementSeq()
///   return ct
/// ```
///
/// The sender's context MUST NOT be used for decryption. Similarly, the recipient's
/// context MUST NOT be used for encryption. Higher-level protocols re-using the HPKE
/// key exchange for more general purposes can derive separate keying material as
/// needed using use the Secret Export interface; see [`Context_Export`] and
/// [Bidirectional Encryption](`crate#bidirectional-encryption`) for more details.
///
/// It is up to the application to ensure that encryptions and decryptions are
/// done in the proper sequence, so that encryption and decryption nonces align.
/// If [`ContextS_Seal()`] or [`ContextR_Open()`] would cause the `seq` field to
/// overflow, then the implementation MUST fail with an error. (In the pseudocode
/// `Context<ROLE>.IncrementSeq()` fails with an error when `seq` overflows,
/// which causes [`ContextS_Seal()`] and [`ContextR_Open()`] to fail accordingly.)
/// Note that the internal `Seal()` and `Open()`
/// calls inside correspond to the context's [`AEAD`] algorithm.
pub fn ContextS_Seal(
    aead_id: AEAD,
    context: Context,
    aad: &[u8],
    pt: &[u8],
) -> Result<(Ciphertext, Context), HpkeError> {
    let (key, base_nonce, seq, exp) = context;
    let nonce = ComputeNonce(aead_id, &base_nonce, seq);
    let ct = AeadSeal(aead_id, &key, &nonce, aad, pt)?;
    let seq = IncrementSeq(aead_id, seq)?;
    Ok((ct, (key, base_nonce, seq, exp)))
}

/// ## Stateful open.
///
/// See [ContextR.Open](`ContextS_Seal`) for more details.
///
/// The recipient's context can decrypt a ciphertext `ct` with associated
/// data `aad` as follows:
///
/// ```text
/// def ContextR.Open(aad, ct):
///   pt = Open(self.key, self.ComputeNonce(self.seq), aad, ct)
///   if pt == OpenError:
///     raise OpenError
///   self.IncrementSeq()
///   return pt
/// ```
pub fn ContextR_Open(
    aead_id: AEAD,
    context: Context,
    aad: &[u8],
    ct: &[u8],
) -> Result<(Vec<u8>, Context), HpkeError> {
    let (key, base_nonce, seq, exp) = context;
    let nonce = ComputeNonce(aead_id, &base_nonce, seq);
    let pt = AeadOpen(aead_id, &key, &nonce, aad, ct)?;
    let seq = IncrementSeq(aead_id, seq)?;
    Ok((pt, (key, base_nonce, seq, exp)))
}

/// ### Increment Sequence
///
/// Each encryption or decryption operation increments the sequence number for
/// the context in use.
///
/// ``` text
/// def Context<ROLE>.IncrementSeq():
///   if self.seq >= (1 << (8*Nn)) - 1:
///     raise MessageLimitReachedError
///   self.seq += 1
/// ```
pub fn IncrementSeq(aead_id: AEAD, seq: SequenceCounter) -> Result<SequenceCounter, HpkeError> {
    if seq as u128 >= (1u128 << (8 * Nn(aead_id))) - 1u128 {
        Err(HpkeError::MessageLimitReachedError)
    } else {
        Ok(seq + 1u32)
    }
}

/// ## Secret Export
///
/// HPKE provides an interface for exporting secrets from the encryption context
/// using a variable-length PRF, similar to the TLS 1.3 exporter interface
/// (see [RFC8446], Section 7.5). This interface takes as input a context
/// string `exporter_context` and a desired length `L` in bytes, and produces
/// a secret derived from the internal exporter secret using the corresponding
/// KDF Expand function. For the KDFs defined in this specification, `L` has
/// a maximum value of `255*Nh`. Future specifications which define new KDFs
/// MUST specify a bound for `L`.
///
/// The `exporter_context` field has a maximum length that depends on the KDF
/// itself, on the definition of `LabeledExpand()`, and on the constant labels
/// used together with them. See [KDF Input Length](mod@crate::hpke::kdf#input-length-restrictions)
/// for precise limits on this length.
///
/// ```text
/// def Context.Export(exporter_context, L):
///   return LabeledExpand(self.exporter_secret, "sec",
///                        exporter_context, L)
/// ```
///
/// Applications that do not use the encryption API in [`ContextS_Seal`] can use
/// the export-only AEAD ID `0xFFFF` when computing the key schedule. Such
/// applications can avoid computing the `key` and `base_nonce` values in the
/// key schedule, as they are not used by the Export interface described above.
///
/// [RFC8446]: https://www.rfc-editor.org/info/rfc8446
pub fn Context_Export(
    config: HPKEConfig,
    context: &Context,
    exporter_context: Vec<u8>,
    L: usize,
) -> HpkeBytesResult {
    let (_, _, _, exporter_secret) = context;
    let HPKEConfig(_, _, kdf_id, _) = config;
    LabeledExpand(
        kdf_id,
        suite_id(config),
        exporter_secret,
        sec_label(),
        &exporter_context,
        L,
    )
}

// === Singe-Shot API ===

/// ## Encryption
///
/// In many cases, applications encrypt only a single message to a recipient's
/// public key. This section provides templates for HPKE APIs that implement
/// stateless "single-shot" encryption and decryption using APIs specified in
/// [`SetupBaseS()`] and [`ContextS_Seal`]:
///
/// ```text
/// def Seal<MODE>(pkR, info, aad, pt, ...):
///   enc, ctx = Setup<MODE>S(pkR, info, ...)
///   ct = ctx.Seal(aad, pt)
///   return enc, ct
/// ```
///
/// The `MODE` template parameter is one of Base, PSK, Auth, or AuthPSK. The optional parameters
/// indicated by "..." depend on `MODE` and may be empty.
///
/// This function takes the `<MODE>` as argument in [`HPKEConfig`].
pub fn HpkeSeal(
    config: HPKEConfig,
    pkR: &HpkePublicKey,
    info: &Info,
    aad: &AdditionalData,
    ptxt: &[u8],
    psk: Option<&Psk>,
    psk_id: Option<&PskId>,
    skS: Option<&HpkePrivateKey>,
    randomness: Randomness,
) -> Result<HPKECiphertext, HpkeError> {
    let HPKEConfig(mode, _kem, _kdf, aead) = config;
    let (enc, (key, nonce, _, _)) = match mode {
        Mode::mode_base => SetupBaseS(config, pkR, info, randomness),
        Mode::mode_psk => SetupPSKS(config, pkR, info, psk.unwrap(), psk_id.unwrap(), randomness),
        Mode::mode_auth => SetupAuthS(config, pkR, info, skS.unwrap(), randomness),
        Mode::mode_auth_psk => SetupAuthPSKS(
            config,
            pkR,
            info,
            psk.unwrap(),
            psk_id.unwrap(),
            skS.unwrap(),
            randomness,
        ),
    }?;
    let ct = AeadSeal(aead, &key, &nonce, aad, ptxt)?;
    Ok(HPKECiphertext(enc, ct))
}

/// ## Decryption
///
/// See [`HpkeSeal`] for more details.
///
/// ```text
/// def Open<MODE>(enc, skR, info, aad, ct, ...):
///   ctx = Setup<MODE>R(enc, skR, info, ...)
///   return ctx.Open(aad, ct)
/// ```
///
/// This function takes the `<MODE>` as argument in [`HPKEConfig`].
pub fn HpkeOpen(
    config: HPKEConfig,
    ctxt: &HPKECiphertext,
    skR: &HpkePrivateKey,
    info: &Info,
    aad: &AdditionalData,
    psk: Option<&Psk>,
    psk_id: Option<&PskId>,
    pkS: Option<&HpkePublicKey>,
) -> HpkeBytesResult {
    let HPKEConfig(mode, _kem, _kdf, aead) = config;
    let HPKECiphertext(enc, ct) = ctxt;

    let (key, nonce, _, _) = match mode {
        Mode::mode_base => SetupBaseR(config, enc, skR, info),
        Mode::mode_psk => SetupPSKR(config, enc, skR, info, psk.unwrap(), psk_id.unwrap()),
        Mode::mode_auth => SetupAuthR(config, enc, skR, info, pkS.unwrap()),
        Mode::mode_auth_psk => SetupAuthPSKR(
            config,
            enc,
            skR,
            info,
            psk.unwrap(),
            psk_id.unwrap(),
            pkS.unwrap(),
        ),
    }?;

    let ptxt = AeadOpen(aead, &key, &nonce, aad, ct)?;
    Ok(ptxt)
}

/// ## "single-shot" secret export sender
///
/// ```text
/// def SendExport<MODE>(pkR, info, exporter_context, L, ...):
///   enc, ctx = Setup<MODE>S(pkR, info, ...)
///   exported = ctx.Export(exporter_context, L)
///   return enc, exported
/// ```
pub fn SendExport(
    config: HPKEConfig,
    pkR: &HpkePublicKey,
    info: &Info,
    exporter_context: Vec<u8>,
    L: usize,
    psk: Option<&Psk>,
    psk_id: Option<&PskId>,
    skS: Option<&HpkePrivateKey>,
    randomness: Randomness,
) -> Result<HPKECiphertext, HpkeError> {
    let HPKEConfig(mode, _kem, _kdf, _aead) = config;
    let (enc, ctx) = match mode {
        Mode::mode_base => SetupBaseS(config, pkR, info, randomness),
        Mode::mode_psk => SetupPSKS(config, pkR, info, psk.unwrap(), psk_id.unwrap(), randomness),
        Mode::mode_auth => SetupAuthS(config, pkR, info, &skS.unwrap(), randomness),
        Mode::mode_auth_psk => SetupAuthPSKS(
            config,
            pkR,
            info,
            psk.unwrap(),
            psk_id.unwrap(),
            &skS.unwrap(),
            randomness,
        ),
    }?;
    let exported = Context_Export(config, &ctx, exporter_context, L)?;
    Ok(HPKECiphertext(enc, exported))
}

/// ## "single-shot" secret export receiver
///
/// ``` text
/// def ReceiveExport<MODE>(enc, skR, info, exporter_context, L, ...):
///   ctx = Setup<MODE>R(enc, skR, info, ...)
///   return ctx.Export(exporter_context, L)
/// ```
pub fn ReceiveExport(
    config: HPKEConfig,
    enc: &EncodedHpkePublicKeyIn,
    skR: &HpkePrivateKey,
    info: &Info,
    exporter_context: Vec<u8>,
    L: usize,
    psk: Option<&Psk>,
    psk_id: Option<&PskId>,
    pkS: Option<&HpkePublicKey>,
) -> HpkeBytesResult {
    let HPKEConfig(mode, _kem, _kdf, _aead) = config;

    let ctx = match mode {
        Mode::mode_base => SetupBaseR(config, enc, skR, info),
        Mode::mode_psk => SetupPSKR(config, enc, skR, info, psk.unwrap(), psk_id.unwrap()),
        Mode::mode_auth => SetupAuthR(config, enc, skR, info, pkS.unwrap()),
        Mode::mode_auth_psk => SetupAuthPSKR(
            config,
            enc,
            skR,
            info,
            psk.unwrap(),
            psk_id.unwrap(),
            pkS.unwrap(),
        ),
    }?;
    Context_Export(config, &ctx, exporter_context, L)
}