libcrux/hpke/
kem.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
#![doc = include_str!("KEM_Readme.md")]
#![doc = include_str!("KEM_Security.md")]
#![allow(non_camel_case_types, non_snake_case)]

use crate::kem::*;

use super::errors::*;
use super::kdf::*;

/// ## Key Encapsulation Mechanisms (KEMs)
///
/// | Value  | KEM                        | Nsecret  | Nenc | Npk | Nsk | Auth | Reference               |
/// |:-------|:---------------------------|:---------|:-----|:----|:----|:-----|:------------------------|
/// | 0x0000 | (reserved)                 | N/A      | N/A  | N/A | N/A | yes  | N/A                     |
/// | 0x0010 | DHKEM(P-256, HKDF-SHA256)  | 32       | 65   | 65  | 32  | yes  | [NISTCurves], [RFC5869] |
/// | 0x0011 | DHKEM(P-384, HKDF-SHA384)  | 48       | 97   | 97  | 48  | yes  | [NISTCurves], [RFC5869] |
/// | 0x0012 | DHKEM(P-521, HKDF-SHA512)  | 64       | 133  | 133 | 66  | yes  | [NISTCurves], [RFC5869] |
/// | 0x0020 | DHKEM(X25519, HKDF-SHA256) | 32       | 32   | 32  | 32  | yes  | [RFC7748], [RFC5869]    |
/// | 0x0021 | DHKEM(X448, HKDF-SHA512)   | 64       | 56   | 56  | 56  | yes  | [RFC7748], [RFC5869]    |
///
/// The `Auth` column indicates if the KEM algorithm provides the [`AuthEncap()`]/[`AuthDecap()`]
/// interface and is therefore suitable for the Auth and AuthPSK modes. The meaning of all
/// other columns is explained below. All algorithms are suitable for the
/// PSK mode.
///
/// ### KEM Identifiers
///
/// The "HPKE KEM Identifiers" registry lists identifiers for key encapsulation
/// algorithms defined for use with HPKE. These identifiers are two-byte values,
/// so the maximum possible value is 0xFFFF = 65535.
///
/// Template:
///
/// * Value: The two-byte identifier for the algorithm
/// * KEM: The name of the algorithm
/// * Nsecret: The length in bytes of a KEM shared secret produced by the algorithm
/// * Nenc: The length in bytes of an encoded encapsulated key produced by the algorithm
/// * Npk: The length in bytes of an encoded public key for the algorithm
/// * Nsk: The length in bytes of an encoded private key for the algorithm
/// * Auth: A boolean indicating if this algorithm provides the [`AuthEncap()`]/[`AuthDecap()`] interface
/// * Reference: Where this algorithm is defined
///
/// [NISTCurves]: https://doi.org/10.6028/nist.fips.186-4
/// [RFC7748]: https://www.rfc-editor.org/info/rfc7748
/// [RFC5869]: https://www.rfc-editor.org/info/rfc5869
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum KEM {
    /// 0x0010
    DHKEM_P256_HKDF_SHA256,
    /// 0x0011
    DHKEM_P384_HKDF_SHA384,
    /// 0x0012
    DHKEM_P521_HKDF_SHA512,
    /// 0x0020
    DHKEM_X25519_HKDF_SHA256,
    /// 0x0021
    DHKEM_X448_HKDF_SHA512,
}

/// [`u16`] value of the `kem_id`.
///
/// See [`KEM`] for details.
pub fn kem_value(kem_id: KEM) -> u16 {
    match kem_id {
        KEM::DHKEM_P256_HKDF_SHA256 => 0x0010u16,
        KEM::DHKEM_P384_HKDF_SHA384 => 0x0011u16,
        KEM::DHKEM_P521_HKDF_SHA512 => 0x0012u16,
        KEM::DHKEM_X25519_HKDF_SHA256 => 0x00020u16,
        KEM::DHKEM_X448_HKDF_SHA512 => 0x0021u16,
    }
}

/// Get the [`KDF`] algorithm for the given `kem_id`.
///
/// See [`KEM`] for details.
fn kdf_for_kem(kem_id: KEM) -> KDF {
    match kem_id {
        KEM::DHKEM_P256_HKDF_SHA256 => KDF::HKDF_SHA256,
        KEM::DHKEM_P384_HKDF_SHA384 => KDF::HKDF_SHA384,
        KEM::DHKEM_P521_HKDF_SHA512 => KDF::HKDF_SHA512,
        KEM::DHKEM_X25519_HKDF_SHA256 => KDF::HKDF_SHA256,
        KEM::DHKEM_X448_HKDF_SHA512 => KDF::HKDF_SHA512,
    }
}

/// Convert the KEM type to the KEM algorithm of libcrux.
fn kem_to_named_group(alg: KEM) -> Algorithm {
    match alg {
        KEM::DHKEM_P256_HKDF_SHA256 => Algorithm::Secp256r1,
        KEM::DHKEM_P384_HKDF_SHA384 => Algorithm::Secp384r1,
        KEM::DHKEM_P521_HKDF_SHA512 => Algorithm::Secp521r1,
        KEM::DHKEM_X25519_HKDF_SHA256 => Algorithm::X25519,
        KEM::DHKEM_X448_HKDF_SHA512 => Algorithm::X448,
    }
}

/// Get the length of the shared secret.
///
/// See [`KEM`] for details.
pub fn Nsecret(kem_id: KEM) -> usize {
    match kem_id {
        KEM::DHKEM_P256_HKDF_SHA256 => 32,
        KEM::DHKEM_P384_HKDF_SHA384 => 48,
        KEM::DHKEM_P521_HKDF_SHA512 => 64,
        KEM::DHKEM_X25519_HKDF_SHA256 => 32,
        KEM::DHKEM_X448_HKDF_SHA512 => 64,
    }
}

/// Get the length of the encoded encapsulated key.
///
/// See [`KEM`] for details.
pub fn Nenc(kem_id: KEM) -> usize {
    match kem_id {
        KEM::DHKEM_P256_HKDF_SHA256 => 65,
        KEM::DHKEM_P384_HKDF_SHA384 => 97,
        KEM::DHKEM_P521_HKDF_SHA512 => 133,
        KEM::DHKEM_X25519_HKDF_SHA256 => 32,
        KEM::DHKEM_X448_HKDF_SHA512 => 56,
    }
}

/// Get the length of the private key.
///
/// See [`KEM`] for details.
pub fn Nsk(kem_id: KEM) -> usize {
    match kem_id {
        KEM::DHKEM_P256_HKDF_SHA256 => 32,
        KEM::DHKEM_P384_HKDF_SHA384 => 48,
        KEM::DHKEM_P521_HKDF_SHA512 => 66,
        KEM::DHKEM_X25519_HKDF_SHA256 => 32,
        KEM::DHKEM_X448_HKDF_SHA512 => 56,
    }
}

/// Get the length of the encoded public key.
///
/// See [`KEM`] for details.
pub fn Npk(kem_id: KEM) -> usize {
    match kem_id {
        KEM::DHKEM_P256_HKDF_SHA256 => 65,
        KEM::DHKEM_P384_HKDF_SHA384 => 97,
        KEM::DHKEM_P521_HKDF_SHA512 => 133,
        KEM::DHKEM_X25519_HKDF_SHA256 => 32,
        KEM::DHKEM_X448_HKDF_SHA512 => 56,
    }
}

/// The length in bytes of a Diffie-Hellman shared secret produced by [`DH()`].
///
/// |        | [`Ndh`] |
/// | ------ | ------- |
/// | P-256  | 32      |
/// | P-384  | 48      |
/// | P-521  | 66      |
/// | X25519 | 32      |
/// | X448   | 56      |
pub fn Ndh(kem_id: KEM) -> usize {
    match kem_id {
        KEM::DHKEM_P256_HKDF_SHA256 => 32,
        KEM::DHKEM_P384_HKDF_SHA384 => 48,
        KEM::DHKEM_P521_HKDF_SHA512 => 66,
        KEM::DHKEM_X25519_HKDF_SHA256 => 32,
        KEM::DHKEM_X448_HKDF_SHA512 => 56,
    }
}

pub type PrivateKey = Vec<u8>;
pub type PublicKey = Vec<u8>;
pub type KeyPair = (PrivateKey, PublicKey);
pub type PublicKeyIn = [u8];
pub type PrivateKeyIn = [u8];
pub type SharedSecret = Vec<u8>;
pub type SerializedPublicKey = Vec<u8>;
pub type Randomness = Vec<u8>;

pub type EncapResult = Result<(SharedSecret, SerializedPublicKey), HpkeError>;

// === Label ===

/// "dkp_prk"
fn dkp_prk_label() -> Vec<u8> {
    vec![0x64u8, 0x6bu8, 0x70u8, 0x5fu8, 0x70u8, 0x72u8, 0x6bu8]
}

/// "eae_prk"
fn eae_prk_label() -> Vec<u8> {
    vec![0x65u8, 0x61u8, 0x65u8, 0x5fu8, 0x70u8, 0x72u8, 0x6bu8]
}

/// "sk"
fn sk_label() -> Vec<u8> {
    vec![0x73u8, 0x6bu8]
}

/// "candidate"
fn candidate_label() -> Vec<u8> {
    vec![
        0x63u8, 0x61u8, 0x6eu8, 0x64u8, 0x69u8, 0x64u8, 0x61u8, 0x74u8, 0x65u8,
    ]
}

/// "shared_secret"
fn shared_secret_label() -> Vec<u8> {
    vec![
        0x73u8, 0x68u8, 0x61u8, 0x72u8, 0x65u8, 0x64u8, 0x5fu8, 0x73u8, 0x65u8, 0x63u8, 0x72u8,
        0x65u8, 0x74u8,
    ]
}

/// Get an empty byte sequence.
fn empty() -> Vec<u8> {
    vec![]
}

/// Get the label for the KEM with the cipher suite ID.
/// "KEM"
fn suite_id(alg: KEM) -> Vec<u8> {
    let mut suite_id = vec![0x4bu8, 0x45u8, 0x4du8]; // "KEM"
    suite_id.extend_from_slice(&kem_value(alg).to_be_bytes());
    suite_id
}

/// For the variants of DHKEM defined in this document, the size [`Nsecret`] of the
/// KEM shared secret is equal to the output length of the hash function
/// underlying the KDF. For P-256, P-384 and P-521, the size `Ndh` of the
/// Diffie-Hellman shared secret is equal to 32, 48, and 66, respectively,
/// corresponding to the x-coordinate of the resulting elliptic curve point.
/// For X25519 and X448, the size [`Ndh`] of is equal to 32 and 56, respectively.
fn shared_secret_from_dh(alg: KEM, mut secret: Vec<u8>) -> Vec<u8> {
    match alg {
        KEM::DHKEM_P256_HKDF_SHA256 => secret.drain(0..Ndh(alg)).collect(),
        KEM::DHKEM_P384_HKDF_SHA384 => secret.drain(0..Ndh(alg)).collect(),
        KEM::DHKEM_P521_HKDF_SHA512 => secret.drain(0..Ndh(alg)).collect(),
        KEM::DHKEM_X25519_HKDF_SHA256 => secret,
        KEM::DHKEM_X448_HKDF_SHA512 => secret,
    }
}

/// Perform a non-interactive Diffie-Hellman exchange using the private key
/// `skX` and public key `pkY` to produce a Diffie-Hellman shared
/// secret of length `Ndh`. This function can raise a
/// [`ValidationError`](`HpkeError::ValidationError`) as described in
/// [validation](#validation-of-inputs-and-outputs).
pub fn DH(alg: KEM, sk: &PrivateKeyIn, pk: &PublicKeyIn) -> Result<SharedSecret, HpkeError> {
    match crate::ecdh::derive(kem_to_named_group(alg).try_into().unwrap(), pk, sk) {
        Ok(secret) => HpkeBytesResult::Ok(shared_secret_from_dh(alg, secret)),
        Err(_) => HpkeBytesResult::Err(HpkeError::ValidationError),
    }
}

fn pk(alg: KEM, sk: &PrivateKeyIn) -> Result<PublicKey, HpkeError> {
    match crate::kem::secret_to_public(kem_to_named_group(alg), sk) {
        Ok(pk) => HpkeBytesResult::Ok(pk),
        Err(_) => HpkeBytesResult::Err(HpkeError::ValidationError),
    }
}

/// Prepend 0x04 to the byte sequence.
fn nist_curve_to_uncompressed(pk: PublicKey) -> PublicKey {
    let mut out = vec![0x04u8];
    out.extend_from_slice(&pk);
    out
}

/// Produce a byte string of length `Npk` encoding the public key `pkX`.
///
/// For P-256, P-384 and P-521, the [`SerializePublicKey()`] function of the
/// KEM performs the uncompressed Elliptic-Curve-Point-to-Octet-String
/// conversion according to [SECG]. [`DeserializePublicKey()`] performs the
/// uncompressed Octet-String-to-Elliptic-Curve-Point conversion.
///
/// For X25519 and X448, the `SerializePublicKey()` and `DeserializePublicKey()`
/// functions are the identity function, since these curves already use
/// fixed-length byte strings for public keys.
///
/// Some deserialized public keys MUST be validated before they can be used.
///
/// [secg]: https://secg.org/sec1-v2.pdf
pub fn SerializePublicKey(alg: KEM, pk: PublicKey) -> PublicKey {
    match alg {
        KEM::DHKEM_P256_HKDF_SHA256 => nist_curve_to_uncompressed(pk),
        KEM::DHKEM_P384_HKDF_SHA384 => nist_curve_to_uncompressed(pk),
        KEM::DHKEM_P521_HKDF_SHA512 => nist_curve_to_uncompressed(pk),
        KEM::DHKEM_X25519_HKDF_SHA256 => pk,
        KEM::DHKEM_X448_HKDF_SHA512 => pk,
    }
}

/// Remove the leading 0x04 from the public key.
fn nist_curve_from_uncompressed(pk: &PublicKeyIn) -> Vec<u8> {
    if pk[0] == 0x04 {
        pk[1..].to_vec()
    } else {
        pk.to_vec()
    }
}

/// Parse a byte string of length `Npk` to recover a
/// public key. This function can raise a `DeserializeError` error upon `pkXm`
/// deserialization failure.
pub fn DeserializePublicKey(alg: KEM, enc: &[u8]) -> HpkeBytesResult {
    HpkeBytesResult::Ok(match alg {
        KEM::DHKEM_P256_HKDF_SHA256 => nist_curve_from_uncompressed(enc),
        KEM::DHKEM_P384_HKDF_SHA384 => nist_curve_from_uncompressed(enc),
        KEM::DHKEM_P521_HKDF_SHA512 => nist_curve_from_uncompressed(enc),
        KEM::DHKEM_X25519_HKDF_SHA256 => enc.to_vec(),
        KEM::DHKEM_X448_HKDF_SHA512 => enc.to_vec(),
    })
}

/// ```text
/// def ExtractAndExpand(dh, kem_context):
///   eae_prk = LabeledExtract("", "eae_prk", dh)
///   shared_secret = LabeledExpand(eae_prk, "shared_secret",
///                                 kem_context, Nsecret)
///   return shared_secret
/// ```
fn ExtractAndExpand(
    alg: KEM,
    suite_id: Vec<u8>,
    dh: SharedSecret,
    kem_context: &[u8],
) -> HpkeBytesResult {
    let kdf = kdf_for_kem(alg);
    let eae_prk = LabeledExtract(kdf, suite_id.clone(), &empty(), eae_prk_label(), &dh)?;
    LabeledExpand(
        kdf,
        suite_id,
        &eae_prk,
        shared_secret_label(),
        kem_context,
        Nsecret(alg),
    )
}

fn I2OSP(counter: usize) -> Vec<u8> {
    vec![counter as u8]
}

/// For X25519 and X448, the `DeriveKeyPair()` function applies a KDF to the input:
///
/// ```text
/// def DeriveKeyPair(ikm):
///   dkp_prk = LabeledExtract("", "dkp_prk", ikm)
///   sk = LabeledExpand(dkp_prk, "sk", "", Nsk)
///   return (sk, pk(sk))
/// ```
pub fn DeriveKeyPairX(alg: KEM, ikm: &InputKeyMaterial) -> Result<KeyPair, HpkeError> {
    let kdf = kdf_for_kem(alg);
    let dkp_prk = LabeledExtract(kdf, suite_id(alg), &empty(), dkp_prk_label(), ikm)?;

    let sk = LabeledExpand(kdf, suite_id(alg), &dkp_prk, sk_label(), &empty(), Nsk(alg))?;

    match crate::kem::secret_to_public(kem_to_named_group(alg), &sk) {
        Ok(pk) => Result::<KeyPair, HpkeError>::Ok((sk, pk)),
        Err(_) => Result::<KeyPair, HpkeError>::Err(HpkeError::CryptoError),
    }
}

/// ### DeriveKeyPair
///
/// The keys that [`DeriveKeyPair()`] produces have only as much entropy as the provided
/// input keying material. For a given KEM, the `ikm` parameter given to [`DeriveKeyPair()`] SHOULD
/// have length at least [`Nsk`], and SHOULD have at least [`Nsk`] bytes of entropy.
///
/// All invocations of KDF functions (such as [`LabeledExtract()`] or [`LabeledExpand()`]) in any
/// DHKEM's [`DeriveKeyPair()`] function use the DHKEM's associated KDF (as opposed to
/// the ciphersuite's KDF).
///
/// For P-256, P-384 and P-521, the [`DeriveKeyPair()`] function of the KEM performs
/// rejection sampling over field elements.
///
/// ```text
/// def DeriveKeyPair(ikm):
///   dkp_prk = LabeledExtract("", "dkp_prk", ikm)
///   sk = 0
///   counter = 0
///   while sk == 0 or sk >= order:
///     if counter > 255:
///       raise DeriveKeyPairError
///     bytes = LabeledExpand(dkp_prk, "candidate",
///                           I2OSP(counter, 1), Nsk)
///     bytes[0] = bytes[0] & bitmask
///     sk = OS2IP(bytes)
///     counter = counter + 1
///   return (sk, pk(sk))
/// ```
///
/// `order` is the order of the curve being used (see section D.1.2 of [NISTCurves]), and
/// is listed below for completeness.
///
/// ```text
/// P-256:
/// 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
///
/// P-384:
/// 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf
///   581a0db248b0a77aecec196accc52973
///
/// P-521:
/// 0x01ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
///   fa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409
/// ```
///
/// `bitmask` is defined to be 0xFF for P-256 and P-384, and 0x01 for P-521.
/// The precise likelihood of `DeriveKeyPair()` failing with DeriveKeyPairError
/// depends on the group being used, but it is negligibly small in all cases.
/// See [hpke errors](`mod@crate::hpke::errors`) for information about dealing with such failures.
///
/// For X25519 and X448, the [`DeriveKeyPair()`] function applies a KDF to the input:
///
/// ```text
/// def DeriveKeyPair(ikm):
///   dkp_prk = LabeledExtract("", "dkp_prk", ikm)
///   sk = LabeledExpand(dkp_prk, "sk", "", Nsk)
///   return (sk, pk(sk))
/// ```
///
/// [NISTCurves]: https://doi.org/10.6028/nist.fips.186-4
pub fn DeriveKeyPair(alg: KEM, ikm: &InputKeyMaterial) -> Result<KeyPair, HpkeError> {
    let kdf = kdf_for_kem(alg);
    let dkp_prk = LabeledExtract(kdf, suite_id(alg), &empty(), dkp_prk_label(), ikm)?;

    let named_group = kem_to_named_group(alg);
    let sk = if alg == KEM::DHKEM_X25519_HKDF_SHA256 || alg == KEM::DHKEM_X448_HKDF_SHA512 {
        LabeledExpand(kdf, suite_id(alg), &dkp_prk, sk_label(), &empty(), 32)?
    } else {
        let mut bitmask = 0xFFu8;
        if alg == KEM::DHKEM_P521_HKDF_SHA512 {
            bitmask = 0x01u8;
        }
        let mut sk = Vec::new();
        for counter in 0..256 {
            if sk.len() == 0 {
                // Only keep looking if we didn't find one.
                let mut bytes = LabeledExpand(
                    kdf,
                    suite_id(alg),
                    &dkp_prk,
                    candidate_label(),
                    &I2OSP(counter),
                    32,
                )?;
                bytes[0] = bytes[0] & bitmask;
                // This check ensure sk != 0 or sk < order
                if crate::ecdh::validate_scalar(named_group.try_into().unwrap(), &bytes).is_ok() {
                    sk = bytes;
                }
            }
        }
        sk
    };
    if sk.len() == 0 {
        Result::<KeyPair, HpkeError>::Err(HpkeError::DeriveKeyPairError)
    } else {
        let pk = pk(alg, &sk)?;
        Ok((sk, pk))
    }
}

/// Randomized algorithm to generate a key pair `(skX, pkX)`.
pub fn GenerateKeyPair(alg: KEM, randomness: Randomness) -> Result<KeyPair, HpkeError> {
    if randomness.len() != Nsk(alg) {
        Err(HpkeError::InvalidParameters)
    } else {
        DeriveKeyPair(alg, &randomness)
    }
}

/// ```text
/// def Encap(pkR):
///   skE, pkE = GenerateKeyPair()
///   dh = DH(skE, pkR)
///   enc = SerializePublicKey(pkE)
///
///   pkRm = SerializePublicKey(pkR)
///   kem_context = concat(enc, pkRm)
///
///   shared_secret = ExtractAndExpand(dh, kem_context)
/// ```
pub fn Encap(alg: KEM, pkR: &PublicKeyIn, randomness: Randomness) -> EncapResult {
    let (skE, pkE) = GenerateKeyPair(alg, randomness)?;
    let dh = DH(alg, &skE, pkR)?;
    let enc = SerializePublicKey(alg, pkE);

    let pkRm = SerializePublicKey(alg, pkR.to_vec());
    let mut kem_context = enc.clone();
    kem_context.extend_from_slice(&pkRm);

    let shared_secret = ExtractAndExpand(alg, suite_id(alg), dh, &kem_context)?;
    EncapResult::Ok((shared_secret, enc))
}

/// ```text
/// def Decap(enc, skR):
///   pkE = DeserializePublicKey(enc)
///   dh = DH(skR, pkE)
///
///   pkRm = SerializePublicKey(pk(skR))
///   kem_context = concat(enc, pkRm)
///
///   shared_secret = ExtractAndExpand(dh, kem_context)
///   return shared_secret
/// ```
pub fn Decap(alg: KEM, enc: &[u8], skR: &PrivateKeyIn) -> Result<SharedSecret, HpkeError> {
    let pkE = DeserializePublicKey(alg, enc)?;
    let dh = DH(alg, skR, &pkE)?;

    let pkR = pk(alg, skR)?;
    let pkRm = SerializePublicKey(alg, pkR);
    let mut kem_context = enc.to_vec();
    kem_context.extend_from_slice(&pkRm);

    ExtractAndExpand(alg, suite_id(alg), dh, &kem_context)
}

/// ```text
/// def AuthEncap(pkR, skS):
///   skE, pkE = GenerateKeyPair()
///   dh = concat(DH(skE, pkR), DH(skS, pkR))
///   enc = SerializePublicKey(pkE)
///
///   pkRm = SerializePublicKey(pkR)
///   pkSm = SerializePublicKey(pk(skS))
///   kem_context = concat(enc, pkRm, pkSm)
///
///   shared_secret = ExtractAndExpand(dh, kem_context)
///   return shared_secret, enc
/// ```
pub fn AuthEncap(
    alg: KEM,
    pkR: &PublicKeyIn,
    skS: &PrivateKeyIn,
    randomness: Randomness,
) -> EncapResult {
    let (skE, pkE) = GenerateKeyPair(alg, randomness)?;
    let dhE = DH(alg, &skE, pkR)?;
    let dhS = DH(alg, skS, pkR)?;
    let mut dh = dhE;
    dh.extend_from_slice(&dhS);
    let enc = SerializePublicKey(alg, pkE);

    let pkRm = SerializePublicKey(alg, pkR.to_vec());
    let pkS = pk(alg, skS)?;
    let pkSm = SerializePublicKey(alg, pkS);
    let mut kem_context = enc.clone();
    kem_context.extend_from_slice(&pkRm);
    kem_context.extend_from_slice(&pkSm);

    let shared_secret = ExtractAndExpand(alg, suite_id(alg), dh, &kem_context)?;
    EncapResult::Ok((shared_secret, enc))
}

/// ```text
/// def AuthDecap(enc, skR, pkS):
///   pkE = DeserializePublicKey(enc)
///   dh = concat(DH(skR, pkE), DH(skR, pkS))
///
///   pkRm = SerializePublicKey(pk(skR))
///   pkSm = SerializePublicKey(pkS)
///   kem_context = concat(enc, pkRm, pkSm)
///
///   shared_secret = ExtractAndExpand(dh, kem_context)
///   return shared_secret
/// ```
pub fn AuthDecap(
    alg: KEM,
    enc: &[u8],
    skR: &PrivateKeyIn,
    pkS: &PublicKeyIn,
) -> Result<SharedSecret, HpkeError> {
    let pkE = DeserializePublicKey(alg, enc)?;
    let dhE = DH(alg, skR, &pkE)?;
    let dhS = DH(alg, skR, pkS)?;
    let mut dh = dhE;
    dh.extend_from_slice(&dhS);

    let pkR = pk(alg, skR)?;
    let pkRm = SerializePublicKey(alg, pkR);
    let pkSm = SerializePublicKey(alg, pkS.to_vec());
    let mut kem_context = enc.to_vec();
    kem_context.extend_from_slice(&pkRm);
    kem_context.extend_from_slice(&pkSm);

    ExtractAndExpand(alg, suite_id(alg), dh, &kem_context)
}

#[test]
fn derive_x25519() {
    use std::num::ParseIntError;

    fn from_hex(s: &str) -> Vec<u8> {
        debug_assert!(s.len() % 2 == 0);
        let b: Result<Vec<u8>, ParseIntError> = (0..s.len())
            .step_by(2)
            .map(|i| u8::from_str_radix(&s[i..i + 2], 16))
            .collect();
        b.expect("Error parsing hex string")
    }

    // A.1.1. test vector
    let ikm_e = from_hex("7268600d403fce431561aef583ee1613527cff655c1343f29812e66706df3234");
    let ikm_r = from_hex("6db9df30aa07dd42ee5e8181afdb977e538f5e1fec8a06223f33f7013e525037");
    let expected_sk_e =
        from_hex("52c4a758a802cd8b936eceea314432798d5baf2d7e9235dc084ab1b9cfa2f736");
    let expected_pk_e =
        from_hex("37fda3567bdbd628e88668c3c8d7e97d1d1253b6d4ea6d44c150f741f1bf4431");
    let expected_sk_r =
        from_hex("4612c550263fc8ad58375df3f557aac531d26850903e55a9f23f21d8534e8ac8");
    let expected_pk_r =
        from_hex("3948cfe0ad1ddb695d780e59077195da6c56506b027329794ab02bca80815c4d");

    let (sk_e, pk_e) =
        DeriveKeyPair(KEM::DHKEM_X25519_HKDF_SHA256, &ikm_e).expect("Error deriving key pair");
    let (sk_r, pk_r) =
        DeriveKeyPair(KEM::DHKEM_X25519_HKDF_SHA256, &ikm_r).expect("Error deriving key pair");

    assert_eq!(expected_sk_e, sk_e);
    assert_eq!(expected_sk_r, sk_r);
    assert_eq!(expected_pk_e, pk_e);
    assert_eq!(expected_pk_r, pk_r);
}