miri/borrow_tracker/tree_borrows/tree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
//! In this file we handle the "Tree" part of Tree Borrows, i.e. all tree
//! traversal functions, optimizations to trim branches, and keeping track of
//! the relative position of the access to each node being updated. This of course
//! also includes the definition of the tree structure.
//!
//! Functions here manipulate permissions but are oblivious to them: as
//! the internals of `Permission` are private, the update process is a black
//! box. All we need to know here are
//! - the fact that updates depend only on the old state, the status of protectors,
//! and the relative position of the access;
//! - idempotency properties asserted in `perms.rs` (for optimizations)
use std::{fmt, mem};
use rustc_data_structures::fx::FxHashSet;
use rustc_span::Span;
use rustc_target::abi::Size;
use smallvec::SmallVec;
use crate::borrow_tracker::tree_borrows::Permission;
use crate::borrow_tracker::tree_borrows::diagnostics::{
self, NodeDebugInfo, TbError, TransitionError,
};
use crate::borrow_tracker::tree_borrows::perms::PermTransition;
use crate::borrow_tracker::tree_borrows::unimap::{UniEntry, UniIndex, UniKeyMap, UniValMap};
use crate::borrow_tracker::{GlobalState, ProtectorKind};
use crate::*;
mod tests;
/// Data for a single *location*.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(super) struct LocationState {
/// A location is initialized when it is child-accessed for the first time (and the initial
/// retag initializes the location for the range covered by the type), and it then stays
/// initialized forever.
/// For initialized locations, "permission" is the current permission. However, for
/// uninitialized locations, we still need to track the "future initial permission": this will
/// start out to be `default_initial_perm`, but foreign accesses need to be taken into account.
/// Crucially however, while transitions to `Disabled` would usually be UB if this location is
/// protected, that is *not* the case for uninitialized locations. Instead we just have a latent
/// "future initial permission" of `Disabled`, causing UB only if an access is ever actually
/// performed.
/// Note that the tree root is also always initialized, as if the allocation was a write access.
initialized: bool,
/// This pointer's current permission / future initial permission.
permission: Permission,
/// Strongest foreign access whose effects have already been applied to
/// this node and all its children since the last child access.
/// This is `None` if the most recent access is a child access,
/// `Some(Write)` if at least one foreign write access has been applied
/// since the previous child access, and `Some(Read)` if at least one
/// foreign read and no foreign write have occurred since the last child access.
latest_foreign_access: Option<AccessKind>,
}
impl LocationState {
/// Constructs a new initial state. It has neither been accessed, nor been subjected
/// to any foreign access yet.
/// The permission is not allowed to be `Active`.
fn new_uninit(permission: Permission) -> Self {
assert!(permission.is_initial() || permission.is_disabled());
Self { permission, initialized: false, latest_foreign_access: None }
}
/// Constructs a new initial state. It has not yet been subjected
/// to any foreign access. However, it is already marked as having been accessed.
fn new_init(permission: Permission) -> Self {
Self { permission, initialized: true, latest_foreign_access: None }
}
/// Check if the location has been initialized, i.e. if it has
/// ever been accessed through a child pointer.
pub fn is_initialized(&self) -> bool {
self.initialized
}
/// Check if the state can exist as the initial permission of a pointer.
///
/// Do not confuse with `is_initialized`, the two are almost orthogonal
/// as apart from `Active` which is not initial and must be initialized,
/// any other permission can have an arbitrary combination of being
/// initial/initialized.
/// FIXME: when the corresponding `assert` in `tree_borrows/mod.rs` finally
/// passes and can be uncommented, remove this `#[allow(dead_code)]`.
#[cfg_attr(not(test), allow(dead_code))]
pub fn is_initial(&self) -> bool {
self.permission.is_initial()
}
pub fn permission(&self) -> Permission {
self.permission
}
/// Apply the effect of an access to one location, including
/// - applying `Permission::perform_access` to the inner `Permission`,
/// - emitting protector UB if the location is initialized,
/// - updating the initialized status (child accesses produce initialized locations).
fn perform_access(
&mut self,
access_kind: AccessKind,
rel_pos: AccessRelatedness,
protected: bool,
) -> Result<PermTransition, TransitionError> {
let old_perm = self.permission;
let transition = Permission::perform_access(access_kind, rel_pos, old_perm, protected)
.ok_or(TransitionError::ChildAccessForbidden(old_perm))?;
self.initialized |= !rel_pos.is_foreign();
self.permission = transition.applied(old_perm).unwrap();
// Why do only initialized locations cause protector errors?
// Consider two mutable references `x`, `y` into disjoint parts of
// the same allocation. A priori, these may actually both be used to
// access the entire allocation, as long as only reads occur. However,
// a write to `y` needs to somehow record that `x` can no longer be used
// on that location at all. For these uninitialized locations (i.e., locations
// that haven't been accessed with `x` yet), we track the "future initial state":
// it defaults to whatever the initial state of the tag is,
// but the access to `y` moves that "future initial state" of `x` to `Disabled`.
// However, usually a `Reserved -> Disabled` transition would be UB due to the protector!
// So clearly protectors shouldn't fire for such "future initial state" transitions.
//
// See the test `two_mut_protected_same_alloc` in `tests/pass/tree_borrows/tree-borrows.rs`
// for an example of safe code that would be UB if we forgot to check `self.initialized`.
if protected && self.initialized && transition.produces_disabled() {
return Err(TransitionError::ProtectedDisabled(old_perm));
}
Ok(transition)
}
/// Like `perform_access`, but ignores the concrete error cause and also uses state-passing
/// rather than a mutable reference. As such, it returns `Some(x)` if the transition succeeded,
/// or `None` if there was an error.
#[cfg(test)]
fn perform_access_no_fluff(
mut self,
access_kind: AccessKind,
rel_pos: AccessRelatedness,
protected: bool,
) -> Option<Self> {
match self.perform_access(access_kind, rel_pos, protected) {
Ok(_) => Some(self),
Err(_) => None,
}
}
// Helper to optimize the tree traversal.
// The optimization here consists of observing thanks to the tests
// `foreign_read_is_noop_after_foreign_write` and `all_transitions_idempotent`,
// that there are actually just three possible sequences of events that can occur
// in between two child accesses that produce different results.
//
// Indeed,
// - applying any number of foreign read accesses is the same as applying
// exactly one foreign read,
// - applying any number of foreign read or write accesses is the same
// as applying exactly one foreign write.
// therefore the three sequences of events that can produce different
// outcomes are
// - an empty sequence (`self.latest_foreign_access = None`)
// - a nonempty read-only sequence (`self.latest_foreign_access = Some(Read)`)
// - a nonempty sequence with at least one write (`self.latest_foreign_access = Some(Write)`)
//
// This function not only determines if skipping the propagation right now
// is possible, it also updates the internal state to keep track of whether
// the propagation can be skipped next time.
// It is a performance loss not to call this function when a foreign access occurs.
// FIXME: This optimization is wrong, and is currently disabled (by ignoring the
// result returned here). Since we presumably want an optimization like this,
// we should add it back. See #3864 for more information.
fn skip_if_known_noop(
&self,
access_kind: AccessKind,
rel_pos: AccessRelatedness,
) -> ContinueTraversal {
if rel_pos.is_foreign() {
let new_access_noop = match (self.latest_foreign_access, access_kind) {
// Previously applied transition makes the new one a guaranteed
// noop in the two following cases:
// (1) justified by `foreign_read_is_noop_after_foreign_write`
(Some(AccessKind::Write), AccessKind::Read) => true,
// (2) justified by `all_transitions_idempotent`
(Some(old), new) if old == new => true,
// In all other cases there has been a recent enough
// child access that the effects of the new foreign access
// need to be applied to this subtree.
_ => false,
};
if new_access_noop {
// Abort traversal if the new transition is indeed guaranteed
// to be noop.
// No need to update `self.latest_foreign_access`,
// the type of the current streak among nonempty read-only
// or nonempty with at least one write has not changed.
ContinueTraversal::SkipSelfAndChildren
} else {
// Otherwise propagate this time, and also record the
// access that just occurred so that we can skip the propagation
// next time.
ContinueTraversal::Recurse
}
} else {
// A child access occurred, this breaks the streak of foreign
// accesses in a row and the sequence since the previous child access
// is now empty.
ContinueTraversal::Recurse
}
}
/// Records a new access, so that future access can potentially be skipped
/// by `skip_if_known_noop`.
/// The invariants for this function are closely coupled to the function above:
/// It MUST be called on child accesses, and on foreign accesses MUST be called
/// when `skip_if_know_noop` returns `Recurse`, and MUST NOT be called otherwise.
/// FIXME: This optimization is wrong, and is currently disabled (by ignoring the
/// result returned here). Since we presumably want an optimization like this,
/// we should add it back. See #3864 for more information.
#[allow(unused)]
fn record_new_access(&mut self, access_kind: AccessKind, rel_pos: AccessRelatedness) {
if rel_pos.is_foreign() {
self.latest_foreign_access = Some(access_kind);
} else {
self.latest_foreign_access = None;
}
}
}
impl fmt::Display for LocationState {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.permission)?;
if !self.initialized {
write!(f, "?")?;
}
Ok(())
}
}
/// Tree structure with both parents and children since we want to be
/// able to traverse the tree efficiently in both directions.
#[derive(Clone, Debug)]
pub struct Tree {
/// Mapping from tags to keys. The key obtained can then be used in
/// any of the `UniValMap` relative to this allocation, i.e. both the
/// `nodes` and `rperms` of the same `Tree`.
/// The parent-child relationship in `Node` is encoded in terms of these same
/// keys, so traversing the entire tree needs exactly one access to
/// `tag_mapping`.
pub(super) tag_mapping: UniKeyMap<BorTag>,
/// All nodes of this tree.
pub(super) nodes: UniValMap<Node>,
/// Maps a tag and a location to a perm, with possible lazy
/// initialization.
///
/// NOTE: not all tags registered in `nodes` are necessarily in all
/// ranges of `rperms`, because `rperms` is in part lazily initialized.
/// Just because `nodes.get(key)` is `Some(_)` does not mean you can safely
/// `unwrap` any `perm.get(key)`.
///
/// We do uphold the fact that `keys(perms)` is a subset of `keys(nodes)`
pub(super) rperms: RangeMap<UniValMap<LocationState>>,
/// The index of the root node.
pub(super) root: UniIndex,
}
/// A node in the borrow tree. Each node is uniquely identified by a tag via
/// the `nodes` map of `Tree`.
#[derive(Clone, Debug)]
pub(super) struct Node {
/// The tag of this node.
pub tag: BorTag,
/// All tags except the root have a parent tag.
pub parent: Option<UniIndex>,
/// If the pointer was reborrowed, it has children.
// FIXME: bench to compare this to FxHashSet and to other SmallVec sizes
pub children: SmallVec<[UniIndex; 4]>,
/// Either `Reserved`, `Frozen`, or `Disabled`, it is the permission this tag will
/// lazily be initialized to on the first access.
/// It is only ever `Disabled` for a tree root, since the root is initialized to `Active` by
/// its own separate mechanism.
default_initial_perm: Permission,
/// Some extra information useful only for debugging purposes
pub debug_info: NodeDebugInfo,
}
/// Data given to the transition function
struct NodeAppArgs<'node> {
/// Node on which the transition is currently being applied
node: &'node mut Node,
/// Mutable access to its permissions
perm: UniEntry<'node, LocationState>,
/// Relative position of the access
rel_pos: AccessRelatedness,
}
/// Data given to the error handler
struct ErrHandlerArgs<'node, InErr> {
/// Kind of error that occurred
error_kind: InErr,
/// Tag that triggered the error (not the tag that was accessed,
/// rather the parent tag that had insufficient permissions or the
/// non-parent tag that had a protector).
conflicting_info: &'node NodeDebugInfo,
/// Information about the tag that was accessed just before the
/// error was triggered.
accessed_info: &'node NodeDebugInfo,
}
/// Internal contents of `Tree` with the minimum of mutable access for
/// the purposes of the tree traversal functions: the permissions (`perms`) can be
/// updated but not the tree structure (`tag_mapping` and `nodes`)
struct TreeVisitor<'tree> {
tag_mapping: &'tree UniKeyMap<BorTag>,
nodes: &'tree mut UniValMap<Node>,
perms: &'tree mut UniValMap<LocationState>,
}
/// Whether to continue exploring the children recursively or not.
enum ContinueTraversal {
Recurse,
SkipSelfAndChildren,
}
#[derive(Clone, Copy)]
pub enum ChildrenVisitMode {
VisitChildrenOfAccessed,
SkipChildrenOfAccessed,
}
enum RecursionState {
BeforeChildren,
AfterChildren,
}
/// Stack of nodes left to explore in a tree traversal.
/// See the docs of `traverse_this_parents_children_other` for details on the
/// traversal order.
struct TreeVisitorStack<NodeContinue, NodeApp, ErrHandler> {
/// Identifier of the original access.
initial: UniIndex,
/// Function describing whether to continue at a tag.
/// This is only invoked for foreign accesses.
f_continue: NodeContinue,
/// Function to apply to each tag.
f_propagate: NodeApp,
/// Handler to add the required context to diagnostics.
err_builder: ErrHandler,
/// Mutable state of the visit: the tags left to handle.
/// Every tag pushed should eventually be handled,
/// and the precise order is relevant for diagnostics.
/// Since the traversal is piecewise bottom-up, we need to
/// remember whether we're here initially, or after visiting all children.
/// The last element indicates this.
/// This is just an artifact of how you hand-roll recursion,
/// it does not have a deeper meaning otherwise.
stack: Vec<(UniIndex, AccessRelatedness, RecursionState)>,
}
impl<NodeContinue, NodeApp, InnErr, OutErr, ErrHandler>
TreeVisitorStack<NodeContinue, NodeApp, ErrHandler>
where
NodeContinue: Fn(&NodeAppArgs<'_>) -> ContinueTraversal,
NodeApp: Fn(NodeAppArgs<'_>) -> Result<(), InnErr>,
ErrHandler: Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
{
fn should_continue_at(
&self,
this: &mut TreeVisitor<'_>,
idx: UniIndex,
rel_pos: AccessRelatedness,
) -> ContinueTraversal {
let node = this.nodes.get_mut(idx).unwrap();
let args = NodeAppArgs { node, perm: this.perms.entry(idx), rel_pos };
(self.f_continue)(&args)
}
fn propagate_at(
&mut self,
this: &mut TreeVisitor<'_>,
idx: UniIndex,
rel_pos: AccessRelatedness,
) -> Result<(), OutErr> {
let node = this.nodes.get_mut(idx).unwrap();
(self.f_propagate)(NodeAppArgs { node, perm: this.perms.entry(idx), rel_pos }).map_err(
|error_kind| {
(self.err_builder)(ErrHandlerArgs {
error_kind,
conflicting_info: &this.nodes.get(idx).unwrap().debug_info,
accessed_info: &this.nodes.get(self.initial).unwrap().debug_info,
})
},
)
}
fn go_upwards_from_accessed(
&mut self,
this: &mut TreeVisitor<'_>,
accessed_node: UniIndex,
visit_children: ChildrenVisitMode,
) -> Result<(), OutErr> {
// We want to visit the accessed node's children first.
// However, we will below walk up our parents and push their children (our cousins)
// onto the stack. To ensure correct iteration order, this method thus finishes
// by reversing the stack. This only works if the stack is empty initially.
assert!(self.stack.is_empty());
// First, handle accessed node. A bunch of things need to
// be handled differently here compared to the further parents
// of `accesssed_node`.
{
self.propagate_at(this, accessed_node, AccessRelatedness::This)?;
if matches!(visit_children, ChildrenVisitMode::VisitChildrenOfAccessed) {
let accessed_node = this.nodes.get(accessed_node).unwrap();
// We `rev()` here because we reverse the entire stack later.
for &child in accessed_node.children.iter().rev() {
self.stack.push((
child,
AccessRelatedness::AncestorAccess,
RecursionState::BeforeChildren,
));
}
}
}
// Then, handle the accessed node's parents. Here, we need to
// make sure we only mark the "cousin" subtrees for later visitation,
// not the subtree that contains the accessed node.
let mut last_node = accessed_node;
while let Some(current) = this.nodes.get(last_node).unwrap().parent {
self.propagate_at(this, current, AccessRelatedness::StrictChildAccess)?;
let node = this.nodes.get(current).unwrap();
// We `rev()` here because we reverse the entire stack later.
for &child in node.children.iter().rev() {
if last_node == child {
continue;
}
self.stack.push((
child,
AccessRelatedness::DistantAccess,
RecursionState::BeforeChildren,
));
}
last_node = current;
}
// Reverse the stack, as discussed above.
self.stack.reverse();
Ok(())
}
fn finish_foreign_accesses(&mut self, this: &mut TreeVisitor<'_>) -> Result<(), OutErr> {
while let Some((idx, rel_pos, step)) = self.stack.last_mut() {
let idx = *idx;
let rel_pos = *rel_pos;
match *step {
// How to do bottom-up traversal, 101: Before you handle a node, you handle all children.
// For this, you must first find the children, which is what this code here does.
RecursionState::BeforeChildren => {
// Next time we come back will be when all the children are handled.
*step = RecursionState::AfterChildren;
// Now push the children, except if we are told to skip this subtree.
let handle_children = self.should_continue_at(this, idx, rel_pos);
match handle_children {
ContinueTraversal::Recurse => {
let node = this.nodes.get(idx).unwrap();
for &child in node.children.iter() {
self.stack.push((child, rel_pos, RecursionState::BeforeChildren));
}
}
ContinueTraversal::SkipSelfAndChildren => {
// skip self
self.stack.pop();
continue;
}
}
}
// All the children are handled, let's actually visit this node
RecursionState::AfterChildren => {
self.stack.pop();
self.propagate_at(this, idx, rel_pos)?;
}
}
}
Ok(())
}
fn new(
initial: UniIndex,
f_continue: NodeContinue,
f_propagate: NodeApp,
err_builder: ErrHandler,
) -> Self {
Self { initial, f_continue, f_propagate, err_builder, stack: Vec::new() }
}
}
impl<'tree> TreeVisitor<'tree> {
/// Applies `f_propagate` to every vertex of the tree in a piecewise bottom-up way: First, visit
/// all ancestors of `start` (starting with `start` itself), then children of `start`, then the rest,
/// going bottom-up in each of these two "pieces" / sections.
/// This ensures that errors are triggered in the following order
/// - first invalid accesses with insufficient permissions, closest to the accessed node first,
/// - then protector violations, bottom-up, starting with the children of the accessed node, and then
/// going upwards and outwards.
///
/// The following graphic visualizes it, with numbers indicating visitation order and `start` being
/// the node that is visited first ("1"):
///
/// ```text
/// 3
/// /|
/// / |
/// 9 2
/// | |\
/// | | \
/// 8 1 7
/// / \
/// 4 6
/// |
/// 5
/// ```
///
/// `f_propagate` should follow the following format: for a given `Node` it updates its
/// `Permission` depending on the position relative to `start` (given by an
/// `AccessRelatedness`).
/// `f_continue` is called earlier on foreign nodes, and describes whether to even start
/// visiting the subtree at that node. If it e.g. returns `SkipSelfAndChildren` on node 6
/// above, then nodes 5 _and_ 6 would not be visited by `f_propagate`. It is not used for
/// notes having a child access (nodes 1, 2, 3).
///
/// Finally, remember that the iteration order is not relevant for UB, it only affects
/// diagnostics. It also affects tree traversal optimizations built on top of this, so
/// those need to be reviewed carefully as well whenever this changes.
fn traverse_this_parents_children_other<InnErr, OutErr>(
mut self,
start: BorTag,
f_continue: impl Fn(&NodeAppArgs<'_>) -> ContinueTraversal,
f_propagate: impl Fn(NodeAppArgs<'_>) -> Result<(), InnErr>,
err_builder: impl Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
) -> Result<(), OutErr> {
let start_idx = self.tag_mapping.get(&start).unwrap();
let mut stack = TreeVisitorStack::new(start_idx, f_continue, f_propagate, err_builder);
// Visits the accessed node itself, and all its parents, i.e. all nodes
// undergoing a child access. Also pushes the children and the other
// cousin nodes (i.e. all nodes undergoing a foreign access) to the stack
// to be processed later.
stack.go_upwards_from_accessed(
&mut self,
start_idx,
ChildrenVisitMode::VisitChildrenOfAccessed,
)?;
// Now visit all the foreign nodes we remembered earlier.
// For this we go bottom-up, but also allow f_continue to skip entire
// subtrees from being visited if it would be a NOP.
stack.finish_foreign_accesses(&mut self)
}
/// Like `traverse_this_parents_children_other`, but skips the children of `start`.
fn traverse_nonchildren<InnErr, OutErr>(
mut self,
start: BorTag,
f_continue: impl Fn(&NodeAppArgs<'_>) -> ContinueTraversal,
f_propagate: impl Fn(NodeAppArgs<'_>) -> Result<(), InnErr>,
err_builder: impl Fn(ErrHandlerArgs<'_, InnErr>) -> OutErr,
) -> Result<(), OutErr> {
let start_idx = self.tag_mapping.get(&start).unwrap();
let mut stack = TreeVisitorStack::new(start_idx, f_continue, f_propagate, err_builder);
// Visits the accessed node itself, and all its parents, i.e. all nodes
// undergoing a child access. Also pushes the other cousin nodes to the
// stack, but not the children of the accessed node.
stack.go_upwards_from_accessed(
&mut self,
start_idx,
ChildrenVisitMode::SkipChildrenOfAccessed,
)?;
// Now visit all the foreign nodes we remembered earlier.
// For this we go bottom-up, but also allow f_continue to skip entire
// subtrees from being visited if it would be a NOP.
stack.finish_foreign_accesses(&mut self)
}
}
impl Tree {
/// Create a new tree, with only a root pointer.
pub fn new(root_tag: BorTag, size: Size, span: Span) -> Self {
// The root has `Disabled` as the default permission,
// so that any access out of bounds is invalid.
let root_default_perm = Permission::new_disabled();
let mut tag_mapping = UniKeyMap::default();
let root_idx = tag_mapping.insert(root_tag);
let nodes = {
let mut nodes = UniValMap::<Node>::default();
let mut debug_info = NodeDebugInfo::new(root_tag, root_default_perm, span);
// name the root so that all allocations contain one named pointer
debug_info.add_name("root of the allocation");
nodes.insert(root_idx, Node {
tag: root_tag,
parent: None,
children: SmallVec::default(),
default_initial_perm: root_default_perm,
debug_info,
});
nodes
};
let rperms = {
let mut perms = UniValMap::default();
// We manually set it to `Active` on all in-bounds positions.
// We also ensure that it is initialized, so that no `Active` but
// not yet initialized nodes exist. Essentially, we pretend there
// was a write that initialized these to `Active`.
perms.insert(root_idx, LocationState::new_init(Permission::new_active()));
RangeMap::new(size, perms)
};
Self { root: root_idx, nodes, rperms, tag_mapping }
}
}
impl<'tcx> Tree {
/// Insert a new tag in the tree
pub fn new_child(
&mut self,
parent_tag: BorTag,
new_tag: BorTag,
default_initial_perm: Permission,
reborrow_range: AllocRange,
span: Span,
) -> InterpResult<'tcx> {
assert!(!self.tag_mapping.contains_key(&new_tag));
let idx = self.tag_mapping.insert(new_tag);
let parent_idx = self.tag_mapping.get(&parent_tag).unwrap();
// Create the node
self.nodes.insert(idx, Node {
tag: new_tag,
parent: Some(parent_idx),
children: SmallVec::default(),
default_initial_perm,
debug_info: NodeDebugInfo::new(new_tag, default_initial_perm, span),
});
// Register new_tag as a child of parent_tag
self.nodes.get_mut(parent_idx).unwrap().children.push(idx);
// Initialize perms
let perm = LocationState::new_init(default_initial_perm);
for (_perms_range, perms) in self.rperms.iter_mut(reborrow_range.start, reborrow_range.size)
{
perms.insert(idx, perm);
}
interp_ok(())
}
/// Deallocation requires
/// - a pointer that permits write accesses
/// - the absence of Strong Protectors anywhere in the allocation
pub fn dealloc(
&mut self,
tag: BorTag,
access_range: AllocRange,
global: &GlobalState,
alloc_id: AllocId, // diagnostics
span: Span, // diagnostics
) -> InterpResult<'tcx> {
self.perform_access(
tag,
Some((access_range, AccessKind::Write, diagnostics::AccessCause::Dealloc)),
global,
alloc_id,
span,
)?;
for (perms_range, perms) in self.rperms.iter_mut(access_range.start, access_range.size) {
TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
.traverse_this_parents_children_other(
tag,
// visit all children, skipping none
|_| ContinueTraversal::Recurse,
|args: NodeAppArgs<'_>| -> Result<(), TransitionError> {
let NodeAppArgs { node, .. } = args;
if global.borrow().protected_tags.get(&node.tag)
== Some(&ProtectorKind::StrongProtector)
{
Err(TransitionError::ProtectedDealloc)
} else {
Ok(())
}
},
|args: ErrHandlerArgs<'_, TransitionError>| -> InterpErrorKind<'tcx> {
let ErrHandlerArgs { error_kind, conflicting_info, accessed_info } = args;
TbError {
conflicting_info,
access_cause: diagnostics::AccessCause::Dealloc,
alloc_id,
error_offset: perms_range.start,
error_kind,
accessed_info,
}
.build()
},
)?;
}
interp_ok(())
}
/// Map the per-node and per-location `LocationState::perform_access`
/// to each location of the first component of `access_range_and_kind`,
/// on every tag of the allocation.
///
/// If `access_range_and_kind` is `None`, this is interpreted as the special
/// access that is applied on protector release:
/// - the access will be applied only to initialized locations of the allocation,
/// - it will not be visible to children,
/// - it will be recorded as a `FnExit` diagnostic access
/// - and it will be a read except if the location is `Active`, i.e. has been written to,
/// in which case it will be a write.
///
/// `LocationState::perform_access` will take care of raising transition
/// errors and updating the `initialized` status of each location,
/// this traversal adds to that:
/// - inserting into the map locations that do not exist yet,
/// - trimming the traversal,
/// - recording the history.
pub fn perform_access(
&mut self,
tag: BorTag,
access_range_and_kind: Option<(AllocRange, AccessKind, diagnostics::AccessCause)>,
global: &GlobalState,
alloc_id: AllocId, // diagnostics
span: Span, // diagnostics
) -> InterpResult<'tcx> {
use std::ops::Range;
// Performs the per-node work:
// - insert the permission if it does not exist
// - perform the access
// - record the transition
// to which some optimizations are added:
// - skip the traversal of the children in some cases
// - do not record noop transitions
//
// `perms_range` is only for diagnostics (it is the range of
// the `RangeMap` on which we are currently working).
let node_skipper = |access_kind: AccessKind, args: &NodeAppArgs<'_>| -> ContinueTraversal {
let NodeAppArgs { node, perm, rel_pos } = args;
let old_state = perm
.get()
.copied()
.unwrap_or_else(|| LocationState::new_uninit(node.default_initial_perm));
// FIXME: See #3684
let _would_skip_if_not_for_fixme = old_state.skip_if_known_noop(access_kind, *rel_pos);
ContinueTraversal::Recurse
};
let node_app = |perms_range: Range<u64>,
access_kind: AccessKind,
access_cause: diagnostics::AccessCause,
args: NodeAppArgs<'_>|
-> Result<(), TransitionError> {
let NodeAppArgs { node, mut perm, rel_pos } = args;
let old_state = perm.or_insert(LocationState::new_uninit(node.default_initial_perm));
// FIXME: See #3684
// old_state.record_new_access(access_kind, rel_pos);
let protected = global.borrow().protected_tags.contains_key(&node.tag);
let transition = old_state.perform_access(access_kind, rel_pos, protected)?;
// Record the event as part of the history
if !transition.is_noop() {
node.debug_info.history.push(diagnostics::Event {
transition,
is_foreign: rel_pos.is_foreign(),
access_cause,
access_range: access_range_and_kind.map(|x| x.0),
transition_range: perms_range,
span,
});
}
Ok(())
};
// Error handler in case `node_app` goes wrong.
// Wraps the faulty transition in more context for diagnostics.
let err_handler = |perms_range: Range<u64>,
access_cause: diagnostics::AccessCause,
args: ErrHandlerArgs<'_, TransitionError>|
-> InterpErrorKind<'tcx> {
let ErrHandlerArgs { error_kind, conflicting_info, accessed_info } = args;
TbError {
conflicting_info,
access_cause,
alloc_id,
error_offset: perms_range.start,
error_kind,
accessed_info,
}
.build()
};
if let Some((access_range, access_kind, access_cause)) = access_range_and_kind {
// Default branch: this is a "normal" access through a known range.
// We iterate over affected locations and traverse the tree for each of them.
for (perms_range, perms) in self.rperms.iter_mut(access_range.start, access_range.size)
{
TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
.traverse_this_parents_children_other(
tag,
|args| node_skipper(access_kind, args),
|args| node_app(perms_range.clone(), access_kind, access_cause, args),
|args| err_handler(perms_range.clone(), access_cause, args),
)?;
}
} else {
// This is a special access through the entire allocation.
// It actually only affects `initialized` locations, so we need
// to filter on those before initiating the traversal.
//
// In addition this implicit access should not be visible to children,
// thus the use of `traverse_nonchildren`.
// See the test case `returned_mut_is_usable` from
// `tests/pass/tree_borrows/tree-borrows.rs` for an example of
// why this is important.
for (perms_range, perms) in self.rperms.iter_mut_all() {
let idx = self.tag_mapping.get(&tag).unwrap();
// Only visit initialized permissions
if let Some(p) = perms.get(idx)
&& p.initialized
{
let access_kind =
if p.permission.is_active() { AccessKind::Write } else { AccessKind::Read };
let access_cause = diagnostics::AccessCause::FnExit(access_kind);
TreeVisitor { nodes: &mut self.nodes, tag_mapping: &self.tag_mapping, perms }
.traverse_nonchildren(
tag,
|args| node_skipper(access_kind, args),
|args| node_app(perms_range.clone(), access_kind, access_cause, args),
|args| err_handler(perms_range.clone(), access_cause, args),
)?;
}
}
}
interp_ok(())
}
}
/// Integration with the BorTag garbage collector
impl Tree {
pub fn remove_unreachable_tags(&mut self, live_tags: &FxHashSet<BorTag>) {
self.remove_useless_children(self.root, live_tags);
// Right after the GC runs is a good moment to check if we can
// merge some adjacent ranges that were made equal by the removal of some
// tags (this does not necessarily mean that they have identical internal representations,
// see the `PartialEq` impl for `UniValMap`)
self.rperms.merge_adjacent_thorough();
}
/// Checks if a node is useless and should be GC'ed.
/// A node is useless if it has no children and also the tag is no longer live.
fn is_useless(&self, idx: UniIndex, live: &FxHashSet<BorTag>) -> bool {
let node = self.nodes.get(idx).unwrap();
node.children.is_empty() && !live.contains(&node.tag)
}
/// Checks whether a node can be replaced by its only child.
/// If so, returns the index of said only child.
/// If not, returns none.
fn can_be_replaced_by_single_child(
&self,
idx: UniIndex,
live: &FxHashSet<BorTag>,
) -> Option<UniIndex> {
let node = self.nodes.get(idx).unwrap();
let [child_idx] = node.children[..] else { return None };
// We never want to replace the root node, as it is also kept in `root_ptr_tags`.
if live.contains(&node.tag) || node.parent.is_none() {
return None;
}
// Since protected nodes are never GC'd (see `borrow_tracker::FrameExtra::visit_provenance`),
// we know that `node` is not protected because otherwise `live` would
// have contained `node.tag`.
let child = self.nodes.get(child_idx).unwrap();
// Check that for that one child, `can_be_replaced_by_child` holds for the permission
// on all locations.
for (_, data) in self.rperms.iter_all() {
let parent_perm =
data.get(idx).map(|x| x.permission).unwrap_or_else(|| node.default_initial_perm);
let child_perm = data
.get(child_idx)
.map(|x| x.permission)
.unwrap_or_else(|| child.default_initial_perm);
if !parent_perm.can_be_replaced_by_child(child_perm) {
return None;
}
}
Some(child_idx)
}
/// Properly removes a node.
/// The node to be removed should not otherwise be usable. It also
/// should have no children, but this is not checked, so that nodes
/// whose children were rotated somewhere else can be deleted without
/// having to first modify them to clear that array.
fn remove_useless_node(&mut self, this: UniIndex) {
// Due to the API of UniMap we must make sure to call
// `UniValMap::remove` for the key of this node on *all* maps that used it
// (which are `self.nodes` and every range of `self.rperms`)
// before we can safely apply `UniKeyMap::remove` to truly remove
// this tag from the `tag_mapping`.
let node = self.nodes.remove(this).unwrap();
for (_perms_range, perms) in self.rperms.iter_mut_all() {
perms.remove(this);
}
self.tag_mapping.remove(&node.tag);
}
/// Traverses the entire tree looking for useless tags.
/// Removes from the tree all useless child nodes of root.
/// It will not delete the root itself.
///
/// NOTE: This leaves in the middle of the tree tags that are unreachable but have
/// reachable children. There is a potential for compacting the tree by reassigning
/// children of dead tags to the nearest live parent, but it must be done with care
/// not to remove UB.
///
/// Example: Consider the tree `root - parent - child`, with `parent: Frozen` and
/// `child: Reserved`. This tree can exist. If we blindly delete `parent` and reassign
/// `child` to be a direct child of `root` then Writes to `child` are now permitted
/// whereas they were not when `parent` was still there.
fn remove_useless_children(&mut self, root: UniIndex, live: &FxHashSet<BorTag>) {
// To avoid stack overflows, we roll our own stack.
// Each element in the stack consists of the current tag, and the number of the
// next child to be processed.
// The other functions are written using the `TreeVisitorStack`, but that does not work here
// since we need to 1) do a post-traversal and 2) remove nodes from the tree.
// Since we do a post-traversal (by deleting nodes only after handling all children),
// we also need to be a bit smarter than "pop node, push all children."
let mut stack = vec![(root, 0)];
while let Some((tag, nth_child)) = stack.last_mut() {
let node = self.nodes.get(*tag).unwrap();
if *nth_child < node.children.len() {
// Visit the child by pushing it to the stack.
// Also increase `nth_child` so that when we come back to the `tag` node, we
// look at the next child.
let next_child = node.children[*nth_child];
*nth_child += 1;
stack.push((next_child, 0));
continue;
} else {
// We have processed all children of `node`, so now it is time to process `node` itself.
// First, get the current children of `node`. To appease the borrow checker,
// we have to temporarily move the list out of the node, and then put the
// list of remaining children back in.
let mut children_of_node =
mem::take(&mut self.nodes.get_mut(*tag).unwrap().children);
// Remove all useless children.
children_of_node.retain_mut(|idx| {
if self.is_useless(*idx, live) {
// Delete `idx` node everywhere else.
self.remove_useless_node(*idx);
// And delete it from children_of_node.
false
} else {
if let Some(nextchild) = self.can_be_replaced_by_single_child(*idx, live) {
// `nextchild` is our grandchild, and will become our direct child.
// Delete the in-between node, `idx`.
self.remove_useless_node(*idx);
// Set the new child's parent.
self.nodes.get_mut(nextchild).unwrap().parent = Some(*tag);
// Save the new child in children_of_node.
*idx = nextchild;
}
// retain it
true
}
});
// Put back the now-filtered vector.
self.nodes.get_mut(*tag).unwrap().children = children_of_node;
// We are done, the parent can continue.
stack.pop();
continue;
}
}
}
}
impl VisitProvenance for Tree {
fn visit_provenance(&self, visit: &mut VisitWith<'_>) {
// To ensure that the root never gets removed, we visit it
// (the `root` node of `Tree` is not an `Option<_>`)
visit(None, Some(self.nodes.get(self.root).unwrap().tag))
}
}
/// Relative position of the access
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum AccessRelatedness {
/// The accessed pointer is the current one
This,
/// The accessed pointer is a (transitive) child of the current one.
// Current pointer is excluded (unlike in some other places of this module
// where "child" is inclusive).
StrictChildAccess,
/// The accessed pointer is a (transitive) parent of the current one.
// Current pointer is excluded.
AncestorAccess,
/// The accessed pointer is neither of the above.
// It's a cousin/uncle/etc., something in a side branch.
// FIXME: find a better name ?
DistantAccess,
}
impl AccessRelatedness {
/// Check that access is either Ancestor or Distant, i.e. not
/// a transitive child (initial pointer included).
pub fn is_foreign(self) -> bool {
matches!(self, AccessRelatedness::AncestorAccess | AccessRelatedness::DistantAccess)
}
/// Given the AccessRelatedness for the parent node, compute the AccessRelatedness
/// for the child node. This function assumes that we propagate away from the initial
/// access.
pub fn for_child(self) -> Self {
use AccessRelatedness::*;
match self {
AncestorAccess | This => AncestorAccess,
StrictChildAccess | DistantAccess => DistantAccess,
}
}
}