miri/concurrency/
data_race.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
//! Implementation of a data-race detector using Lamport Timestamps / Vector-clocks
//! based on the Dynamic Race Detection for C++:
//! <https://www.doc.ic.ac.uk/~afd/homepages/papers/pdfs/2017/POPL.pdf>
//! which does not report false-positives when fences are used, and gives better
//! accuracy in presence of read-modify-write operations.
//!
//! The implementation contains modifications to correctly model the changes to the memory model in C++20
//! regarding the weakening of release sequences: <http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0982r1.html>.
//! Relaxed stores now unconditionally block all currently active release sequences and so per-thread tracking of release
//! sequences is not needed.
//!
//! The implementation also models races with memory allocation and deallocation via treating allocation and
//! deallocation as a type of write internally for detecting data-races.
//!
//! Weak memory orders are explored but not all weak behaviours are exhibited, so it can still miss data-races
//! but should not report false-positives
//!
//! Data-race definition from(<https://en.cppreference.com/w/cpp/language/memory_model#Threads_and_data_races>):
//! a data race occurs between two memory accesses if they are on different threads, at least one operation
//! is non-atomic, at least one operation is a write and neither access happens-before the other. Read the link
//! for full definition.
//!
//! This re-uses vector indexes for threads that are known to be unable to report data-races, this is valid
//! because it only re-uses vector indexes once all currently-active (not-terminated) threads have an internal
//! vector clock that happens-after the join operation of the candidate thread. Threads that have not been joined
//! on are not considered. Since the thread's vector clock will only increase and a data-race implies that
//! there is some index x where `clock[x] > thread_clock`, when this is true `clock[candidate-idx] > thread_clock`
//! can never hold and hence a data-race can never be reported in that vector index again.
//! This means that the thread-index can be safely re-used, starting on the next timestamp for the newly created
//! thread.
//!
//! The timestamps used in the data-race detector assign each sequence of non-atomic operations
//! followed by a single atomic or concurrent operation a single timestamp.
//! Write, Read, Write, ThreadJoin will be represented by a single timestamp value on a thread.
//! This is because extra increment operations between the operations in the sequence are not
//! required for accurate reporting of data-race values.
//!
//! As per the paper a threads timestamp is only incremented after a release operation is performed
//! so some atomic operations that only perform acquires do not increment the timestamp. Due to shared
//! code some atomic operations may increment the timestamp when not necessary but this has no effect
//! on the data-race detection code.

use std::cell::{Cell, Ref, RefCell, RefMut};
use std::fmt::Debug;
use std::mem;

use rustc_ast::Mutability;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_index::{Idx, IndexVec};
use rustc_middle::mir;
use rustc_middle::ty::Ty;
use rustc_span::Span;
use rustc_target::abi::{Align, HasDataLayout, Size};

use super::vector_clock::{VClock, VTimestamp, VectorIdx};
use super::weak_memory::EvalContextExt as _;
use crate::diagnostics::RacingOp;
use crate::*;

pub type AllocState = VClockAlloc;

/// Valid atomic read-write orderings, alias of atomic::Ordering (not non-exhaustive).
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum AtomicRwOrd {
    Relaxed,
    Acquire,
    Release,
    AcqRel,
    SeqCst,
}

/// Valid atomic read orderings, subset of atomic::Ordering.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum AtomicReadOrd {
    Relaxed,
    Acquire,
    SeqCst,
}

/// Valid atomic write orderings, subset of atomic::Ordering.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum AtomicWriteOrd {
    Relaxed,
    Release,
    SeqCst,
}

/// Valid atomic fence orderings, subset of atomic::Ordering.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum AtomicFenceOrd {
    Acquire,
    Release,
    AcqRel,
    SeqCst,
}

/// The current set of vector clocks describing the state
/// of a thread, contains the happens-before clock and
/// additional metadata to model atomic fence operations.
#[derive(Clone, Default, Debug)]
pub(super) struct ThreadClockSet {
    /// The increasing clock representing timestamps
    /// that happen-before this thread.
    pub(super) clock: VClock,

    /// The set of timestamps that will happen-before this
    /// thread once it performs an acquire fence.
    fence_acquire: VClock,

    /// The last timestamp of happens-before relations that
    /// have been released by this thread by a fence.
    fence_release: VClock,

    /// Timestamps of the last SC fence performed by each
    /// thread, updated when this thread performs an SC fence
    pub(super) fence_seqcst: VClock,

    /// Timestamps of the last SC write performed by each
    /// thread, updated when this thread performs an SC fence
    pub(super) write_seqcst: VClock,

    /// Timestamps of the last SC fence performed by each
    /// thread, updated when this thread performs an SC read
    pub(super) read_seqcst: VClock,
}

impl ThreadClockSet {
    /// Apply the effects of a release fence to this
    /// set of thread vector clocks.
    #[inline]
    fn apply_release_fence(&mut self) {
        self.fence_release.clone_from(&self.clock);
    }

    /// Apply the effects of an acquire fence to this
    /// set of thread vector clocks.
    #[inline]
    fn apply_acquire_fence(&mut self) {
        self.clock.join(&self.fence_acquire);
    }

    /// Increment the happens-before clock at a
    /// known index.
    #[inline]
    fn increment_clock(&mut self, index: VectorIdx, current_span: Span) {
        self.clock.increment_index(index, current_span);
    }

    /// Join the happens-before clock with that of
    /// another thread, used to model thread join
    /// operations.
    fn join_with(&mut self, other: &ThreadClockSet) {
        self.clock.join(&other.clock);
    }
}

/// Error returned by finding a data race
/// should be elaborated upon.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct DataRace;

/// Externally stored memory cell clocks
/// explicitly to reduce memory usage for the
/// common case where no atomic operations
/// exists on the memory cell.
#[derive(Clone, PartialEq, Eq, Debug)]
struct AtomicMemoryCellClocks {
    /// The clock-vector of the timestamp of the last atomic
    /// read operation performed by each thread.
    /// This detects potential data-races between atomic read
    /// and non-atomic write operations.
    read_vector: VClock,

    /// The clock-vector of the timestamp of the last atomic
    /// write operation performed by each thread.
    /// This detects potential data-races between atomic write
    /// and non-atomic read or write operations.
    write_vector: VClock,

    /// Synchronization vector for acquire-release semantics
    /// contains the vector of timestamps that will
    /// happen-before a thread if an acquire-load is
    /// performed on the data.
    sync_vector: VClock,

    /// The size of accesses to this atomic location.
    /// We use this to detect non-synchronized mixed-size accesses. Since all accesses must be
    /// aligned to their size, this is sufficient to detect imperfectly overlapping accesses.
    /// `None` indicates that we saw multiple different sizes, which is okay as long as all accesses are reads.
    size: Option<Size>,
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum AtomicAccessType {
    Load(AtomicReadOrd),
    Store,
    Rmw,
}

/// Type of a non-atomic read operation.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum NaReadType {
    /// Standard unsynchronized write.
    Read,

    // An implicit read generated by a retag.
    Retag,
}

impl NaReadType {
    fn description(self) -> &'static str {
        match self {
            NaReadType::Read => "non-atomic read",
            NaReadType::Retag => "retag read",
        }
    }
}

/// Type of a non-atomic write operation: allocating memory, non-atomic writes, and
/// deallocating memory are all treated as writes for the purpose of the data-race detector.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum NaWriteType {
    /// Allocate memory.
    Allocate,

    /// Standard unsynchronized write.
    Write,

    // An implicit write generated by a retag.
    Retag,

    /// Deallocate memory.
    /// Note that when memory is deallocated first, later non-atomic accesses
    /// will be reported as use-after-free, not as data races.
    /// (Same for `Allocate` above.)
    Deallocate,
}

impl NaWriteType {
    fn description(self) -> &'static str {
        match self {
            NaWriteType::Allocate => "creating a new allocation",
            NaWriteType::Write => "non-atomic write",
            NaWriteType::Retag => "retag write",
            NaWriteType::Deallocate => "deallocation",
        }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum AccessType {
    NaRead(NaReadType),
    NaWrite(NaWriteType),
    AtomicLoad,
    AtomicStore,
    AtomicRmw,
}

impl AccessType {
    fn description(self, ty: Option<Ty<'_>>, size: Option<Size>) -> String {
        let mut msg = String::new();

        if let Some(size) = size {
            if size == Size::ZERO {
                // In this case there were multiple read accesss with different sizes and then a write.
                // We will be reporting *one* of the other reads, but we don't have enough information
                // to determine which one had which size.
                assert!(self == AccessType::AtomicLoad);
                assert!(ty.is_none());
                return format!("multiple differently-sized atomic loads, including one load");
            }
            msg.push_str(&format!("{}-byte {}", size.bytes(), msg))
        }

        msg.push_str(match self {
            AccessType::NaRead(w) => w.description(),
            AccessType::NaWrite(w) => w.description(),
            AccessType::AtomicLoad => "atomic load",
            AccessType::AtomicStore => "atomic store",
            AccessType::AtomicRmw => "atomic read-modify-write",
        });

        if let Some(ty) = ty {
            msg.push_str(&format!(" of type `{}`", ty));
        }

        msg
    }

    fn is_atomic(self) -> bool {
        match self {
            AccessType::AtomicLoad | AccessType::AtomicStore | AccessType::AtomicRmw => true,
            AccessType::NaRead(_) | AccessType::NaWrite(_) => false,
        }
    }

    fn is_read(self) -> bool {
        match self {
            AccessType::AtomicLoad | AccessType::NaRead(_) => true,
            AccessType::NaWrite(_) | AccessType::AtomicStore | AccessType::AtomicRmw => false,
        }
    }

    fn is_retag(self) -> bool {
        matches!(
            self,
            AccessType::NaRead(NaReadType::Retag) | AccessType::NaWrite(NaWriteType::Retag)
        )
    }
}

/// Per-byte vector clock metadata for data-race detection.
#[derive(Clone, PartialEq, Eq, Debug)]
struct MemoryCellClocks {
    /// The vector-clock timestamp and the thread that did the last non-atomic write. We don't need
    /// a full `VClock` here, it's always a single thread and nothing synchronizes, so the effective
    /// clock is all-0 except for the thread that did the write.
    write: (VectorIdx, VTimestamp),

    /// The type of operation that the write index represents,
    /// either newly allocated memory, a non-atomic write or
    /// a deallocation of memory.
    write_type: NaWriteType,

    /// The vector-clock of all non-atomic reads that happened since the last non-atomic write
    /// (i.e., we join together the "singleton" clocks corresponding to each read). It is reset to
    /// zero on each write operation.
    read: VClock,

    /// Atomic access, acquire, release sequence tracking clocks.
    /// For non-atomic memory this value is set to None.
    /// For atomic memory, each byte carries this information.
    atomic_ops: Option<Box<AtomicMemoryCellClocks>>,
}

impl AtomicMemoryCellClocks {
    fn new(size: Size) -> Self {
        AtomicMemoryCellClocks {
            read_vector: Default::default(),
            write_vector: Default::default(),
            sync_vector: Default::default(),
            size: Some(size),
        }
    }
}

impl MemoryCellClocks {
    /// Create a new set of clocks representing memory allocated
    ///  at a given vector timestamp and index.
    fn new(alloc: VTimestamp, alloc_index: VectorIdx) -> Self {
        MemoryCellClocks {
            read: VClock::default(),
            write: (alloc_index, alloc),
            write_type: NaWriteType::Allocate,
            atomic_ops: None,
        }
    }

    #[inline]
    fn write_was_before(&self, other: &VClock) -> bool {
        // This is the same as `self.write() <= other` but
        // without actually manifesting a clock for `self.write`.
        self.write.1 <= other[self.write.0]
    }

    #[inline]
    fn write(&self) -> VClock {
        VClock::new_with_index(self.write.0, self.write.1)
    }

    /// Load the internal atomic memory cells if they exist.
    #[inline]
    fn atomic(&self) -> Option<&AtomicMemoryCellClocks> {
        self.atomic_ops.as_deref()
    }

    /// Load the internal atomic memory cells if they exist.
    #[inline]
    fn atomic_mut_unwrap(&mut self) -> &mut AtomicMemoryCellClocks {
        self.atomic_ops.as_deref_mut().unwrap()
    }

    /// Load or create the internal atomic memory metadata if it does not exist. Also ensures we do
    /// not do mixed-size atomic accesses, and updates the recorded atomic access size.
    fn atomic_access(
        &mut self,
        thread_clocks: &ThreadClockSet,
        size: Size,
        write: bool,
    ) -> Result<&mut AtomicMemoryCellClocks, DataRace> {
        match self.atomic_ops {
            Some(ref mut atomic) => {
                // We are good if the size is the same or all atomic accesses are before our current time.
                if atomic.size == Some(size) {
                    Ok(atomic)
                } else if atomic.read_vector <= thread_clocks.clock
                    && atomic.write_vector <= thread_clocks.clock
                {
                    // We are fully ordered after all previous accesses, so we can change the size.
                    atomic.size = Some(size);
                    Ok(atomic)
                } else if !write && atomic.write_vector <= thread_clocks.clock {
                    // This is a read, and it is ordered after the last write. It's okay for the
                    // sizes to mismatch, as long as no writes with a different size occur later.
                    atomic.size = None;
                    Ok(atomic)
                } else {
                    Err(DataRace)
                }
            }
            None => {
                self.atomic_ops = Some(Box::new(AtomicMemoryCellClocks::new(size)));
                Ok(self.atomic_ops.as_mut().unwrap())
            }
        }
    }

    /// Update memory cell data-race tracking for atomic
    /// load acquire semantics, is a no-op if this memory was
    /// not used previously as atomic memory.
    fn load_acquire(
        &mut self,
        thread_clocks: &mut ThreadClockSet,
        index: VectorIdx,
        access_size: Size,
    ) -> Result<(), DataRace> {
        self.atomic_read_detect(thread_clocks, index, access_size)?;
        if let Some(atomic) = self.atomic() {
            thread_clocks.clock.join(&atomic.sync_vector);
        }
        Ok(())
    }

    /// Update memory cell data-race tracking for atomic
    /// load relaxed semantics, is a no-op if this memory was
    /// not used previously as atomic memory.
    fn load_relaxed(
        &mut self,
        thread_clocks: &mut ThreadClockSet,
        index: VectorIdx,
        access_size: Size,
    ) -> Result<(), DataRace> {
        self.atomic_read_detect(thread_clocks, index, access_size)?;
        if let Some(atomic) = self.atomic() {
            thread_clocks.fence_acquire.join(&atomic.sync_vector);
        }
        Ok(())
    }

    /// Update the memory cell data-race tracking for atomic
    /// store release semantics.
    fn store_release(
        &mut self,
        thread_clocks: &ThreadClockSet,
        index: VectorIdx,
        access_size: Size,
    ) -> Result<(), DataRace> {
        self.atomic_write_detect(thread_clocks, index, access_size)?;
        let atomic = self.atomic_mut_unwrap(); // initialized by `atomic_write_detect`
        atomic.sync_vector.clone_from(&thread_clocks.clock);
        Ok(())
    }

    /// Update the memory cell data-race tracking for atomic
    /// store relaxed semantics.
    fn store_relaxed(
        &mut self,
        thread_clocks: &ThreadClockSet,
        index: VectorIdx,
        access_size: Size,
    ) -> Result<(), DataRace> {
        self.atomic_write_detect(thread_clocks, index, access_size)?;

        // The handling of release sequences was changed in C++20 and so
        // the code here is different to the paper since now all relaxed
        // stores block release sequences. The exception for same-thread
        // relaxed stores has been removed.
        let atomic = self.atomic_mut_unwrap();
        atomic.sync_vector.clone_from(&thread_clocks.fence_release);
        Ok(())
    }

    /// Update the memory cell data-race tracking for atomic
    /// store release semantics for RMW operations.
    fn rmw_release(
        &mut self,
        thread_clocks: &ThreadClockSet,
        index: VectorIdx,
        access_size: Size,
    ) -> Result<(), DataRace> {
        self.atomic_write_detect(thread_clocks, index, access_size)?;
        let atomic = self.atomic_mut_unwrap();
        atomic.sync_vector.join(&thread_clocks.clock);
        Ok(())
    }

    /// Update the memory cell data-race tracking for atomic
    /// store relaxed semantics for RMW operations.
    fn rmw_relaxed(
        &mut self,
        thread_clocks: &ThreadClockSet,
        index: VectorIdx,
        access_size: Size,
    ) -> Result<(), DataRace> {
        self.atomic_write_detect(thread_clocks, index, access_size)?;
        let atomic = self.atomic_mut_unwrap();
        atomic.sync_vector.join(&thread_clocks.fence_release);
        Ok(())
    }

    /// Detect data-races with an atomic read, caused by a non-atomic write that does
    /// not happen-before the atomic-read.
    fn atomic_read_detect(
        &mut self,
        thread_clocks: &ThreadClockSet,
        index: VectorIdx,
        access_size: Size,
    ) -> Result<(), DataRace> {
        trace!("Atomic read with vectors: {:#?} :: {:#?}", self, thread_clocks);
        let atomic = self.atomic_access(thread_clocks, access_size, /*write*/ false)?;
        atomic.read_vector.set_at_index(&thread_clocks.clock, index);
        // Make sure the last non-atomic write was before this access.
        if self.write_was_before(&thread_clocks.clock) { Ok(()) } else { Err(DataRace) }
    }

    /// Detect data-races with an atomic write, either with a non-atomic read or with
    /// a non-atomic write.
    fn atomic_write_detect(
        &mut self,
        thread_clocks: &ThreadClockSet,
        index: VectorIdx,
        access_size: Size,
    ) -> Result<(), DataRace> {
        trace!("Atomic write with vectors: {:#?} :: {:#?}", self, thread_clocks);
        let atomic = self.atomic_access(thread_clocks, access_size, /*write*/ true)?;
        atomic.write_vector.set_at_index(&thread_clocks.clock, index);
        // Make sure the last non-atomic write and all non-atomic reads were before this access.
        if self.write_was_before(&thread_clocks.clock) && self.read <= thread_clocks.clock {
            Ok(())
        } else {
            Err(DataRace)
        }
    }

    /// Detect races for non-atomic read operations at the current memory cell
    /// returns true if a data-race is detected.
    fn read_race_detect(
        &mut self,
        thread_clocks: &mut ThreadClockSet,
        index: VectorIdx,
        read_type: NaReadType,
        current_span: Span,
    ) -> Result<(), DataRace> {
        trace!("Unsynchronized read with vectors: {:#?} :: {:#?}", self, thread_clocks);
        if !current_span.is_dummy() {
            thread_clocks.clock.index_mut(index).span = current_span;
        }
        thread_clocks.clock.index_mut(index).set_read_type(read_type);
        if self.write_was_before(&thread_clocks.clock) {
            // We must be ordered-after all atomic writes.
            let race_free = if let Some(atomic) = self.atomic() {
                atomic.write_vector <= thread_clocks.clock
            } else {
                true
            };
            self.read.set_at_index(&thread_clocks.clock, index);
            if race_free { Ok(()) } else { Err(DataRace) }
        } else {
            Err(DataRace)
        }
    }

    /// Detect races for non-atomic write operations at the current memory cell
    /// returns true if a data-race is detected.
    fn write_race_detect(
        &mut self,
        thread_clocks: &mut ThreadClockSet,
        index: VectorIdx,
        write_type: NaWriteType,
        current_span: Span,
    ) -> Result<(), DataRace> {
        trace!("Unsynchronized write with vectors: {:#?} :: {:#?}", self, thread_clocks);
        if !current_span.is_dummy() {
            thread_clocks.clock.index_mut(index).span = current_span;
        }
        if self.write_was_before(&thread_clocks.clock) && self.read <= thread_clocks.clock {
            let race_free = if let Some(atomic) = self.atomic() {
                atomic.write_vector <= thread_clocks.clock
                    && atomic.read_vector <= thread_clocks.clock
            } else {
                true
            };
            self.write = (index, thread_clocks.clock[index]);
            self.write_type = write_type;
            if race_free {
                self.read.set_zero_vector();
                Ok(())
            } else {
                Err(DataRace)
            }
        } else {
            Err(DataRace)
        }
    }
}

/// Evaluation context extensions.
impl<'tcx> EvalContextExt<'tcx> for MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: MiriInterpCxExt<'tcx> {
    /// Perform an atomic read operation at the memory location.
    fn read_scalar_atomic(
        &self,
        place: &MPlaceTy<'tcx>,
        atomic: AtomicReadOrd,
    ) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_ref();
        this.atomic_access_check(place, AtomicAccessType::Load(atomic))?;
        // This will read from the last store in the modification order of this location. In case
        // weak memory emulation is enabled, this may not be the store we will pick to actually read from and return.
        // This is fine with StackedBorrow and race checks because they don't concern metadata on
        // the *value* (including the associated provenance if this is an AtomicPtr) at this location.
        // Only metadata on the location itself is used.
        let scalar = this.allow_data_races_ref(move |this| this.read_scalar(place))?;
        let buffered_scalar = this.buffered_atomic_read(place, atomic, scalar, || {
            this.validate_atomic_load(place, atomic)
        })?;
        interp_ok(buffered_scalar.ok_or_else(|| err_ub!(InvalidUninitBytes(None)))?)
    }

    /// Perform an atomic write operation at the memory location.
    fn write_scalar_atomic(
        &mut self,
        val: Scalar,
        dest: &MPlaceTy<'tcx>,
        atomic: AtomicWriteOrd,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        this.atomic_access_check(dest, AtomicAccessType::Store)?;

        // Read the previous value so we can put it in the store buffer later.
        // The program didn't actually do a read, so suppress the memory access hooks.
        // This is also a very special exception where we just ignore an error -- if this read
        // was UB e.g. because the memory is uninitialized, we don't want to know!
        let old_val = this.run_for_validation(|this| this.read_scalar(dest)).discard_err();
        this.allow_data_races_mut(move |this| this.write_scalar(val, dest))?;
        this.validate_atomic_store(dest, atomic)?;
        this.buffered_atomic_write(val, dest, atomic, old_val)
    }

    /// Perform an atomic RMW operation on a memory location.
    fn atomic_rmw_op_immediate(
        &mut self,
        place: &MPlaceTy<'tcx>,
        rhs: &ImmTy<'tcx>,
        op: mir::BinOp,
        not: bool,
        atomic: AtomicRwOrd,
    ) -> InterpResult<'tcx, ImmTy<'tcx>> {
        let this = self.eval_context_mut();
        this.atomic_access_check(place, AtomicAccessType::Rmw)?;

        let old = this.allow_data_races_mut(|this| this.read_immediate(place))?;

        let val = this.binary_op(op, &old, rhs)?;
        let val = if not { this.unary_op(mir::UnOp::Not, &val)? } else { val };
        this.allow_data_races_mut(|this| this.write_immediate(*val, place))?;

        this.validate_atomic_rmw(place, atomic)?;

        this.buffered_atomic_rmw(val.to_scalar(), place, atomic, old.to_scalar())?;
        interp_ok(old)
    }

    /// Perform an atomic exchange with a memory place and a new
    /// scalar value, the old value is returned.
    fn atomic_exchange_scalar(
        &mut self,
        place: &MPlaceTy<'tcx>,
        new: Scalar,
        atomic: AtomicRwOrd,
    ) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();
        this.atomic_access_check(place, AtomicAccessType::Rmw)?;

        let old = this.allow_data_races_mut(|this| this.read_scalar(place))?;
        this.allow_data_races_mut(|this| this.write_scalar(new, place))?;

        this.validate_atomic_rmw(place, atomic)?;

        this.buffered_atomic_rmw(new, place, atomic, old)?;
        interp_ok(old)
    }

    /// Perform an conditional atomic exchange with a memory place and a new
    /// scalar value, the old value is returned.
    fn atomic_min_max_scalar(
        &mut self,
        place: &MPlaceTy<'tcx>,
        rhs: ImmTy<'tcx>,
        min: bool,
        atomic: AtomicRwOrd,
    ) -> InterpResult<'tcx, ImmTy<'tcx>> {
        let this = self.eval_context_mut();
        this.atomic_access_check(place, AtomicAccessType::Rmw)?;

        let old = this.allow_data_races_mut(|this| this.read_immediate(place))?;
        let lt = this.binary_op(mir::BinOp::Lt, &old, &rhs)?.to_scalar().to_bool()?;

        #[rustfmt::skip] // rustfmt makes this unreadable
        let new_val = if min {
            if lt { &old } else { &rhs }
        } else {
            if lt { &rhs } else { &old }
        };

        this.allow_data_races_mut(|this| this.write_immediate(**new_val, place))?;

        this.validate_atomic_rmw(place, atomic)?;

        this.buffered_atomic_rmw(new_val.to_scalar(), place, atomic, old.to_scalar())?;

        // Return the old value.
        interp_ok(old)
    }

    /// Perform an atomic compare and exchange at a given memory location.
    /// On success an atomic RMW operation is performed and on failure
    /// only an atomic read occurs. If `can_fail_spuriously` is true,
    /// then we treat it as a "compare_exchange_weak" operation, and
    /// some portion of the time fail even when the values are actually
    /// identical.
    fn atomic_compare_exchange_scalar(
        &mut self,
        place: &MPlaceTy<'tcx>,
        expect_old: &ImmTy<'tcx>,
        new: Scalar,
        success: AtomicRwOrd,
        fail: AtomicReadOrd,
        can_fail_spuriously: bool,
    ) -> InterpResult<'tcx, Immediate<Provenance>> {
        use rand::Rng as _;
        let this = self.eval_context_mut();
        this.atomic_access_check(place, AtomicAccessType::Rmw)?;

        // Failure ordering cannot be stronger than success ordering, therefore first attempt
        // to read with the failure ordering and if successful then try again with the success
        // read ordering and write in the success case.
        // Read as immediate for the sake of `binary_op()`
        let old = this.allow_data_races_mut(|this| this.read_immediate(place))?;
        // `binary_op` will bail if either of them is not a scalar.
        let eq = this.binary_op(mir::BinOp::Eq, &old, expect_old)?;
        // If the operation would succeed, but is "weak", fail some portion
        // of the time, based on `success_rate`.
        let success_rate = 1.0 - this.machine.cmpxchg_weak_failure_rate;
        let cmpxchg_success = eq.to_scalar().to_bool()?
            && if can_fail_spuriously {
                this.machine.rng.get_mut().gen_bool(success_rate)
            } else {
                true
            };
        let res = Immediate::ScalarPair(old.to_scalar(), Scalar::from_bool(cmpxchg_success));

        // Update ptr depending on comparison.
        // if successful, perform a full rw-atomic validation
        // otherwise treat this as an atomic load with the fail ordering.
        if cmpxchg_success {
            this.allow_data_races_mut(|this| this.write_scalar(new, place))?;
            this.validate_atomic_rmw(place, success)?;
            this.buffered_atomic_rmw(new, place, success, old.to_scalar())?;
        } else {
            this.validate_atomic_load(place, fail)?;
            // A failed compare exchange is equivalent to a load, reading from the latest store
            // in the modification order.
            // Since `old` is only a value and not the store element, we need to separately
            // find it in our store buffer and perform load_impl on it.
            this.perform_read_on_buffered_latest(place, fail)?;
        }

        // Return the old value.
        interp_ok(res)
    }

    /// Update the data-race detector for an atomic fence on the current thread.
    fn atomic_fence(&mut self, atomic: AtomicFenceOrd) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        let current_span = this.machine.current_span();
        if let Some(data_race) = &mut this.machine.data_race {
            data_race.maybe_perform_sync_operation(
                &this.machine.threads,
                current_span,
                |index, mut clocks| {
                    trace!("Atomic fence on {:?} with ordering {:?}", index, atomic);

                    // Apply data-race detection for the current fences
                    // this treats AcqRel and SeqCst as the same as an acquire
                    // and release fence applied in the same timestamp.
                    if atomic != AtomicFenceOrd::Release {
                        // Either Acquire | AcqRel | SeqCst
                        clocks.apply_acquire_fence();
                    }
                    if atomic != AtomicFenceOrd::Acquire {
                        // Either Release | AcqRel | SeqCst
                        clocks.apply_release_fence();
                    }
                    if atomic == AtomicFenceOrd::SeqCst {
                        data_race.last_sc_fence.borrow_mut().set_at_index(&clocks.clock, index);
                        clocks.fence_seqcst.join(&data_race.last_sc_fence.borrow());
                        clocks.write_seqcst.join(&data_race.last_sc_write.borrow());
                    }

                    // Increment timestamp in case of release semantics.
                    interp_ok(atomic != AtomicFenceOrd::Acquire)
                },
            )
        } else {
            interp_ok(())
        }
    }

    /// After all threads are done running, this allows data races to occur for subsequent
    /// 'administrative' machine accesses (that logically happen outside of the Abstract Machine).
    fn allow_data_races_all_threads_done(&mut self) {
        let this = self.eval_context_ref();
        assert!(this.have_all_terminated());
        if let Some(data_race) = &this.machine.data_race {
            let old = data_race.ongoing_action_data_race_free.replace(true);
            assert!(!old, "cannot nest allow_data_races");
        }
    }

    /// Calls the callback with the "release" clock of the current thread.
    /// Other threads can acquire this clock in the future to establish synchronization
    /// with this program point.
    ///
    /// The closure will only be invoked if data race handling is on.
    fn release_clock<R>(&self, callback: impl FnOnce(&VClock) -> R) -> Option<R> {
        let this = self.eval_context_ref();
        Some(this.machine.data_race.as_ref()?.release_clock(&this.machine.threads, callback))
    }

    /// Acquire the given clock into the current thread, establishing synchronization with
    /// the moment when that clock snapshot was taken via `release_clock`.
    fn acquire_clock(&self, clock: &VClock) {
        let this = self.eval_context_ref();
        if let Some(data_race) = &this.machine.data_race {
            data_race.acquire_clock(clock, &this.machine.threads);
        }
    }
}

/// Vector clock metadata for a logical memory allocation.
#[derive(Debug, Clone)]
pub struct VClockAlloc {
    /// Assigning each byte a MemoryCellClocks.
    alloc_ranges: RefCell<RangeMap<MemoryCellClocks>>,
}

impl VisitProvenance for VClockAlloc {
    fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
        // No tags or allocIds here.
    }
}

impl VClockAlloc {
    /// Create a new data-race detector for newly allocated memory.
    pub fn new_allocation(
        global: &GlobalState,
        thread_mgr: &ThreadManager<'_>,
        len: Size,
        kind: MemoryKind,
        current_span: Span,
    ) -> VClockAlloc {
        // Determine the thread that did the allocation, and when it did it.
        let (alloc_timestamp, alloc_index) = match kind {
            // User allocated and stack memory should track allocation.
            MemoryKind::Machine(
                MiriMemoryKind::Rust
                | MiriMemoryKind::Miri
                | MiriMemoryKind::C
                | MiriMemoryKind::WinHeap
                | MiriMemoryKind::WinLocal
                | MiriMemoryKind::Mmap,
            )
            | MemoryKind::Stack => {
                let (alloc_index, clocks) = global.active_thread_state(thread_mgr);
                let mut alloc_timestamp = clocks.clock[alloc_index];
                alloc_timestamp.span = current_span;
                (alloc_timestamp, alloc_index)
            }
            // Other global memory should trace races but be allocated at the 0 timestamp
            // (conceptually they are allocated on the main thread before everything).
            MemoryKind::Machine(
                MiriMemoryKind::Global
                | MiriMemoryKind::Machine
                | MiriMemoryKind::Runtime
                | MiriMemoryKind::ExternStatic
                | MiriMemoryKind::Tls,
            )
            | MemoryKind::CallerLocation =>
                (VTimestamp::ZERO, global.thread_index(ThreadId::MAIN_THREAD)),
        };
        VClockAlloc {
            alloc_ranges: RefCell::new(RangeMap::new(
                len,
                MemoryCellClocks::new(alloc_timestamp, alloc_index),
            )),
        }
    }

    // Find an index, if one exists where the value
    // in `l` is greater than the value in `r`.
    fn find_gt_index(l: &VClock, r: &VClock) -> Option<VectorIdx> {
        trace!("Find index where not {:?} <= {:?}", l, r);
        let l_slice = l.as_slice();
        let r_slice = r.as_slice();
        l_slice
            .iter()
            .zip(r_slice.iter())
            .enumerate()
            .find_map(|(idx, (&l, &r))| if l > r { Some(idx) } else { None })
            .or_else(|| {
                if l_slice.len() > r_slice.len() {
                    // By invariant, if l_slice is longer
                    // then one element must be larger.
                    // This just validates that this is true
                    // and reports earlier elements first.
                    let l_remainder_slice = &l_slice[r_slice.len()..];
                    let idx = l_remainder_slice
                        .iter()
                        .enumerate()
                        .find_map(|(idx, &r)| if r == VTimestamp::ZERO { None } else { Some(idx) })
                        .expect("Invalid VClock Invariant");
                    Some(idx + r_slice.len())
                } else {
                    None
                }
            })
            .map(VectorIdx::new)
    }

    /// Report a data-race found in the program.
    /// This finds the two racing threads and the type
    /// of data-race that occurred. This will also
    /// return info about the memory location the data-race
    /// occurred in. The `ty` parameter is used for diagnostics, letting
    /// the user know which type was involved in the access.
    #[cold]
    #[inline(never)]
    fn report_data_race<'tcx>(
        global: &GlobalState,
        thread_mgr: &ThreadManager<'_>,
        mem_clocks: &MemoryCellClocks,
        access: AccessType,
        access_size: Size,
        ptr_dbg: interpret::Pointer<AllocId>,
        ty: Option<Ty<'_>>,
    ) -> InterpResult<'tcx> {
        let (active_index, active_clocks) = global.active_thread_state(thread_mgr);
        let mut other_size = None; // if `Some`, this was a size-mismatch race
        let write_clock;
        let (other_access, other_thread, other_clock) =
            // First check the atomic-nonatomic cases.
            if !access.is_atomic() &&
                let Some(atomic) = mem_clocks.atomic() &&
                let Some(idx) = Self::find_gt_index(&atomic.write_vector, &active_clocks.clock)
            {
                (AccessType::AtomicStore, idx, &atomic.write_vector)
            } else if !access.is_atomic() &&
                let Some(atomic) = mem_clocks.atomic() &&
                let Some(idx) = Self::find_gt_index(&atomic.read_vector, &active_clocks.clock)
            {
                (AccessType::AtomicLoad, idx, &atomic.read_vector)
            // Then check races with non-atomic writes/reads.
            } else if mem_clocks.write.1 > active_clocks.clock[mem_clocks.write.0] {
                write_clock = mem_clocks.write();
                (AccessType::NaWrite(mem_clocks.write_type), mem_clocks.write.0, &write_clock)
            } else if let Some(idx) = Self::find_gt_index(&mem_clocks.read, &active_clocks.clock) {
                (AccessType::NaRead(mem_clocks.read[idx].read_type()), idx, &mem_clocks.read)
            // Finally, mixed-size races.
            } else if access.is_atomic() && let Some(atomic) = mem_clocks.atomic() && atomic.size != Some(access_size) {
                // This is only a race if we are not synchronized with all atomic accesses, so find
                // the one we are not synchronized with.
                other_size = Some(atomic.size.unwrap_or(Size::ZERO));
                if let Some(idx) = Self::find_gt_index(&atomic.write_vector, &active_clocks.clock)
                    {
                        (AccessType::AtomicStore, idx, &atomic.write_vector)
                    } else if let Some(idx) =
                        Self::find_gt_index(&atomic.read_vector, &active_clocks.clock)
                    {
                        (AccessType::AtomicLoad, idx, &atomic.read_vector)
                    } else {
                        unreachable!(
                            "Failed to report data-race for mixed-size access: no race found"
                        )
                    }
            } else {
                unreachable!("Failed to report data-race")
            };

        // Load elaborated thread information about the racing thread actions.
        let active_thread_info = global.print_thread_metadata(thread_mgr, active_index);
        let other_thread_info = global.print_thread_metadata(thread_mgr, other_thread);
        let involves_non_atomic = !access.is_atomic() || !other_access.is_atomic();

        // Throw the data-race detection.
        let extra = if other_size.is_some() {
            assert!(!involves_non_atomic);
            Some("overlapping unsynchronized atomic accesses must use the same access size")
        } else if access.is_read() && other_access.is_read() {
            panic!("there should be no same-size read-read races")
        } else {
            None
        };
        Err(err_machine_stop!(TerminationInfo::DataRace {
            involves_non_atomic,
            extra,
            retag_explain: access.is_retag() || other_access.is_retag(),
            ptr: ptr_dbg,
            op1: RacingOp {
                action: other_access.description(None, other_size),
                thread_info: other_thread_info,
                span: other_clock.as_slice()[other_thread.index()].span_data(),
            },
            op2: RacingOp {
                action: access.description(ty, other_size.map(|_| access_size)),
                thread_info: active_thread_info,
                span: active_clocks.clock.as_slice()[active_index.index()].span_data(),
            },
        }))?
    }

    /// Detect data-races for an unsynchronized read operation. It will not perform
    /// data-race detection if `race_detecting()` is false, either due to no threads
    /// being created or if it is temporarily disabled during a racy read or write
    /// operation for which data-race detection is handled separately, for example
    /// atomic read operations. The `ty` parameter is used for diagnostics, letting
    /// the user know which type was read.
    pub fn read<'tcx>(
        &self,
        alloc_id: AllocId,
        access_range: AllocRange,
        read_type: NaReadType,
        ty: Option<Ty<'_>>,
        machine: &MiriMachine<'_>,
    ) -> InterpResult<'tcx> {
        let current_span = machine.current_span();
        let global = machine.data_race.as_ref().unwrap();
        if !global.race_detecting() {
            return interp_ok(());
        }
        let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
        let mut alloc_ranges = self.alloc_ranges.borrow_mut();
        for (mem_clocks_range, mem_clocks) in
            alloc_ranges.iter_mut(access_range.start, access_range.size)
        {
            if let Err(DataRace) =
                mem_clocks.read_race_detect(&mut thread_clocks, index, read_type, current_span)
            {
                drop(thread_clocks);
                // Report data-race.
                return Self::report_data_race(
                    global,
                    &machine.threads,
                    mem_clocks,
                    AccessType::NaRead(read_type),
                    access_range.size,
                    interpret::Pointer::new(alloc_id, Size::from_bytes(mem_clocks_range.start)),
                    ty,
                );
            }
        }
        interp_ok(())
    }

    /// Detect data-races for an unsynchronized write operation. It will not perform
    /// data-race detection if `race_detecting()` is false, either due to no threads
    /// being created or if it is temporarily disabled during a racy read or write
    /// operation. The `ty` parameter is used for diagnostics, letting
    /// the user know which type was written.
    pub fn write<'tcx>(
        &mut self,
        alloc_id: AllocId,
        access_range: AllocRange,
        write_type: NaWriteType,
        ty: Option<Ty<'_>>,
        machine: &mut MiriMachine<'_>,
    ) -> InterpResult<'tcx> {
        let current_span = machine.current_span();
        let global = machine.data_race.as_mut().unwrap();
        if !global.race_detecting() {
            return interp_ok(());
        }
        let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
        for (mem_clocks_range, mem_clocks) in
            self.alloc_ranges.get_mut().iter_mut(access_range.start, access_range.size)
        {
            if let Err(DataRace) =
                mem_clocks.write_race_detect(&mut thread_clocks, index, write_type, current_span)
            {
                drop(thread_clocks);
                // Report data-race
                return Self::report_data_race(
                    global,
                    &machine.threads,
                    mem_clocks,
                    AccessType::NaWrite(write_type),
                    access_range.size,
                    interpret::Pointer::new(alloc_id, Size::from_bytes(mem_clocks_range.start)),
                    ty,
                );
            }
        }
        interp_ok(())
    }
}

/// Vector clock state for a stack frame (tracking the local variables
/// that do not have an allocation yet).
#[derive(Debug, Default)]
pub struct FrameState {
    local_clocks: RefCell<FxHashMap<mir::Local, LocalClocks>>,
}

/// Stripped-down version of [`MemoryCellClocks`] for the clocks we need to keep track
/// of in a local that does not yet have addressable memory -- and hence can only
/// be accessed from the thread its stack frame belongs to, and cannot be access atomically.
#[derive(Debug)]
struct LocalClocks {
    write: VTimestamp,
    write_type: NaWriteType,
    read: VTimestamp,
}

impl Default for LocalClocks {
    fn default() -> Self {
        Self { write: VTimestamp::ZERO, write_type: NaWriteType::Allocate, read: VTimestamp::ZERO }
    }
}

impl FrameState {
    pub fn local_write(&self, local: mir::Local, storage_live: bool, machine: &MiriMachine<'_>) {
        let current_span = machine.current_span();
        let global = machine.data_race.as_ref().unwrap();
        if !global.race_detecting() {
            return;
        }
        let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
        // This should do the same things as `MemoryCellClocks::write_race_detect`.
        if !current_span.is_dummy() {
            thread_clocks.clock.index_mut(index).span = current_span;
        }
        let mut clocks = self.local_clocks.borrow_mut();
        if storage_live {
            let new_clocks = LocalClocks {
                write: thread_clocks.clock[index],
                write_type: NaWriteType::Allocate,
                read: VTimestamp::ZERO,
            };
            // There might already be an entry in the map for this, if the local was previously
            // live already.
            clocks.insert(local, new_clocks);
        } else {
            // This can fail to exist if `race_detecting` was false when the allocation
            // occurred, in which case we can backdate this to the beginning of time.
            let clocks = clocks.entry(local).or_default();
            clocks.write = thread_clocks.clock[index];
            clocks.write_type = NaWriteType::Write;
        }
    }

    pub fn local_read(&self, local: mir::Local, machine: &MiriMachine<'_>) {
        let current_span = machine.current_span();
        let global = machine.data_race.as_ref().unwrap();
        if !global.race_detecting() {
            return;
        }
        let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
        // This should do the same things as `MemoryCellClocks::read_race_detect`.
        if !current_span.is_dummy() {
            thread_clocks.clock.index_mut(index).span = current_span;
        }
        thread_clocks.clock.index_mut(index).set_read_type(NaReadType::Read);
        // This can fail to exist if `race_detecting` was false when the allocation
        // occurred, in which case we can backdate this to the beginning of time.
        let mut clocks = self.local_clocks.borrow_mut();
        let clocks = clocks.entry(local).or_default();
        clocks.read = thread_clocks.clock[index];
    }

    pub fn local_moved_to_memory(
        &self,
        local: mir::Local,
        alloc: &mut VClockAlloc,
        machine: &MiriMachine<'_>,
    ) {
        let global = machine.data_race.as_ref().unwrap();
        if !global.race_detecting() {
            return;
        }
        let (index, _thread_clocks) = global.active_thread_state_mut(&machine.threads);
        // Get the time the last write actually happened. This can fail to exist if
        // `race_detecting` was false when the write occurred, in that case we can backdate this
        // to the beginning of time.
        let local_clocks = self.local_clocks.borrow_mut().remove(&local).unwrap_or_default();
        for (_mem_clocks_range, mem_clocks) in alloc.alloc_ranges.get_mut().iter_mut_all() {
            // The initialization write for this already happened, just at the wrong timestamp.
            // Check that the thread index matches what we expect.
            assert_eq!(mem_clocks.write.0, index);
            // Convert the local's clocks into memory clocks.
            mem_clocks.write = (index, local_clocks.write);
            mem_clocks.write_type = local_clocks.write_type;
            mem_clocks.read = VClock::new_with_index(index, local_clocks.read);
        }
    }
}

impl<'tcx> EvalContextPrivExt<'tcx> for MiriInterpCx<'tcx> {}
trait EvalContextPrivExt<'tcx>: MiriInterpCxExt<'tcx> {
    /// Temporarily allow data-races to occur. This should only be used in
    /// one of these cases:
    /// - One of the appropriate `validate_atomic` functions will be called to
    ///   treat a memory access as atomic.
    /// - The memory being accessed should be treated as internal state, that
    ///   cannot be accessed by the interpreted program.
    /// - Execution of the interpreted program execution has halted.
    #[inline]
    fn allow_data_races_ref<R>(&self, op: impl FnOnce(&MiriInterpCx<'tcx>) -> R) -> R {
        let this = self.eval_context_ref();
        if let Some(data_race) = &this.machine.data_race {
            let old = data_race.ongoing_action_data_race_free.replace(true);
            assert!(!old, "cannot nest allow_data_races");
        }
        let result = op(this);
        if let Some(data_race) = &this.machine.data_race {
            data_race.ongoing_action_data_race_free.set(false);
        }
        result
    }

    /// Same as `allow_data_races_ref`, this temporarily disables any data-race detection and
    /// so should only be used for atomic operations or internal state that the program cannot
    /// access.
    #[inline]
    fn allow_data_races_mut<R>(&mut self, op: impl FnOnce(&mut MiriInterpCx<'tcx>) -> R) -> R {
        let this = self.eval_context_mut();
        if let Some(data_race) = &this.machine.data_race {
            let old = data_race.ongoing_action_data_race_free.replace(true);
            assert!(!old, "cannot nest allow_data_races");
        }
        let result = op(this);
        if let Some(data_race) = &this.machine.data_race {
            data_race.ongoing_action_data_race_free.set(false);
        }
        result
    }

    /// Checks that an atomic access is legal at the given place.
    fn atomic_access_check(
        &self,
        place: &MPlaceTy<'tcx>,
        access_type: AtomicAccessType,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_ref();
        // Check alignment requirements. Atomics must always be aligned to their size,
        // even if the type they wrap would be less aligned (e.g. AtomicU64 on 32bit must
        // be 8-aligned).
        let align = Align::from_bytes(place.layout.size.bytes()).unwrap();
        this.check_ptr_align(place.ptr(), align)?;
        // Ensure the allocation is mutable. Even failing (read-only) compare_exchange need mutable
        // memory on many targets (i.e., they segfault if taht memory is mapped read-only), and
        // atomic loads can be implemented via compare_exchange on some targets. There could
        // possibly be some very specific exceptions to this, see
        // <https://github.com/rust-lang/miri/pull/2464#discussion_r939636130> for details.
        // We avoid `get_ptr_alloc` since we do *not* want to run the access hooks -- the actual
        // access will happen later.
        let (alloc_id, _offset, _prov) = this
            .ptr_try_get_alloc_id(place.ptr(), 0)
            .expect("there are no zero-sized atomic accesses");
        if this.get_alloc_mutability(alloc_id)? == Mutability::Not {
            // See if this is fine.
            match access_type {
                AtomicAccessType::Rmw | AtomicAccessType::Store => {
                    throw_ub_format!(
                        "atomic store and read-modify-write operations cannot be performed on read-only memory\n\
                        see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
                    );
                }
                AtomicAccessType::Load(_)
                    if place.layout.size > this.tcx.data_layout().pointer_size() =>
                {
                    throw_ub_format!(
                        "large atomic load operations cannot be performed on read-only memory\n\
                        these operations often have to be implemented using read-modify-write operations, which require writeable memory\n\
                        see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
                    );
                }
                AtomicAccessType::Load(o) if o != AtomicReadOrd::Relaxed => {
                    throw_ub_format!(
                        "non-relaxed atomic load operations cannot be performed on read-only memory\n\
                        these operations sometimes have to be implemented using read-modify-write operations, which require writeable memory\n\
                        see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
                    );
                }
                _ => {
                    // Large relaxed loads are fine!
                }
            }
        }
        interp_ok(())
    }

    /// Update the data-race detector for an atomic read occurring at the
    /// associated memory-place and on the current thread.
    fn validate_atomic_load(
        &self,
        place: &MPlaceTy<'tcx>,
        atomic: AtomicReadOrd,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_ref();
        this.validate_atomic_op(
            place,
            atomic,
            AccessType::AtomicLoad,
            move |memory, clocks, index, atomic| {
                if atomic == AtomicReadOrd::Relaxed {
                    memory.load_relaxed(&mut *clocks, index, place.layout.size)
                } else {
                    memory.load_acquire(&mut *clocks, index, place.layout.size)
                }
            },
        )
    }

    /// Update the data-race detector for an atomic write occurring at the
    /// associated memory-place and on the current thread.
    fn validate_atomic_store(
        &mut self,
        place: &MPlaceTy<'tcx>,
        atomic: AtomicWriteOrd,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        this.validate_atomic_op(
            place,
            atomic,
            AccessType::AtomicStore,
            move |memory, clocks, index, atomic| {
                if atomic == AtomicWriteOrd::Relaxed {
                    memory.store_relaxed(clocks, index, place.layout.size)
                } else {
                    memory.store_release(clocks, index, place.layout.size)
                }
            },
        )
    }

    /// Update the data-race detector for an atomic read-modify-write occurring
    /// at the associated memory place and on the current thread.
    fn validate_atomic_rmw(
        &mut self,
        place: &MPlaceTy<'tcx>,
        atomic: AtomicRwOrd,
    ) -> InterpResult<'tcx> {
        use AtomicRwOrd::*;
        let acquire = matches!(atomic, Acquire | AcqRel | SeqCst);
        let release = matches!(atomic, Release | AcqRel | SeqCst);
        let this = self.eval_context_mut();
        this.validate_atomic_op(
            place,
            atomic,
            AccessType::AtomicRmw,
            move |memory, clocks, index, _| {
                if acquire {
                    memory.load_acquire(clocks, index, place.layout.size)?;
                } else {
                    memory.load_relaxed(clocks, index, place.layout.size)?;
                }
                if release {
                    memory.rmw_release(clocks, index, place.layout.size)
                } else {
                    memory.rmw_relaxed(clocks, index, place.layout.size)
                }
            },
        )
    }

    /// Generic atomic operation implementation
    fn validate_atomic_op<A: Debug + Copy>(
        &self,
        place: &MPlaceTy<'tcx>,
        atomic: A,
        access: AccessType,
        mut op: impl FnMut(
            &mut MemoryCellClocks,
            &mut ThreadClockSet,
            VectorIdx,
            A,
        ) -> Result<(), DataRace>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_ref();
        assert!(access.is_atomic());
        let Some(data_race) = &this.machine.data_race else { return interp_ok(()) };
        if !data_race.race_detecting() {
            return interp_ok(());
        }
        let size = place.layout.size;
        let (alloc_id, base_offset, _prov) = this.ptr_get_alloc_id(place.ptr(), 0)?;
        // Load and log the atomic operation.
        // Note that atomic loads are possible even from read-only allocations, so `get_alloc_extra_mut` is not an option.
        let alloc_meta = this.get_alloc_extra(alloc_id)?.data_race.as_ref().unwrap();
        trace!(
            "Atomic op({}) with ordering {:?} on {:?} (size={})",
            access.description(None, None),
            &atomic,
            place.ptr(),
            size.bytes()
        );

        let current_span = this.machine.current_span();
        // Perform the atomic operation.
        data_race.maybe_perform_sync_operation(
            &this.machine.threads,
            current_span,
            |index, mut thread_clocks| {
                for (mem_clocks_range, mem_clocks) in
                    alloc_meta.alloc_ranges.borrow_mut().iter_mut(base_offset, size)
                {
                    if let Err(DataRace) = op(mem_clocks, &mut thread_clocks, index, atomic) {
                        mem::drop(thread_clocks);
                        return VClockAlloc::report_data_race(
                            data_race,
                            &this.machine.threads,
                            mem_clocks,
                            access,
                            place.layout.size,
                            interpret::Pointer::new(
                                alloc_id,
                                Size::from_bytes(mem_clocks_range.start),
                            ),
                            None,
                        )
                        .map(|_| true);
                    }
                }

                // This conservatively assumes all operations have release semantics
                interp_ok(true)
            },
        )?;

        // Log changes to atomic memory.
        if tracing::enabled!(tracing::Level::TRACE) {
            for (_offset, mem_clocks) in alloc_meta.alloc_ranges.borrow().iter(base_offset, size) {
                trace!(
                    "Updated atomic memory({:?}, size={}) to {:#?}",
                    place.ptr(),
                    size.bytes(),
                    mem_clocks.atomic_ops
                );
            }
        }

        interp_ok(())
    }
}

/// Extra metadata associated with a thread.
#[derive(Debug, Clone, Default)]
struct ThreadExtraState {
    /// The current vector index in use by the
    /// thread currently, this is set to None
    /// after the vector index has been re-used
    /// and hence the value will never need to be
    /// read during data-race reporting.
    vector_index: Option<VectorIdx>,

    /// Thread termination vector clock, this
    /// is set on thread termination and is used
    /// for joining on threads since the vector_index
    /// may be re-used when the join operation occurs.
    termination_vector_clock: Option<VClock>,
}

/// Global data-race detection state, contains the currently
/// executing thread as well as the vector-clocks associated
/// with each of the threads.
// FIXME: it is probably better to have one large RefCell, than to have so many small ones.
#[derive(Debug, Clone)]
pub struct GlobalState {
    /// Set to true once the first additional
    /// thread has launched, due to the dependency
    /// between before and after a thread launch.
    /// Any data-races must be recorded after this
    /// so concurrent execution can ignore recording
    /// any data-races.
    multi_threaded: Cell<bool>,

    /// A flag to mark we are currently performing
    /// a data race free action (such as atomic access)
    /// to suppress the race detector
    ongoing_action_data_race_free: Cell<bool>,

    /// Mapping of a vector index to a known set of thread
    /// clocks, this is not directly mapping from a thread id
    /// since it may refer to multiple threads.
    vector_clocks: RefCell<IndexVec<VectorIdx, ThreadClockSet>>,

    /// Mapping of a given vector index to the current thread
    /// that the execution is representing, this may change
    /// if a vector index is re-assigned to a new thread.
    vector_info: RefCell<IndexVec<VectorIdx, ThreadId>>,

    /// The mapping of a given thread to associated thread metadata.
    thread_info: RefCell<IndexVec<ThreadId, ThreadExtraState>>,

    /// Potential vector indices that could be re-used on thread creation
    /// values are inserted here on after the thread has terminated and
    /// been joined with, and hence may potentially become free
    /// for use as the index for a new thread.
    /// Elements in this set may still require the vector index to
    /// report data-races, and can only be re-used after all
    /// active vector-clocks catch up with the threads timestamp.
    reuse_candidates: RefCell<FxHashSet<VectorIdx>>,

    /// The timestamp of last SC fence performed by each thread
    last_sc_fence: RefCell<VClock>,

    /// The timestamp of last SC write performed by each thread
    last_sc_write: RefCell<VClock>,

    /// Track when an outdated (weak memory) load happens.
    pub track_outdated_loads: bool,
}

impl VisitProvenance for GlobalState {
    fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
        // We don't have any tags.
    }
}

impl GlobalState {
    /// Create a new global state, setup with just thread-id=0
    /// advanced to timestamp = 1.
    pub fn new(config: &MiriConfig) -> Self {
        let mut global_state = GlobalState {
            multi_threaded: Cell::new(false),
            ongoing_action_data_race_free: Cell::new(false),
            vector_clocks: RefCell::new(IndexVec::new()),
            vector_info: RefCell::new(IndexVec::new()),
            thread_info: RefCell::new(IndexVec::new()),
            reuse_candidates: RefCell::new(FxHashSet::default()),
            last_sc_fence: RefCell::new(VClock::default()),
            last_sc_write: RefCell::new(VClock::default()),
            track_outdated_loads: config.track_outdated_loads,
        };

        // Setup the main-thread since it is not explicitly created:
        // uses vector index and thread-id 0.
        let index = global_state.vector_clocks.get_mut().push(ThreadClockSet::default());
        global_state.vector_info.get_mut().push(ThreadId::MAIN_THREAD);
        global_state
            .thread_info
            .get_mut()
            .push(ThreadExtraState { vector_index: Some(index), termination_vector_clock: None });

        global_state
    }

    // We perform data race detection when there are more than 1 active thread
    // and we have not temporarily disabled race detection to perform something
    // data race free
    fn race_detecting(&self) -> bool {
        self.multi_threaded.get() && !self.ongoing_action_data_race_free.get()
    }

    pub fn ongoing_action_data_race_free(&self) -> bool {
        self.ongoing_action_data_race_free.get()
    }

    // Try to find vector index values that can potentially be re-used
    // by a new thread instead of a new vector index being created.
    fn find_vector_index_reuse_candidate(&self) -> Option<VectorIdx> {
        let mut reuse = self.reuse_candidates.borrow_mut();
        let vector_clocks = self.vector_clocks.borrow();
        for &candidate in reuse.iter() {
            let target_timestamp = vector_clocks[candidate].clock[candidate];
            if vector_clocks.iter_enumerated().all(|(clock_idx, clock)| {
                // The thread happens before the clock, and hence cannot report
                // a data-race with this the candidate index.
                let no_data_race = clock.clock[candidate] >= target_timestamp;

                // The vector represents a thread that has terminated and hence cannot
                // report a data-race with the candidate index.
                let vector_terminated = reuse.contains(&clock_idx);

                // The vector index cannot report a race with the candidate index
                // and hence allows the candidate index to be re-used.
                no_data_race || vector_terminated
            }) {
                // All vector clocks for each vector index are equal to
                // the target timestamp, and the thread is known to have
                // terminated, therefore this vector clock index cannot
                // report any more data-races.
                assert!(reuse.remove(&candidate));
                return Some(candidate);
            }
        }
        None
    }

    // Hook for thread creation, enabled multi-threaded execution and marks
    // the current thread timestamp as happening-before the current thread.
    #[inline]
    pub fn thread_created(
        &mut self,
        thread_mgr: &ThreadManager<'_>,
        thread: ThreadId,
        current_span: Span,
    ) {
        let current_index = self.active_thread_index(thread_mgr);

        // Enable multi-threaded execution, there are now at least two threads
        // so data-races are now possible.
        self.multi_threaded.set(true);

        // Load and setup the associated thread metadata
        let mut thread_info = self.thread_info.borrow_mut();
        thread_info.ensure_contains_elem(thread, Default::default);

        // Assign a vector index for the thread, attempting to re-use an old
        // vector index that can no longer report any data-races if possible.
        let created_index = if let Some(reuse_index) = self.find_vector_index_reuse_candidate() {
            // Now re-configure the re-use candidate, increment the clock
            // for the new sync use of the vector.
            let vector_clocks = self.vector_clocks.get_mut();
            vector_clocks[reuse_index].increment_clock(reuse_index, current_span);

            // Locate the old thread the vector was associated with and update
            // it to represent the new thread instead.
            let vector_info = self.vector_info.get_mut();
            let old_thread = vector_info[reuse_index];
            vector_info[reuse_index] = thread;

            // Mark the thread the vector index was associated with as no longer
            // representing a thread index.
            thread_info[old_thread].vector_index = None;

            reuse_index
        } else {
            // No vector re-use candidates available, instead create
            // a new vector index.
            let vector_info = self.vector_info.get_mut();
            vector_info.push(thread)
        };

        trace!("Creating thread = {:?} with vector index = {:?}", thread, created_index);

        // Mark the chosen vector index as in use by the thread.
        thread_info[thread].vector_index = Some(created_index);

        // Create a thread clock set if applicable.
        let vector_clocks = self.vector_clocks.get_mut();
        if created_index == vector_clocks.next_index() {
            vector_clocks.push(ThreadClockSet::default());
        }

        // Now load the two clocks and configure the initial state.
        let (current, created) = vector_clocks.pick2_mut(current_index, created_index);

        // Join the created with current, since the current threads
        // previous actions happen-before the created thread.
        created.join_with(current);

        // Advance both threads after the synchronized operation.
        // Both operations are considered to have release semantics.
        current.increment_clock(current_index, current_span);
        created.increment_clock(created_index, current_span);
    }

    /// Hook on a thread join to update the implicit happens-before relation between the joined
    /// thread (the joinee, the thread that someone waited on) and the current thread (the joiner,
    /// the thread who was waiting).
    #[inline]
    pub fn thread_joined(&mut self, threads: &ThreadManager<'_>, joinee: ThreadId) {
        let thread_info = self.thread_info.borrow();
        let thread_info = &thread_info[joinee];

        // Load the associated vector clock for the terminated thread.
        let join_clock = thread_info
            .termination_vector_clock
            .as_ref()
            .expect("joined with thread but thread has not terminated");
        // Acquire that into the current thread.
        self.acquire_clock(join_clock, threads);

        // Check the number of live threads, if the value is 1
        // then test for potentially disabling multi-threaded execution.
        // This has to happen after `acquire_clock`, otherwise there'll always
        // be some thread that has not synchronized yet.
        if let Some(current_index) = thread_info.vector_index {
            if threads.get_live_thread_count() == 1 {
                let vector_clocks = self.vector_clocks.get_mut();
                // May potentially be able to disable multi-threaded execution.
                let current_clock = &vector_clocks[current_index];
                if vector_clocks
                    .iter_enumerated()
                    .all(|(idx, clocks)| clocks.clock[idx] <= current_clock.clock[idx])
                {
                    // All thread terminations happen-before the current clock
                    // therefore no data-races can be reported until a new thread
                    // is created, so disable multi-threaded execution.
                    self.multi_threaded.set(false);
                }
            }
        }
    }

    /// On thread termination, the vector-clock may re-used
    /// in the future once all remaining thread-clocks catch
    /// up with the time index of the terminated thread.
    /// This assigns thread termination with a unique index
    /// which will be used to join the thread
    /// This should be called strictly before any calls to
    /// `thread_joined`.
    #[inline]
    pub fn thread_terminated(&mut self, thread_mgr: &ThreadManager<'_>) {
        let current_thread = thread_mgr.active_thread();
        let current_index = self.active_thread_index(thread_mgr);

        // Store the terminaion clock.
        let terminaion_clock = self.release_clock(thread_mgr, |clock| clock.clone());
        self.thread_info.get_mut()[current_thread].termination_vector_clock =
            Some(terminaion_clock);

        // Add this thread's clock index as a candidate for re-use.
        let reuse = self.reuse_candidates.get_mut();
        reuse.insert(current_index);
    }

    /// Attempt to perform a synchronized operation, this
    /// will perform no operation if multi-threading is
    /// not currently enabled.
    /// Otherwise it will increment the clock for the current
    /// vector before and after the operation for data-race
    /// detection between any happens-before edges the
    /// operation may create.
    fn maybe_perform_sync_operation<'tcx>(
        &self,
        thread_mgr: &ThreadManager<'_>,
        current_span: Span,
        op: impl FnOnce(VectorIdx, RefMut<'_, ThreadClockSet>) -> InterpResult<'tcx, bool>,
    ) -> InterpResult<'tcx> {
        if self.multi_threaded.get() {
            let (index, clocks) = self.active_thread_state_mut(thread_mgr);
            if op(index, clocks)? {
                let (_, mut clocks) = self.active_thread_state_mut(thread_mgr);
                clocks.increment_clock(index, current_span);
            }
        }
        interp_ok(())
    }

    /// Internal utility to identify a thread stored internally
    /// returns the id and the name for better diagnostics.
    fn print_thread_metadata(&self, thread_mgr: &ThreadManager<'_>, vector: VectorIdx) -> String {
        let thread = self.vector_info.borrow()[vector];
        let thread_name = thread_mgr.get_thread_display_name(thread);
        format!("thread `{thread_name}`")
    }

    /// Acquire the given clock into the current thread, establishing synchronization with
    /// the moment when that clock snapshot was taken via `release_clock`.
    /// As this is an acquire operation, the thread timestamp is not
    /// incremented.
    pub fn acquire_clock<'tcx>(&self, clock: &VClock, threads: &ThreadManager<'tcx>) {
        let thread = threads.active_thread();
        let (_, mut clocks) = self.thread_state_mut(thread);
        clocks.clock.join(clock);
    }

    /// Calls the given closure with the "release" clock of the current thread.
    /// Other threads can acquire this clock in the future to establish synchronization
    /// with this program point.
    pub fn release_clock<'tcx, R>(
        &self,
        threads: &ThreadManager<'tcx>,
        callback: impl FnOnce(&VClock) -> R,
    ) -> R {
        let thread = threads.active_thread();
        let span = threads.active_thread_ref().current_span();
        let (index, mut clocks) = self.thread_state_mut(thread);
        let r = callback(&clocks.clock);
        // Increment the clock, so that all following events cannot be confused with anything that
        // occurred before the release. Crucially, the callback is invoked on the *old* clock!
        clocks.increment_clock(index, span);

        r
    }

    fn thread_index(&self, thread: ThreadId) -> VectorIdx {
        self.thread_info.borrow()[thread].vector_index.expect("thread has no assigned vector")
    }

    /// Load the vector index used by the given thread as well as the set of vector clocks
    /// used by the thread.
    #[inline]
    fn thread_state_mut(&self, thread: ThreadId) -> (VectorIdx, RefMut<'_, ThreadClockSet>) {
        let index = self.thread_index(thread);
        let ref_vector = self.vector_clocks.borrow_mut();
        let clocks = RefMut::map(ref_vector, |vec| &mut vec[index]);
        (index, clocks)
    }

    /// Load the vector index used by the given thread as well as the set of vector clocks
    /// used by the thread.
    #[inline]
    fn thread_state(&self, thread: ThreadId) -> (VectorIdx, Ref<'_, ThreadClockSet>) {
        let index = self.thread_index(thread);
        let ref_vector = self.vector_clocks.borrow();
        let clocks = Ref::map(ref_vector, |vec| &vec[index]);
        (index, clocks)
    }

    /// Load the current vector clock in use and the current set of thread clocks
    /// in use for the vector.
    #[inline]
    pub(super) fn active_thread_state(
        &self,
        thread_mgr: &ThreadManager<'_>,
    ) -> (VectorIdx, Ref<'_, ThreadClockSet>) {
        self.thread_state(thread_mgr.active_thread())
    }

    /// Load the current vector clock in use and the current set of thread clocks
    /// in use for the vector mutably for modification.
    #[inline]
    pub(super) fn active_thread_state_mut(
        &self,
        thread_mgr: &ThreadManager<'_>,
    ) -> (VectorIdx, RefMut<'_, ThreadClockSet>) {
        self.thread_state_mut(thread_mgr.active_thread())
    }

    /// Return the current thread, should be the same
    /// as the data-race active thread.
    #[inline]
    fn active_thread_index(&self, thread_mgr: &ThreadManager<'_>) -> VectorIdx {
        let active_thread_id = thread_mgr.active_thread();
        self.thread_index(active_thread_id)
    }

    // SC ATOMIC STORE rule in the paper.
    pub(super) fn sc_write(&self, thread_mgr: &ThreadManager<'_>) {
        let (index, clocks) = self.active_thread_state(thread_mgr);
        self.last_sc_write.borrow_mut().set_at_index(&clocks.clock, index);
    }

    // SC ATOMIC READ rule in the paper.
    pub(super) fn sc_read(&self, thread_mgr: &ThreadManager<'_>) {
        let (.., mut clocks) = self.active_thread_state_mut(thread_mgr);
        clocks.read_seqcst.join(&self.last_sc_fence.borrow());
    }
}