miri/concurrency/data_race.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
//! Implementation of a data-race detector using Lamport Timestamps / Vector-clocks
//! based on the Dynamic Race Detection for C++:
//! <https://www.doc.ic.ac.uk/~afd/homepages/papers/pdfs/2017/POPL.pdf>
//! which does not report false-positives when fences are used, and gives better
//! accuracy in presence of read-modify-write operations.
//!
//! The implementation contains modifications to correctly model the changes to the memory model in C++20
//! regarding the weakening of release sequences: <http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0982r1.html>.
//! Relaxed stores now unconditionally block all currently active release sequences and so per-thread tracking of release
//! sequences is not needed.
//!
//! The implementation also models races with memory allocation and deallocation via treating allocation and
//! deallocation as a type of write internally for detecting data-races.
//!
//! Weak memory orders are explored but not all weak behaviours are exhibited, so it can still miss data-races
//! but should not report false-positives
//!
//! Data-race definition from(<https://en.cppreference.com/w/cpp/language/memory_model#Threads_and_data_races>):
//! a data race occurs between two memory accesses if they are on different threads, at least one operation
//! is non-atomic, at least one operation is a write and neither access happens-before the other. Read the link
//! for full definition.
//!
//! This re-uses vector indexes for threads that are known to be unable to report data-races, this is valid
//! because it only re-uses vector indexes once all currently-active (not-terminated) threads have an internal
//! vector clock that happens-after the join operation of the candidate thread. Threads that have not been joined
//! on are not considered. Since the thread's vector clock will only increase and a data-race implies that
//! there is some index x where `clock[x] > thread_clock`, when this is true `clock[candidate-idx] > thread_clock`
//! can never hold and hence a data-race can never be reported in that vector index again.
//! This means that the thread-index can be safely re-used, starting on the next timestamp for the newly created
//! thread.
//!
//! The timestamps used in the data-race detector assign each sequence of non-atomic operations
//! followed by a single atomic or concurrent operation a single timestamp.
//! Write, Read, Write, ThreadJoin will be represented by a single timestamp value on a thread.
//! This is because extra increment operations between the operations in the sequence are not
//! required for accurate reporting of data-race values.
//!
//! As per the paper a threads timestamp is only incremented after a release operation is performed
//! so some atomic operations that only perform acquires do not increment the timestamp. Due to shared
//! code some atomic operations may increment the timestamp when not necessary but this has no effect
//! on the data-race detection code.
use std::cell::{Cell, Ref, RefCell, RefMut};
use std::fmt::Debug;
use std::mem;
use rustc_ast::Mutability;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_index::{Idx, IndexVec};
use rustc_middle::mir;
use rustc_middle::ty::Ty;
use rustc_span::Span;
use rustc_target::abi::{Align, HasDataLayout, Size};
use super::vector_clock::{VClock, VTimestamp, VectorIdx};
use super::weak_memory::EvalContextExt as _;
use crate::diagnostics::RacingOp;
use crate::*;
pub type AllocState = VClockAlloc;
/// Valid atomic read-write orderings, alias of atomic::Ordering (not non-exhaustive).
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum AtomicRwOrd {
Relaxed,
Acquire,
Release,
AcqRel,
SeqCst,
}
/// Valid atomic read orderings, subset of atomic::Ordering.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum AtomicReadOrd {
Relaxed,
Acquire,
SeqCst,
}
/// Valid atomic write orderings, subset of atomic::Ordering.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum AtomicWriteOrd {
Relaxed,
Release,
SeqCst,
}
/// Valid atomic fence orderings, subset of atomic::Ordering.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum AtomicFenceOrd {
Acquire,
Release,
AcqRel,
SeqCst,
}
/// The current set of vector clocks describing the state
/// of a thread, contains the happens-before clock and
/// additional metadata to model atomic fence operations.
#[derive(Clone, Default, Debug)]
pub(super) struct ThreadClockSet {
/// The increasing clock representing timestamps
/// that happen-before this thread.
pub(super) clock: VClock,
/// The set of timestamps that will happen-before this
/// thread once it performs an acquire fence.
fence_acquire: VClock,
/// The last timestamp of happens-before relations that
/// have been released by this thread by a fence.
fence_release: VClock,
/// Timestamps of the last SC fence performed by each
/// thread, updated when this thread performs an SC fence
pub(super) fence_seqcst: VClock,
/// Timestamps of the last SC write performed by each
/// thread, updated when this thread performs an SC fence
pub(super) write_seqcst: VClock,
/// Timestamps of the last SC fence performed by each
/// thread, updated when this thread performs an SC read
pub(super) read_seqcst: VClock,
}
impl ThreadClockSet {
/// Apply the effects of a release fence to this
/// set of thread vector clocks.
#[inline]
fn apply_release_fence(&mut self) {
self.fence_release.clone_from(&self.clock);
}
/// Apply the effects of an acquire fence to this
/// set of thread vector clocks.
#[inline]
fn apply_acquire_fence(&mut self) {
self.clock.join(&self.fence_acquire);
}
/// Increment the happens-before clock at a
/// known index.
#[inline]
fn increment_clock(&mut self, index: VectorIdx, current_span: Span) {
self.clock.increment_index(index, current_span);
}
/// Join the happens-before clock with that of
/// another thread, used to model thread join
/// operations.
fn join_with(&mut self, other: &ThreadClockSet) {
self.clock.join(&other.clock);
}
}
/// Error returned by finding a data race
/// should be elaborated upon.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct DataRace;
/// Externally stored memory cell clocks
/// explicitly to reduce memory usage for the
/// common case where no atomic operations
/// exists on the memory cell.
#[derive(Clone, PartialEq, Eq, Debug)]
struct AtomicMemoryCellClocks {
/// The clock-vector of the timestamp of the last atomic
/// read operation performed by each thread.
/// This detects potential data-races between atomic read
/// and non-atomic write operations.
read_vector: VClock,
/// The clock-vector of the timestamp of the last atomic
/// write operation performed by each thread.
/// This detects potential data-races between atomic write
/// and non-atomic read or write operations.
write_vector: VClock,
/// Synchronization vector for acquire-release semantics
/// contains the vector of timestamps that will
/// happen-before a thread if an acquire-load is
/// performed on the data.
sync_vector: VClock,
/// The size of accesses to this atomic location.
/// We use this to detect non-synchronized mixed-size accesses. Since all accesses must be
/// aligned to their size, this is sufficient to detect imperfectly overlapping accesses.
/// `None` indicates that we saw multiple different sizes, which is okay as long as all accesses are reads.
size: Option<Size>,
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum AtomicAccessType {
Load(AtomicReadOrd),
Store,
Rmw,
}
/// Type of a non-atomic read operation.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum NaReadType {
/// Standard unsynchronized write.
Read,
// An implicit read generated by a retag.
Retag,
}
impl NaReadType {
fn description(self) -> &'static str {
match self {
NaReadType::Read => "non-atomic read",
NaReadType::Retag => "retag read",
}
}
}
/// Type of a non-atomic write operation: allocating memory, non-atomic writes, and
/// deallocating memory are all treated as writes for the purpose of the data-race detector.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum NaWriteType {
/// Allocate memory.
Allocate,
/// Standard unsynchronized write.
Write,
// An implicit write generated by a retag.
Retag,
/// Deallocate memory.
/// Note that when memory is deallocated first, later non-atomic accesses
/// will be reported as use-after-free, not as data races.
/// (Same for `Allocate` above.)
Deallocate,
}
impl NaWriteType {
fn description(self) -> &'static str {
match self {
NaWriteType::Allocate => "creating a new allocation",
NaWriteType::Write => "non-atomic write",
NaWriteType::Retag => "retag write",
NaWriteType::Deallocate => "deallocation",
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum AccessType {
NaRead(NaReadType),
NaWrite(NaWriteType),
AtomicLoad,
AtomicStore,
AtomicRmw,
}
impl AccessType {
fn description(self, ty: Option<Ty<'_>>, size: Option<Size>) -> String {
let mut msg = String::new();
if let Some(size) = size {
if size == Size::ZERO {
// In this case there were multiple read accesss with different sizes and then a write.
// We will be reporting *one* of the other reads, but we don't have enough information
// to determine which one had which size.
assert!(self == AccessType::AtomicLoad);
assert!(ty.is_none());
return format!("multiple differently-sized atomic loads, including one load");
}
msg.push_str(&format!("{}-byte {}", size.bytes(), msg))
}
msg.push_str(match self {
AccessType::NaRead(w) => w.description(),
AccessType::NaWrite(w) => w.description(),
AccessType::AtomicLoad => "atomic load",
AccessType::AtomicStore => "atomic store",
AccessType::AtomicRmw => "atomic read-modify-write",
});
if let Some(ty) = ty {
msg.push_str(&format!(" of type `{}`", ty));
}
msg
}
fn is_atomic(self) -> bool {
match self {
AccessType::AtomicLoad | AccessType::AtomicStore | AccessType::AtomicRmw => true,
AccessType::NaRead(_) | AccessType::NaWrite(_) => false,
}
}
fn is_read(self) -> bool {
match self {
AccessType::AtomicLoad | AccessType::NaRead(_) => true,
AccessType::NaWrite(_) | AccessType::AtomicStore | AccessType::AtomicRmw => false,
}
}
fn is_retag(self) -> bool {
matches!(
self,
AccessType::NaRead(NaReadType::Retag) | AccessType::NaWrite(NaWriteType::Retag)
)
}
}
/// Per-byte vector clock metadata for data-race detection.
#[derive(Clone, PartialEq, Eq, Debug)]
struct MemoryCellClocks {
/// The vector-clock timestamp and the thread that did the last non-atomic write. We don't need
/// a full `VClock` here, it's always a single thread and nothing synchronizes, so the effective
/// clock is all-0 except for the thread that did the write.
write: (VectorIdx, VTimestamp),
/// The type of operation that the write index represents,
/// either newly allocated memory, a non-atomic write or
/// a deallocation of memory.
write_type: NaWriteType,
/// The vector-clock of all non-atomic reads that happened since the last non-atomic write
/// (i.e., we join together the "singleton" clocks corresponding to each read). It is reset to
/// zero on each write operation.
read: VClock,
/// Atomic access, acquire, release sequence tracking clocks.
/// For non-atomic memory this value is set to None.
/// For atomic memory, each byte carries this information.
atomic_ops: Option<Box<AtomicMemoryCellClocks>>,
}
impl AtomicMemoryCellClocks {
fn new(size: Size) -> Self {
AtomicMemoryCellClocks {
read_vector: Default::default(),
write_vector: Default::default(),
sync_vector: Default::default(),
size: Some(size),
}
}
}
impl MemoryCellClocks {
/// Create a new set of clocks representing memory allocated
/// at a given vector timestamp and index.
fn new(alloc: VTimestamp, alloc_index: VectorIdx) -> Self {
MemoryCellClocks {
read: VClock::default(),
write: (alloc_index, alloc),
write_type: NaWriteType::Allocate,
atomic_ops: None,
}
}
#[inline]
fn write_was_before(&self, other: &VClock) -> bool {
// This is the same as `self.write() <= other` but
// without actually manifesting a clock for `self.write`.
self.write.1 <= other[self.write.0]
}
#[inline]
fn write(&self) -> VClock {
VClock::new_with_index(self.write.0, self.write.1)
}
/// Load the internal atomic memory cells if they exist.
#[inline]
fn atomic(&self) -> Option<&AtomicMemoryCellClocks> {
self.atomic_ops.as_deref()
}
/// Load the internal atomic memory cells if they exist.
#[inline]
fn atomic_mut_unwrap(&mut self) -> &mut AtomicMemoryCellClocks {
self.atomic_ops.as_deref_mut().unwrap()
}
/// Load or create the internal atomic memory metadata if it does not exist. Also ensures we do
/// not do mixed-size atomic accesses, and updates the recorded atomic access size.
fn atomic_access(
&mut self,
thread_clocks: &ThreadClockSet,
size: Size,
write: bool,
) -> Result<&mut AtomicMemoryCellClocks, DataRace> {
match self.atomic_ops {
Some(ref mut atomic) => {
// We are good if the size is the same or all atomic accesses are before our current time.
if atomic.size == Some(size) {
Ok(atomic)
} else if atomic.read_vector <= thread_clocks.clock
&& atomic.write_vector <= thread_clocks.clock
{
// We are fully ordered after all previous accesses, so we can change the size.
atomic.size = Some(size);
Ok(atomic)
} else if !write && atomic.write_vector <= thread_clocks.clock {
// This is a read, and it is ordered after the last write. It's okay for the
// sizes to mismatch, as long as no writes with a different size occur later.
atomic.size = None;
Ok(atomic)
} else {
Err(DataRace)
}
}
None => {
self.atomic_ops = Some(Box::new(AtomicMemoryCellClocks::new(size)));
Ok(self.atomic_ops.as_mut().unwrap())
}
}
}
/// Update memory cell data-race tracking for atomic
/// load acquire semantics, is a no-op if this memory was
/// not used previously as atomic memory.
fn load_acquire(
&mut self,
thread_clocks: &mut ThreadClockSet,
index: VectorIdx,
access_size: Size,
) -> Result<(), DataRace> {
self.atomic_read_detect(thread_clocks, index, access_size)?;
if let Some(atomic) = self.atomic() {
thread_clocks.clock.join(&atomic.sync_vector);
}
Ok(())
}
/// Update memory cell data-race tracking for atomic
/// load relaxed semantics, is a no-op if this memory was
/// not used previously as atomic memory.
fn load_relaxed(
&mut self,
thread_clocks: &mut ThreadClockSet,
index: VectorIdx,
access_size: Size,
) -> Result<(), DataRace> {
self.atomic_read_detect(thread_clocks, index, access_size)?;
if let Some(atomic) = self.atomic() {
thread_clocks.fence_acquire.join(&atomic.sync_vector);
}
Ok(())
}
/// Update the memory cell data-race tracking for atomic
/// store release semantics.
fn store_release(
&mut self,
thread_clocks: &ThreadClockSet,
index: VectorIdx,
access_size: Size,
) -> Result<(), DataRace> {
self.atomic_write_detect(thread_clocks, index, access_size)?;
let atomic = self.atomic_mut_unwrap(); // initialized by `atomic_write_detect`
atomic.sync_vector.clone_from(&thread_clocks.clock);
Ok(())
}
/// Update the memory cell data-race tracking for atomic
/// store relaxed semantics.
fn store_relaxed(
&mut self,
thread_clocks: &ThreadClockSet,
index: VectorIdx,
access_size: Size,
) -> Result<(), DataRace> {
self.atomic_write_detect(thread_clocks, index, access_size)?;
// The handling of release sequences was changed in C++20 and so
// the code here is different to the paper since now all relaxed
// stores block release sequences. The exception for same-thread
// relaxed stores has been removed.
let atomic = self.atomic_mut_unwrap();
atomic.sync_vector.clone_from(&thread_clocks.fence_release);
Ok(())
}
/// Update the memory cell data-race tracking for atomic
/// store release semantics for RMW operations.
fn rmw_release(
&mut self,
thread_clocks: &ThreadClockSet,
index: VectorIdx,
access_size: Size,
) -> Result<(), DataRace> {
self.atomic_write_detect(thread_clocks, index, access_size)?;
let atomic = self.atomic_mut_unwrap();
atomic.sync_vector.join(&thread_clocks.clock);
Ok(())
}
/// Update the memory cell data-race tracking for atomic
/// store relaxed semantics for RMW operations.
fn rmw_relaxed(
&mut self,
thread_clocks: &ThreadClockSet,
index: VectorIdx,
access_size: Size,
) -> Result<(), DataRace> {
self.atomic_write_detect(thread_clocks, index, access_size)?;
let atomic = self.atomic_mut_unwrap();
atomic.sync_vector.join(&thread_clocks.fence_release);
Ok(())
}
/// Detect data-races with an atomic read, caused by a non-atomic write that does
/// not happen-before the atomic-read.
fn atomic_read_detect(
&mut self,
thread_clocks: &ThreadClockSet,
index: VectorIdx,
access_size: Size,
) -> Result<(), DataRace> {
trace!("Atomic read with vectors: {:#?} :: {:#?}", self, thread_clocks);
let atomic = self.atomic_access(thread_clocks, access_size, /*write*/ false)?;
atomic.read_vector.set_at_index(&thread_clocks.clock, index);
// Make sure the last non-atomic write was before this access.
if self.write_was_before(&thread_clocks.clock) { Ok(()) } else { Err(DataRace) }
}
/// Detect data-races with an atomic write, either with a non-atomic read or with
/// a non-atomic write.
fn atomic_write_detect(
&mut self,
thread_clocks: &ThreadClockSet,
index: VectorIdx,
access_size: Size,
) -> Result<(), DataRace> {
trace!("Atomic write with vectors: {:#?} :: {:#?}", self, thread_clocks);
let atomic = self.atomic_access(thread_clocks, access_size, /*write*/ true)?;
atomic.write_vector.set_at_index(&thread_clocks.clock, index);
// Make sure the last non-atomic write and all non-atomic reads were before this access.
if self.write_was_before(&thread_clocks.clock) && self.read <= thread_clocks.clock {
Ok(())
} else {
Err(DataRace)
}
}
/// Detect races for non-atomic read operations at the current memory cell
/// returns true if a data-race is detected.
fn read_race_detect(
&mut self,
thread_clocks: &mut ThreadClockSet,
index: VectorIdx,
read_type: NaReadType,
current_span: Span,
) -> Result<(), DataRace> {
trace!("Unsynchronized read with vectors: {:#?} :: {:#?}", self, thread_clocks);
if !current_span.is_dummy() {
thread_clocks.clock.index_mut(index).span = current_span;
}
thread_clocks.clock.index_mut(index).set_read_type(read_type);
if self.write_was_before(&thread_clocks.clock) {
// We must be ordered-after all atomic writes.
let race_free = if let Some(atomic) = self.atomic() {
atomic.write_vector <= thread_clocks.clock
} else {
true
};
self.read.set_at_index(&thread_clocks.clock, index);
if race_free { Ok(()) } else { Err(DataRace) }
} else {
Err(DataRace)
}
}
/// Detect races for non-atomic write operations at the current memory cell
/// returns true if a data-race is detected.
fn write_race_detect(
&mut self,
thread_clocks: &mut ThreadClockSet,
index: VectorIdx,
write_type: NaWriteType,
current_span: Span,
) -> Result<(), DataRace> {
trace!("Unsynchronized write with vectors: {:#?} :: {:#?}", self, thread_clocks);
if !current_span.is_dummy() {
thread_clocks.clock.index_mut(index).span = current_span;
}
if self.write_was_before(&thread_clocks.clock) && self.read <= thread_clocks.clock {
let race_free = if let Some(atomic) = self.atomic() {
atomic.write_vector <= thread_clocks.clock
&& atomic.read_vector <= thread_clocks.clock
} else {
true
};
self.write = (index, thread_clocks.clock[index]);
self.write_type = write_type;
if race_free {
self.read.set_zero_vector();
Ok(())
} else {
Err(DataRace)
}
} else {
Err(DataRace)
}
}
}
/// Evaluation context extensions.
impl<'tcx> EvalContextExt<'tcx> for MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: MiriInterpCxExt<'tcx> {
/// Perform an atomic read operation at the memory location.
fn read_scalar_atomic(
&self,
place: &MPlaceTy<'tcx>,
atomic: AtomicReadOrd,
) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_ref();
this.atomic_access_check(place, AtomicAccessType::Load(atomic))?;
// This will read from the last store in the modification order of this location. In case
// weak memory emulation is enabled, this may not be the store we will pick to actually read from and return.
// This is fine with StackedBorrow and race checks because they don't concern metadata on
// the *value* (including the associated provenance if this is an AtomicPtr) at this location.
// Only metadata on the location itself is used.
let scalar = this.allow_data_races_ref(move |this| this.read_scalar(place))?;
let buffered_scalar = this.buffered_atomic_read(place, atomic, scalar, || {
this.validate_atomic_load(place, atomic)
})?;
interp_ok(buffered_scalar.ok_or_else(|| err_ub!(InvalidUninitBytes(None)))?)
}
/// Perform an atomic write operation at the memory location.
fn write_scalar_atomic(
&mut self,
val: Scalar,
dest: &MPlaceTy<'tcx>,
atomic: AtomicWriteOrd,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
this.atomic_access_check(dest, AtomicAccessType::Store)?;
// Read the previous value so we can put it in the store buffer later.
// The program didn't actually do a read, so suppress the memory access hooks.
// This is also a very special exception where we just ignore an error -- if this read
// was UB e.g. because the memory is uninitialized, we don't want to know!
let old_val = this.run_for_validation(|this| this.read_scalar(dest)).discard_err();
this.allow_data_races_mut(move |this| this.write_scalar(val, dest))?;
this.validate_atomic_store(dest, atomic)?;
this.buffered_atomic_write(val, dest, atomic, old_val)
}
/// Perform an atomic RMW operation on a memory location.
fn atomic_rmw_op_immediate(
&mut self,
place: &MPlaceTy<'tcx>,
rhs: &ImmTy<'tcx>,
op: mir::BinOp,
not: bool,
atomic: AtomicRwOrd,
) -> InterpResult<'tcx, ImmTy<'tcx>> {
let this = self.eval_context_mut();
this.atomic_access_check(place, AtomicAccessType::Rmw)?;
let old = this.allow_data_races_mut(|this| this.read_immediate(place))?;
let val = this.binary_op(op, &old, rhs)?;
let val = if not { this.unary_op(mir::UnOp::Not, &val)? } else { val };
this.allow_data_races_mut(|this| this.write_immediate(*val, place))?;
this.validate_atomic_rmw(place, atomic)?;
this.buffered_atomic_rmw(val.to_scalar(), place, atomic, old.to_scalar())?;
interp_ok(old)
}
/// Perform an atomic exchange with a memory place and a new
/// scalar value, the old value is returned.
fn atomic_exchange_scalar(
&mut self,
place: &MPlaceTy<'tcx>,
new: Scalar,
atomic: AtomicRwOrd,
) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_mut();
this.atomic_access_check(place, AtomicAccessType::Rmw)?;
let old = this.allow_data_races_mut(|this| this.read_scalar(place))?;
this.allow_data_races_mut(|this| this.write_scalar(new, place))?;
this.validate_atomic_rmw(place, atomic)?;
this.buffered_atomic_rmw(new, place, atomic, old)?;
interp_ok(old)
}
/// Perform an conditional atomic exchange with a memory place and a new
/// scalar value, the old value is returned.
fn atomic_min_max_scalar(
&mut self,
place: &MPlaceTy<'tcx>,
rhs: ImmTy<'tcx>,
min: bool,
atomic: AtomicRwOrd,
) -> InterpResult<'tcx, ImmTy<'tcx>> {
let this = self.eval_context_mut();
this.atomic_access_check(place, AtomicAccessType::Rmw)?;
let old = this.allow_data_races_mut(|this| this.read_immediate(place))?;
let lt = this.binary_op(mir::BinOp::Lt, &old, &rhs)?.to_scalar().to_bool()?;
#[rustfmt::skip] // rustfmt makes this unreadable
let new_val = if min {
if lt { &old } else { &rhs }
} else {
if lt { &rhs } else { &old }
};
this.allow_data_races_mut(|this| this.write_immediate(**new_val, place))?;
this.validate_atomic_rmw(place, atomic)?;
this.buffered_atomic_rmw(new_val.to_scalar(), place, atomic, old.to_scalar())?;
// Return the old value.
interp_ok(old)
}
/// Perform an atomic compare and exchange at a given memory location.
/// On success an atomic RMW operation is performed and on failure
/// only an atomic read occurs. If `can_fail_spuriously` is true,
/// then we treat it as a "compare_exchange_weak" operation, and
/// some portion of the time fail even when the values are actually
/// identical.
fn atomic_compare_exchange_scalar(
&mut self,
place: &MPlaceTy<'tcx>,
expect_old: &ImmTy<'tcx>,
new: Scalar,
success: AtomicRwOrd,
fail: AtomicReadOrd,
can_fail_spuriously: bool,
) -> InterpResult<'tcx, Immediate<Provenance>> {
use rand::Rng as _;
let this = self.eval_context_mut();
this.atomic_access_check(place, AtomicAccessType::Rmw)?;
// Failure ordering cannot be stronger than success ordering, therefore first attempt
// to read with the failure ordering and if successful then try again with the success
// read ordering and write in the success case.
// Read as immediate for the sake of `binary_op()`
let old = this.allow_data_races_mut(|this| this.read_immediate(place))?;
// `binary_op` will bail if either of them is not a scalar.
let eq = this.binary_op(mir::BinOp::Eq, &old, expect_old)?;
// If the operation would succeed, but is "weak", fail some portion
// of the time, based on `success_rate`.
let success_rate = 1.0 - this.machine.cmpxchg_weak_failure_rate;
let cmpxchg_success = eq.to_scalar().to_bool()?
&& if can_fail_spuriously {
this.machine.rng.get_mut().gen_bool(success_rate)
} else {
true
};
let res = Immediate::ScalarPair(old.to_scalar(), Scalar::from_bool(cmpxchg_success));
// Update ptr depending on comparison.
// if successful, perform a full rw-atomic validation
// otherwise treat this as an atomic load with the fail ordering.
if cmpxchg_success {
this.allow_data_races_mut(|this| this.write_scalar(new, place))?;
this.validate_atomic_rmw(place, success)?;
this.buffered_atomic_rmw(new, place, success, old.to_scalar())?;
} else {
this.validate_atomic_load(place, fail)?;
// A failed compare exchange is equivalent to a load, reading from the latest store
// in the modification order.
// Since `old` is only a value and not the store element, we need to separately
// find it in our store buffer and perform load_impl on it.
this.perform_read_on_buffered_latest(place, fail)?;
}
// Return the old value.
interp_ok(res)
}
/// Update the data-race detector for an atomic fence on the current thread.
fn atomic_fence(&mut self, atomic: AtomicFenceOrd) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let current_span = this.machine.current_span();
if let Some(data_race) = &mut this.machine.data_race {
data_race.maybe_perform_sync_operation(
&this.machine.threads,
current_span,
|index, mut clocks| {
trace!("Atomic fence on {:?} with ordering {:?}", index, atomic);
// Apply data-race detection for the current fences
// this treats AcqRel and SeqCst as the same as an acquire
// and release fence applied in the same timestamp.
if atomic != AtomicFenceOrd::Release {
// Either Acquire | AcqRel | SeqCst
clocks.apply_acquire_fence();
}
if atomic != AtomicFenceOrd::Acquire {
// Either Release | AcqRel | SeqCst
clocks.apply_release_fence();
}
if atomic == AtomicFenceOrd::SeqCst {
data_race.last_sc_fence.borrow_mut().set_at_index(&clocks.clock, index);
clocks.fence_seqcst.join(&data_race.last_sc_fence.borrow());
clocks.write_seqcst.join(&data_race.last_sc_write.borrow());
}
// Increment timestamp in case of release semantics.
interp_ok(atomic != AtomicFenceOrd::Acquire)
},
)
} else {
interp_ok(())
}
}
/// After all threads are done running, this allows data races to occur for subsequent
/// 'administrative' machine accesses (that logically happen outside of the Abstract Machine).
fn allow_data_races_all_threads_done(&mut self) {
let this = self.eval_context_ref();
assert!(this.have_all_terminated());
if let Some(data_race) = &this.machine.data_race {
let old = data_race.ongoing_action_data_race_free.replace(true);
assert!(!old, "cannot nest allow_data_races");
}
}
/// Calls the callback with the "release" clock of the current thread.
/// Other threads can acquire this clock in the future to establish synchronization
/// with this program point.
///
/// The closure will only be invoked if data race handling is on.
fn release_clock<R>(&self, callback: impl FnOnce(&VClock) -> R) -> Option<R> {
let this = self.eval_context_ref();
Some(this.machine.data_race.as_ref()?.release_clock(&this.machine.threads, callback))
}
/// Acquire the given clock into the current thread, establishing synchronization with
/// the moment when that clock snapshot was taken via `release_clock`.
fn acquire_clock(&self, clock: &VClock) {
let this = self.eval_context_ref();
if let Some(data_race) = &this.machine.data_race {
data_race.acquire_clock(clock, &this.machine.threads);
}
}
}
/// Vector clock metadata for a logical memory allocation.
#[derive(Debug, Clone)]
pub struct VClockAlloc {
/// Assigning each byte a MemoryCellClocks.
alloc_ranges: RefCell<RangeMap<MemoryCellClocks>>,
}
impl VisitProvenance for VClockAlloc {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
// No tags or allocIds here.
}
}
impl VClockAlloc {
/// Create a new data-race detector for newly allocated memory.
pub fn new_allocation(
global: &GlobalState,
thread_mgr: &ThreadManager<'_>,
len: Size,
kind: MemoryKind,
current_span: Span,
) -> VClockAlloc {
// Determine the thread that did the allocation, and when it did it.
let (alloc_timestamp, alloc_index) = match kind {
// User allocated and stack memory should track allocation.
MemoryKind::Machine(
MiriMemoryKind::Rust
| MiriMemoryKind::Miri
| MiriMemoryKind::C
| MiriMemoryKind::WinHeap
| MiriMemoryKind::WinLocal
| MiriMemoryKind::Mmap,
)
| MemoryKind::Stack => {
let (alloc_index, clocks) = global.active_thread_state(thread_mgr);
let mut alloc_timestamp = clocks.clock[alloc_index];
alloc_timestamp.span = current_span;
(alloc_timestamp, alloc_index)
}
// Other global memory should trace races but be allocated at the 0 timestamp
// (conceptually they are allocated on the main thread before everything).
MemoryKind::Machine(
MiriMemoryKind::Global
| MiriMemoryKind::Machine
| MiriMemoryKind::Runtime
| MiriMemoryKind::ExternStatic
| MiriMemoryKind::Tls,
)
| MemoryKind::CallerLocation =>
(VTimestamp::ZERO, global.thread_index(ThreadId::MAIN_THREAD)),
};
VClockAlloc {
alloc_ranges: RefCell::new(RangeMap::new(
len,
MemoryCellClocks::new(alloc_timestamp, alloc_index),
)),
}
}
// Find an index, if one exists where the value
// in `l` is greater than the value in `r`.
fn find_gt_index(l: &VClock, r: &VClock) -> Option<VectorIdx> {
trace!("Find index where not {:?} <= {:?}", l, r);
let l_slice = l.as_slice();
let r_slice = r.as_slice();
l_slice
.iter()
.zip(r_slice.iter())
.enumerate()
.find_map(|(idx, (&l, &r))| if l > r { Some(idx) } else { None })
.or_else(|| {
if l_slice.len() > r_slice.len() {
// By invariant, if l_slice is longer
// then one element must be larger.
// This just validates that this is true
// and reports earlier elements first.
let l_remainder_slice = &l_slice[r_slice.len()..];
let idx = l_remainder_slice
.iter()
.enumerate()
.find_map(|(idx, &r)| if r == VTimestamp::ZERO { None } else { Some(idx) })
.expect("Invalid VClock Invariant");
Some(idx + r_slice.len())
} else {
None
}
})
.map(VectorIdx::new)
}
/// Report a data-race found in the program.
/// This finds the two racing threads and the type
/// of data-race that occurred. This will also
/// return info about the memory location the data-race
/// occurred in. The `ty` parameter is used for diagnostics, letting
/// the user know which type was involved in the access.
#[cold]
#[inline(never)]
fn report_data_race<'tcx>(
global: &GlobalState,
thread_mgr: &ThreadManager<'_>,
mem_clocks: &MemoryCellClocks,
access: AccessType,
access_size: Size,
ptr_dbg: interpret::Pointer<AllocId>,
ty: Option<Ty<'_>>,
) -> InterpResult<'tcx> {
let (active_index, active_clocks) = global.active_thread_state(thread_mgr);
let mut other_size = None; // if `Some`, this was a size-mismatch race
let write_clock;
let (other_access, other_thread, other_clock) =
// First check the atomic-nonatomic cases.
if !access.is_atomic() &&
let Some(atomic) = mem_clocks.atomic() &&
let Some(idx) = Self::find_gt_index(&atomic.write_vector, &active_clocks.clock)
{
(AccessType::AtomicStore, idx, &atomic.write_vector)
} else if !access.is_atomic() &&
let Some(atomic) = mem_clocks.atomic() &&
let Some(idx) = Self::find_gt_index(&atomic.read_vector, &active_clocks.clock)
{
(AccessType::AtomicLoad, idx, &atomic.read_vector)
// Then check races with non-atomic writes/reads.
} else if mem_clocks.write.1 > active_clocks.clock[mem_clocks.write.0] {
write_clock = mem_clocks.write();
(AccessType::NaWrite(mem_clocks.write_type), mem_clocks.write.0, &write_clock)
} else if let Some(idx) = Self::find_gt_index(&mem_clocks.read, &active_clocks.clock) {
(AccessType::NaRead(mem_clocks.read[idx].read_type()), idx, &mem_clocks.read)
// Finally, mixed-size races.
} else if access.is_atomic() && let Some(atomic) = mem_clocks.atomic() && atomic.size != Some(access_size) {
// This is only a race if we are not synchronized with all atomic accesses, so find
// the one we are not synchronized with.
other_size = Some(atomic.size.unwrap_or(Size::ZERO));
if let Some(idx) = Self::find_gt_index(&atomic.write_vector, &active_clocks.clock)
{
(AccessType::AtomicStore, idx, &atomic.write_vector)
} else if let Some(idx) =
Self::find_gt_index(&atomic.read_vector, &active_clocks.clock)
{
(AccessType::AtomicLoad, idx, &atomic.read_vector)
} else {
unreachable!(
"Failed to report data-race for mixed-size access: no race found"
)
}
} else {
unreachable!("Failed to report data-race")
};
// Load elaborated thread information about the racing thread actions.
let active_thread_info = global.print_thread_metadata(thread_mgr, active_index);
let other_thread_info = global.print_thread_metadata(thread_mgr, other_thread);
let involves_non_atomic = !access.is_atomic() || !other_access.is_atomic();
// Throw the data-race detection.
let extra = if other_size.is_some() {
assert!(!involves_non_atomic);
Some("overlapping unsynchronized atomic accesses must use the same access size")
} else if access.is_read() && other_access.is_read() {
panic!("there should be no same-size read-read races")
} else {
None
};
Err(err_machine_stop!(TerminationInfo::DataRace {
involves_non_atomic,
extra,
retag_explain: access.is_retag() || other_access.is_retag(),
ptr: ptr_dbg,
op1: RacingOp {
action: other_access.description(None, other_size),
thread_info: other_thread_info,
span: other_clock.as_slice()[other_thread.index()].span_data(),
},
op2: RacingOp {
action: access.description(ty, other_size.map(|_| access_size)),
thread_info: active_thread_info,
span: active_clocks.clock.as_slice()[active_index.index()].span_data(),
},
}))?
}
/// Detect data-races for an unsynchronized read operation. It will not perform
/// data-race detection if `race_detecting()` is false, either due to no threads
/// being created or if it is temporarily disabled during a racy read or write
/// operation for which data-race detection is handled separately, for example
/// atomic read operations. The `ty` parameter is used for diagnostics, letting
/// the user know which type was read.
pub fn read<'tcx>(
&self,
alloc_id: AllocId,
access_range: AllocRange,
read_type: NaReadType,
ty: Option<Ty<'_>>,
machine: &MiriMachine<'_>,
) -> InterpResult<'tcx> {
let current_span = machine.current_span();
let global = machine.data_race.as_ref().unwrap();
if !global.race_detecting() {
return interp_ok(());
}
let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
let mut alloc_ranges = self.alloc_ranges.borrow_mut();
for (mem_clocks_range, mem_clocks) in
alloc_ranges.iter_mut(access_range.start, access_range.size)
{
if let Err(DataRace) =
mem_clocks.read_race_detect(&mut thread_clocks, index, read_type, current_span)
{
drop(thread_clocks);
// Report data-race.
return Self::report_data_race(
global,
&machine.threads,
mem_clocks,
AccessType::NaRead(read_type),
access_range.size,
interpret::Pointer::new(alloc_id, Size::from_bytes(mem_clocks_range.start)),
ty,
);
}
}
interp_ok(())
}
/// Detect data-races for an unsynchronized write operation. It will not perform
/// data-race detection if `race_detecting()` is false, either due to no threads
/// being created or if it is temporarily disabled during a racy read or write
/// operation. The `ty` parameter is used for diagnostics, letting
/// the user know which type was written.
pub fn write<'tcx>(
&mut self,
alloc_id: AllocId,
access_range: AllocRange,
write_type: NaWriteType,
ty: Option<Ty<'_>>,
machine: &mut MiriMachine<'_>,
) -> InterpResult<'tcx> {
let current_span = machine.current_span();
let global = machine.data_race.as_mut().unwrap();
if !global.race_detecting() {
return interp_ok(());
}
let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
for (mem_clocks_range, mem_clocks) in
self.alloc_ranges.get_mut().iter_mut(access_range.start, access_range.size)
{
if let Err(DataRace) =
mem_clocks.write_race_detect(&mut thread_clocks, index, write_type, current_span)
{
drop(thread_clocks);
// Report data-race
return Self::report_data_race(
global,
&machine.threads,
mem_clocks,
AccessType::NaWrite(write_type),
access_range.size,
interpret::Pointer::new(alloc_id, Size::from_bytes(mem_clocks_range.start)),
ty,
);
}
}
interp_ok(())
}
}
/// Vector clock state for a stack frame (tracking the local variables
/// that do not have an allocation yet).
#[derive(Debug, Default)]
pub struct FrameState {
local_clocks: RefCell<FxHashMap<mir::Local, LocalClocks>>,
}
/// Stripped-down version of [`MemoryCellClocks`] for the clocks we need to keep track
/// of in a local that does not yet have addressable memory -- and hence can only
/// be accessed from the thread its stack frame belongs to, and cannot be access atomically.
#[derive(Debug)]
struct LocalClocks {
write: VTimestamp,
write_type: NaWriteType,
read: VTimestamp,
}
impl Default for LocalClocks {
fn default() -> Self {
Self { write: VTimestamp::ZERO, write_type: NaWriteType::Allocate, read: VTimestamp::ZERO }
}
}
impl FrameState {
pub fn local_write(&self, local: mir::Local, storage_live: bool, machine: &MiriMachine<'_>) {
let current_span = machine.current_span();
let global = machine.data_race.as_ref().unwrap();
if !global.race_detecting() {
return;
}
let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
// This should do the same things as `MemoryCellClocks::write_race_detect`.
if !current_span.is_dummy() {
thread_clocks.clock.index_mut(index).span = current_span;
}
let mut clocks = self.local_clocks.borrow_mut();
if storage_live {
let new_clocks = LocalClocks {
write: thread_clocks.clock[index],
write_type: NaWriteType::Allocate,
read: VTimestamp::ZERO,
};
// There might already be an entry in the map for this, if the local was previously
// live already.
clocks.insert(local, new_clocks);
} else {
// This can fail to exist if `race_detecting` was false when the allocation
// occurred, in which case we can backdate this to the beginning of time.
let clocks = clocks.entry(local).or_default();
clocks.write = thread_clocks.clock[index];
clocks.write_type = NaWriteType::Write;
}
}
pub fn local_read(&self, local: mir::Local, machine: &MiriMachine<'_>) {
let current_span = machine.current_span();
let global = machine.data_race.as_ref().unwrap();
if !global.race_detecting() {
return;
}
let (index, mut thread_clocks) = global.active_thread_state_mut(&machine.threads);
// This should do the same things as `MemoryCellClocks::read_race_detect`.
if !current_span.is_dummy() {
thread_clocks.clock.index_mut(index).span = current_span;
}
thread_clocks.clock.index_mut(index).set_read_type(NaReadType::Read);
// This can fail to exist if `race_detecting` was false when the allocation
// occurred, in which case we can backdate this to the beginning of time.
let mut clocks = self.local_clocks.borrow_mut();
let clocks = clocks.entry(local).or_default();
clocks.read = thread_clocks.clock[index];
}
pub fn local_moved_to_memory(
&self,
local: mir::Local,
alloc: &mut VClockAlloc,
machine: &MiriMachine<'_>,
) {
let global = machine.data_race.as_ref().unwrap();
if !global.race_detecting() {
return;
}
let (index, _thread_clocks) = global.active_thread_state_mut(&machine.threads);
// Get the time the last write actually happened. This can fail to exist if
// `race_detecting` was false when the write occurred, in that case we can backdate this
// to the beginning of time.
let local_clocks = self.local_clocks.borrow_mut().remove(&local).unwrap_or_default();
for (_mem_clocks_range, mem_clocks) in alloc.alloc_ranges.get_mut().iter_mut_all() {
// The initialization write for this already happened, just at the wrong timestamp.
// Check that the thread index matches what we expect.
assert_eq!(mem_clocks.write.0, index);
// Convert the local's clocks into memory clocks.
mem_clocks.write = (index, local_clocks.write);
mem_clocks.write_type = local_clocks.write_type;
mem_clocks.read = VClock::new_with_index(index, local_clocks.read);
}
}
}
impl<'tcx> EvalContextPrivExt<'tcx> for MiriInterpCx<'tcx> {}
trait EvalContextPrivExt<'tcx>: MiriInterpCxExt<'tcx> {
/// Temporarily allow data-races to occur. This should only be used in
/// one of these cases:
/// - One of the appropriate `validate_atomic` functions will be called to
/// treat a memory access as atomic.
/// - The memory being accessed should be treated as internal state, that
/// cannot be accessed by the interpreted program.
/// - Execution of the interpreted program execution has halted.
#[inline]
fn allow_data_races_ref<R>(&self, op: impl FnOnce(&MiriInterpCx<'tcx>) -> R) -> R {
let this = self.eval_context_ref();
if let Some(data_race) = &this.machine.data_race {
let old = data_race.ongoing_action_data_race_free.replace(true);
assert!(!old, "cannot nest allow_data_races");
}
let result = op(this);
if let Some(data_race) = &this.machine.data_race {
data_race.ongoing_action_data_race_free.set(false);
}
result
}
/// Same as `allow_data_races_ref`, this temporarily disables any data-race detection and
/// so should only be used for atomic operations or internal state that the program cannot
/// access.
#[inline]
fn allow_data_races_mut<R>(&mut self, op: impl FnOnce(&mut MiriInterpCx<'tcx>) -> R) -> R {
let this = self.eval_context_mut();
if let Some(data_race) = &this.machine.data_race {
let old = data_race.ongoing_action_data_race_free.replace(true);
assert!(!old, "cannot nest allow_data_races");
}
let result = op(this);
if let Some(data_race) = &this.machine.data_race {
data_race.ongoing_action_data_race_free.set(false);
}
result
}
/// Checks that an atomic access is legal at the given place.
fn atomic_access_check(
&self,
place: &MPlaceTy<'tcx>,
access_type: AtomicAccessType,
) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
// Check alignment requirements. Atomics must always be aligned to their size,
// even if the type they wrap would be less aligned (e.g. AtomicU64 on 32bit must
// be 8-aligned).
let align = Align::from_bytes(place.layout.size.bytes()).unwrap();
this.check_ptr_align(place.ptr(), align)?;
// Ensure the allocation is mutable. Even failing (read-only) compare_exchange need mutable
// memory on many targets (i.e., they segfault if taht memory is mapped read-only), and
// atomic loads can be implemented via compare_exchange on some targets. There could
// possibly be some very specific exceptions to this, see
// <https://github.com/rust-lang/miri/pull/2464#discussion_r939636130> for details.
// We avoid `get_ptr_alloc` since we do *not* want to run the access hooks -- the actual
// access will happen later.
let (alloc_id, _offset, _prov) = this
.ptr_try_get_alloc_id(place.ptr(), 0)
.expect("there are no zero-sized atomic accesses");
if this.get_alloc_mutability(alloc_id)? == Mutability::Not {
// See if this is fine.
match access_type {
AtomicAccessType::Rmw | AtomicAccessType::Store => {
throw_ub_format!(
"atomic store and read-modify-write operations cannot be performed on read-only memory\n\
see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
);
}
AtomicAccessType::Load(_)
if place.layout.size > this.tcx.data_layout().pointer_size() =>
{
throw_ub_format!(
"large atomic load operations cannot be performed on read-only memory\n\
these operations often have to be implemented using read-modify-write operations, which require writeable memory\n\
see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
);
}
AtomicAccessType::Load(o) if o != AtomicReadOrd::Relaxed => {
throw_ub_format!(
"non-relaxed atomic load operations cannot be performed on read-only memory\n\
these operations sometimes have to be implemented using read-modify-write operations, which require writeable memory\n\
see <https://doc.rust-lang.org/nightly/std/sync/atomic/index.html#atomic-accesses-to-read-only-memory> for more information"
);
}
_ => {
// Large relaxed loads are fine!
}
}
}
interp_ok(())
}
/// Update the data-race detector for an atomic read occurring at the
/// associated memory-place and on the current thread.
fn validate_atomic_load(
&self,
place: &MPlaceTy<'tcx>,
atomic: AtomicReadOrd,
) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
this.validate_atomic_op(
place,
atomic,
AccessType::AtomicLoad,
move |memory, clocks, index, atomic| {
if atomic == AtomicReadOrd::Relaxed {
memory.load_relaxed(&mut *clocks, index, place.layout.size)
} else {
memory.load_acquire(&mut *clocks, index, place.layout.size)
}
},
)
}
/// Update the data-race detector for an atomic write occurring at the
/// associated memory-place and on the current thread.
fn validate_atomic_store(
&mut self,
place: &MPlaceTy<'tcx>,
atomic: AtomicWriteOrd,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
this.validate_atomic_op(
place,
atomic,
AccessType::AtomicStore,
move |memory, clocks, index, atomic| {
if atomic == AtomicWriteOrd::Relaxed {
memory.store_relaxed(clocks, index, place.layout.size)
} else {
memory.store_release(clocks, index, place.layout.size)
}
},
)
}
/// Update the data-race detector for an atomic read-modify-write occurring
/// at the associated memory place and on the current thread.
fn validate_atomic_rmw(
&mut self,
place: &MPlaceTy<'tcx>,
atomic: AtomicRwOrd,
) -> InterpResult<'tcx> {
use AtomicRwOrd::*;
let acquire = matches!(atomic, Acquire | AcqRel | SeqCst);
let release = matches!(atomic, Release | AcqRel | SeqCst);
let this = self.eval_context_mut();
this.validate_atomic_op(
place,
atomic,
AccessType::AtomicRmw,
move |memory, clocks, index, _| {
if acquire {
memory.load_acquire(clocks, index, place.layout.size)?;
} else {
memory.load_relaxed(clocks, index, place.layout.size)?;
}
if release {
memory.rmw_release(clocks, index, place.layout.size)
} else {
memory.rmw_relaxed(clocks, index, place.layout.size)
}
},
)
}
/// Generic atomic operation implementation
fn validate_atomic_op<A: Debug + Copy>(
&self,
place: &MPlaceTy<'tcx>,
atomic: A,
access: AccessType,
mut op: impl FnMut(
&mut MemoryCellClocks,
&mut ThreadClockSet,
VectorIdx,
A,
) -> Result<(), DataRace>,
) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
assert!(access.is_atomic());
let Some(data_race) = &this.machine.data_race else { return interp_ok(()) };
if !data_race.race_detecting() {
return interp_ok(());
}
let size = place.layout.size;
let (alloc_id, base_offset, _prov) = this.ptr_get_alloc_id(place.ptr(), 0)?;
// Load and log the atomic operation.
// Note that atomic loads are possible even from read-only allocations, so `get_alloc_extra_mut` is not an option.
let alloc_meta = this.get_alloc_extra(alloc_id)?.data_race.as_ref().unwrap();
trace!(
"Atomic op({}) with ordering {:?} on {:?} (size={})",
access.description(None, None),
&atomic,
place.ptr(),
size.bytes()
);
let current_span = this.machine.current_span();
// Perform the atomic operation.
data_race.maybe_perform_sync_operation(
&this.machine.threads,
current_span,
|index, mut thread_clocks| {
for (mem_clocks_range, mem_clocks) in
alloc_meta.alloc_ranges.borrow_mut().iter_mut(base_offset, size)
{
if let Err(DataRace) = op(mem_clocks, &mut thread_clocks, index, atomic) {
mem::drop(thread_clocks);
return VClockAlloc::report_data_race(
data_race,
&this.machine.threads,
mem_clocks,
access,
place.layout.size,
interpret::Pointer::new(
alloc_id,
Size::from_bytes(mem_clocks_range.start),
),
None,
)
.map(|_| true);
}
}
// This conservatively assumes all operations have release semantics
interp_ok(true)
},
)?;
// Log changes to atomic memory.
if tracing::enabled!(tracing::Level::TRACE) {
for (_offset, mem_clocks) in alloc_meta.alloc_ranges.borrow().iter(base_offset, size) {
trace!(
"Updated atomic memory({:?}, size={}) to {:#?}",
place.ptr(),
size.bytes(),
mem_clocks.atomic_ops
);
}
}
interp_ok(())
}
}
/// Extra metadata associated with a thread.
#[derive(Debug, Clone, Default)]
struct ThreadExtraState {
/// The current vector index in use by the
/// thread currently, this is set to None
/// after the vector index has been re-used
/// and hence the value will never need to be
/// read during data-race reporting.
vector_index: Option<VectorIdx>,
/// Thread termination vector clock, this
/// is set on thread termination and is used
/// for joining on threads since the vector_index
/// may be re-used when the join operation occurs.
termination_vector_clock: Option<VClock>,
}
/// Global data-race detection state, contains the currently
/// executing thread as well as the vector-clocks associated
/// with each of the threads.
// FIXME: it is probably better to have one large RefCell, than to have so many small ones.
#[derive(Debug, Clone)]
pub struct GlobalState {
/// Set to true once the first additional
/// thread has launched, due to the dependency
/// between before and after a thread launch.
/// Any data-races must be recorded after this
/// so concurrent execution can ignore recording
/// any data-races.
multi_threaded: Cell<bool>,
/// A flag to mark we are currently performing
/// a data race free action (such as atomic access)
/// to suppress the race detector
ongoing_action_data_race_free: Cell<bool>,
/// Mapping of a vector index to a known set of thread
/// clocks, this is not directly mapping from a thread id
/// since it may refer to multiple threads.
vector_clocks: RefCell<IndexVec<VectorIdx, ThreadClockSet>>,
/// Mapping of a given vector index to the current thread
/// that the execution is representing, this may change
/// if a vector index is re-assigned to a new thread.
vector_info: RefCell<IndexVec<VectorIdx, ThreadId>>,
/// The mapping of a given thread to associated thread metadata.
thread_info: RefCell<IndexVec<ThreadId, ThreadExtraState>>,
/// Potential vector indices that could be re-used on thread creation
/// values are inserted here on after the thread has terminated and
/// been joined with, and hence may potentially become free
/// for use as the index for a new thread.
/// Elements in this set may still require the vector index to
/// report data-races, and can only be re-used after all
/// active vector-clocks catch up with the threads timestamp.
reuse_candidates: RefCell<FxHashSet<VectorIdx>>,
/// The timestamp of last SC fence performed by each thread
last_sc_fence: RefCell<VClock>,
/// The timestamp of last SC write performed by each thread
last_sc_write: RefCell<VClock>,
/// Track when an outdated (weak memory) load happens.
pub track_outdated_loads: bool,
}
impl VisitProvenance for GlobalState {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
// We don't have any tags.
}
}
impl GlobalState {
/// Create a new global state, setup with just thread-id=0
/// advanced to timestamp = 1.
pub fn new(config: &MiriConfig) -> Self {
let mut global_state = GlobalState {
multi_threaded: Cell::new(false),
ongoing_action_data_race_free: Cell::new(false),
vector_clocks: RefCell::new(IndexVec::new()),
vector_info: RefCell::new(IndexVec::new()),
thread_info: RefCell::new(IndexVec::new()),
reuse_candidates: RefCell::new(FxHashSet::default()),
last_sc_fence: RefCell::new(VClock::default()),
last_sc_write: RefCell::new(VClock::default()),
track_outdated_loads: config.track_outdated_loads,
};
// Setup the main-thread since it is not explicitly created:
// uses vector index and thread-id 0.
let index = global_state.vector_clocks.get_mut().push(ThreadClockSet::default());
global_state.vector_info.get_mut().push(ThreadId::MAIN_THREAD);
global_state
.thread_info
.get_mut()
.push(ThreadExtraState { vector_index: Some(index), termination_vector_clock: None });
global_state
}
// We perform data race detection when there are more than 1 active thread
// and we have not temporarily disabled race detection to perform something
// data race free
fn race_detecting(&self) -> bool {
self.multi_threaded.get() && !self.ongoing_action_data_race_free.get()
}
pub fn ongoing_action_data_race_free(&self) -> bool {
self.ongoing_action_data_race_free.get()
}
// Try to find vector index values that can potentially be re-used
// by a new thread instead of a new vector index being created.
fn find_vector_index_reuse_candidate(&self) -> Option<VectorIdx> {
let mut reuse = self.reuse_candidates.borrow_mut();
let vector_clocks = self.vector_clocks.borrow();
for &candidate in reuse.iter() {
let target_timestamp = vector_clocks[candidate].clock[candidate];
if vector_clocks.iter_enumerated().all(|(clock_idx, clock)| {
// The thread happens before the clock, and hence cannot report
// a data-race with this the candidate index.
let no_data_race = clock.clock[candidate] >= target_timestamp;
// The vector represents a thread that has terminated and hence cannot
// report a data-race with the candidate index.
let vector_terminated = reuse.contains(&clock_idx);
// The vector index cannot report a race with the candidate index
// and hence allows the candidate index to be re-used.
no_data_race || vector_terminated
}) {
// All vector clocks for each vector index are equal to
// the target timestamp, and the thread is known to have
// terminated, therefore this vector clock index cannot
// report any more data-races.
assert!(reuse.remove(&candidate));
return Some(candidate);
}
}
None
}
// Hook for thread creation, enabled multi-threaded execution and marks
// the current thread timestamp as happening-before the current thread.
#[inline]
pub fn thread_created(
&mut self,
thread_mgr: &ThreadManager<'_>,
thread: ThreadId,
current_span: Span,
) {
let current_index = self.active_thread_index(thread_mgr);
// Enable multi-threaded execution, there are now at least two threads
// so data-races are now possible.
self.multi_threaded.set(true);
// Load and setup the associated thread metadata
let mut thread_info = self.thread_info.borrow_mut();
thread_info.ensure_contains_elem(thread, Default::default);
// Assign a vector index for the thread, attempting to re-use an old
// vector index that can no longer report any data-races if possible.
let created_index = if let Some(reuse_index) = self.find_vector_index_reuse_candidate() {
// Now re-configure the re-use candidate, increment the clock
// for the new sync use of the vector.
let vector_clocks = self.vector_clocks.get_mut();
vector_clocks[reuse_index].increment_clock(reuse_index, current_span);
// Locate the old thread the vector was associated with and update
// it to represent the new thread instead.
let vector_info = self.vector_info.get_mut();
let old_thread = vector_info[reuse_index];
vector_info[reuse_index] = thread;
// Mark the thread the vector index was associated with as no longer
// representing a thread index.
thread_info[old_thread].vector_index = None;
reuse_index
} else {
// No vector re-use candidates available, instead create
// a new vector index.
let vector_info = self.vector_info.get_mut();
vector_info.push(thread)
};
trace!("Creating thread = {:?} with vector index = {:?}", thread, created_index);
// Mark the chosen vector index as in use by the thread.
thread_info[thread].vector_index = Some(created_index);
// Create a thread clock set if applicable.
let vector_clocks = self.vector_clocks.get_mut();
if created_index == vector_clocks.next_index() {
vector_clocks.push(ThreadClockSet::default());
}
// Now load the two clocks and configure the initial state.
let (current, created) = vector_clocks.pick2_mut(current_index, created_index);
// Join the created with current, since the current threads
// previous actions happen-before the created thread.
created.join_with(current);
// Advance both threads after the synchronized operation.
// Both operations are considered to have release semantics.
current.increment_clock(current_index, current_span);
created.increment_clock(created_index, current_span);
}
/// Hook on a thread join to update the implicit happens-before relation between the joined
/// thread (the joinee, the thread that someone waited on) and the current thread (the joiner,
/// the thread who was waiting).
#[inline]
pub fn thread_joined(&mut self, threads: &ThreadManager<'_>, joinee: ThreadId) {
let thread_info = self.thread_info.borrow();
let thread_info = &thread_info[joinee];
// Load the associated vector clock for the terminated thread.
let join_clock = thread_info
.termination_vector_clock
.as_ref()
.expect("joined with thread but thread has not terminated");
// Acquire that into the current thread.
self.acquire_clock(join_clock, threads);
// Check the number of live threads, if the value is 1
// then test for potentially disabling multi-threaded execution.
// This has to happen after `acquire_clock`, otherwise there'll always
// be some thread that has not synchronized yet.
if let Some(current_index) = thread_info.vector_index {
if threads.get_live_thread_count() == 1 {
let vector_clocks = self.vector_clocks.get_mut();
// May potentially be able to disable multi-threaded execution.
let current_clock = &vector_clocks[current_index];
if vector_clocks
.iter_enumerated()
.all(|(idx, clocks)| clocks.clock[idx] <= current_clock.clock[idx])
{
// All thread terminations happen-before the current clock
// therefore no data-races can be reported until a new thread
// is created, so disable multi-threaded execution.
self.multi_threaded.set(false);
}
}
}
}
/// On thread termination, the vector-clock may re-used
/// in the future once all remaining thread-clocks catch
/// up with the time index of the terminated thread.
/// This assigns thread termination with a unique index
/// which will be used to join the thread
/// This should be called strictly before any calls to
/// `thread_joined`.
#[inline]
pub fn thread_terminated(&mut self, thread_mgr: &ThreadManager<'_>) {
let current_thread = thread_mgr.active_thread();
let current_index = self.active_thread_index(thread_mgr);
// Store the terminaion clock.
let terminaion_clock = self.release_clock(thread_mgr, |clock| clock.clone());
self.thread_info.get_mut()[current_thread].termination_vector_clock =
Some(terminaion_clock);
// Add this thread's clock index as a candidate for re-use.
let reuse = self.reuse_candidates.get_mut();
reuse.insert(current_index);
}
/// Attempt to perform a synchronized operation, this
/// will perform no operation if multi-threading is
/// not currently enabled.
/// Otherwise it will increment the clock for the current
/// vector before and after the operation for data-race
/// detection between any happens-before edges the
/// operation may create.
fn maybe_perform_sync_operation<'tcx>(
&self,
thread_mgr: &ThreadManager<'_>,
current_span: Span,
op: impl FnOnce(VectorIdx, RefMut<'_, ThreadClockSet>) -> InterpResult<'tcx, bool>,
) -> InterpResult<'tcx> {
if self.multi_threaded.get() {
let (index, clocks) = self.active_thread_state_mut(thread_mgr);
if op(index, clocks)? {
let (_, mut clocks) = self.active_thread_state_mut(thread_mgr);
clocks.increment_clock(index, current_span);
}
}
interp_ok(())
}
/// Internal utility to identify a thread stored internally
/// returns the id and the name for better diagnostics.
fn print_thread_metadata(&self, thread_mgr: &ThreadManager<'_>, vector: VectorIdx) -> String {
let thread = self.vector_info.borrow()[vector];
let thread_name = thread_mgr.get_thread_display_name(thread);
format!("thread `{thread_name}`")
}
/// Acquire the given clock into the current thread, establishing synchronization with
/// the moment when that clock snapshot was taken via `release_clock`.
/// As this is an acquire operation, the thread timestamp is not
/// incremented.
pub fn acquire_clock<'tcx>(&self, clock: &VClock, threads: &ThreadManager<'tcx>) {
let thread = threads.active_thread();
let (_, mut clocks) = self.thread_state_mut(thread);
clocks.clock.join(clock);
}
/// Calls the given closure with the "release" clock of the current thread.
/// Other threads can acquire this clock in the future to establish synchronization
/// with this program point.
pub fn release_clock<'tcx, R>(
&self,
threads: &ThreadManager<'tcx>,
callback: impl FnOnce(&VClock) -> R,
) -> R {
let thread = threads.active_thread();
let span = threads.active_thread_ref().current_span();
let (index, mut clocks) = self.thread_state_mut(thread);
let r = callback(&clocks.clock);
// Increment the clock, so that all following events cannot be confused with anything that
// occurred before the release. Crucially, the callback is invoked on the *old* clock!
clocks.increment_clock(index, span);
r
}
fn thread_index(&self, thread: ThreadId) -> VectorIdx {
self.thread_info.borrow()[thread].vector_index.expect("thread has no assigned vector")
}
/// Load the vector index used by the given thread as well as the set of vector clocks
/// used by the thread.
#[inline]
fn thread_state_mut(&self, thread: ThreadId) -> (VectorIdx, RefMut<'_, ThreadClockSet>) {
let index = self.thread_index(thread);
let ref_vector = self.vector_clocks.borrow_mut();
let clocks = RefMut::map(ref_vector, |vec| &mut vec[index]);
(index, clocks)
}
/// Load the vector index used by the given thread as well as the set of vector clocks
/// used by the thread.
#[inline]
fn thread_state(&self, thread: ThreadId) -> (VectorIdx, Ref<'_, ThreadClockSet>) {
let index = self.thread_index(thread);
let ref_vector = self.vector_clocks.borrow();
let clocks = Ref::map(ref_vector, |vec| &vec[index]);
(index, clocks)
}
/// Load the current vector clock in use and the current set of thread clocks
/// in use for the vector.
#[inline]
pub(super) fn active_thread_state(
&self,
thread_mgr: &ThreadManager<'_>,
) -> (VectorIdx, Ref<'_, ThreadClockSet>) {
self.thread_state(thread_mgr.active_thread())
}
/// Load the current vector clock in use and the current set of thread clocks
/// in use for the vector mutably for modification.
#[inline]
pub(super) fn active_thread_state_mut(
&self,
thread_mgr: &ThreadManager<'_>,
) -> (VectorIdx, RefMut<'_, ThreadClockSet>) {
self.thread_state_mut(thread_mgr.active_thread())
}
/// Return the current thread, should be the same
/// as the data-race active thread.
#[inline]
fn active_thread_index(&self, thread_mgr: &ThreadManager<'_>) -> VectorIdx {
let active_thread_id = thread_mgr.active_thread();
self.thread_index(active_thread_id)
}
// SC ATOMIC STORE rule in the paper.
pub(super) fn sc_write(&self, thread_mgr: &ThreadManager<'_>) {
let (index, clocks) = self.active_thread_state(thread_mgr);
self.last_sc_write.borrow_mut().set_at_index(&clocks.clock, index);
}
// SC ATOMIC READ rule in the paper.
pub(super) fn sc_read(&self, thread_mgr: &ThreadManager<'_>) {
let (.., mut clocks) = self.active_thread_state_mut(thread_mgr);
clocks.read_seqcst.join(&self.last_sc_fence.borrow());
}
}