miri/concurrency/
sync.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
use std::collections::VecDeque;
use std::collections::hash_map::Entry;
use std::ops::Not;
use std::time::Duration;

use rustc_data_structures::fx::FxHashMap;
use rustc_index::{Idx, IndexVec};
use rustc_target::abi::Size;

use super::init_once::InitOnce;
use super::vector_clock::VClock;
use crate::*;

/// We cannot use the `newtype_index!` macro because we have to use 0 as a
/// sentinel value meaning that the identifier is not assigned. This is because
/// the pthreads static initializers initialize memory with zeros (see the
/// `src/shims/sync.rs` file).
macro_rules! declare_id {
    ($name: ident) => {
        /// 0 is used to indicate that the id was not yet assigned and,
        /// therefore, is not a valid identifier.
        #[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
        pub struct $name(std::num::NonZero<u32>);

        impl $crate::VisitProvenance for $name {
            fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {}
        }

        impl Idx for $name {
            fn new(idx: usize) -> Self {
                // We use 0 as a sentinel value (see the comment above) and,
                // therefore, need to shift by one when converting from an index
                // into a vector.
                let shifted_idx = u32::try_from(idx).unwrap().strict_add(1);
                $name(std::num::NonZero::new(shifted_idx).unwrap())
            }
            fn index(self) -> usize {
                // See the comment in `Self::new`.
                // (This cannot underflow because `self.0` is `NonZero<u32>`.)
                usize::try_from(self.0.get() - 1).unwrap()
            }
        }
    };
}
pub(super) use declare_id;

declare_id!(MutexId);

/// The mutex state.
#[derive(Default, Debug)]
struct Mutex {
    /// The thread that currently owns the lock.
    owner: Option<ThreadId>,
    /// How many times the mutex was locked by the owner.
    lock_count: usize,
    /// The queue of threads waiting for this mutex.
    queue: VecDeque<ThreadId>,
    /// Mutex clock. This tracks the moment of the last unlock.
    clock: VClock,
}

declare_id!(RwLockId);

/// The read-write lock state.
#[derive(Default, Debug)]
struct RwLock {
    /// The writer thread that currently owns the lock.
    writer: Option<ThreadId>,
    /// The readers that currently own the lock and how many times they acquired
    /// the lock.
    readers: FxHashMap<ThreadId, usize>,
    /// The queue of writer threads waiting for this lock.
    writer_queue: VecDeque<ThreadId>,
    /// The queue of reader threads waiting for this lock.
    reader_queue: VecDeque<ThreadId>,
    /// Data race clock for writers. Tracks the happens-before
    /// ordering between each write access to a rwlock and is updated
    /// after a sequence of concurrent readers to track the happens-
    /// before ordering between the set of previous readers and
    /// the current writer.
    /// Contains the clock of the last thread to release a writer
    /// lock or the joined clock of the set of last threads to release
    /// shared reader locks.
    clock_unlocked: VClock,
    /// Data race clock for readers. This is temporary storage
    /// for the combined happens-before ordering for between all
    /// concurrent readers and the next writer, and the value
    /// is stored to the main data_race variable once all
    /// readers are finished.
    /// Has to be stored separately since reader lock acquires
    /// must load the clock of the last write and must not
    /// add happens-before orderings between shared reader
    /// locks.
    /// This is only relevant when there is an active reader.
    clock_current_readers: VClock,
}

declare_id!(CondvarId);

/// The conditional variable state.
#[derive(Default, Debug)]
struct Condvar {
    waiters: VecDeque<ThreadId>,
    /// Tracks the happens-before relationship
    /// between a cond-var signal and a cond-var
    /// wait during a non-spurious signal event.
    /// Contains the clock of the last thread to
    /// perform a condvar-signal.
    clock: VClock,
}

/// The futex state.
#[derive(Default, Debug)]
struct Futex {
    waiters: VecDeque<FutexWaiter>,
    /// Tracks the happens-before relationship
    /// between a futex-wake and a futex-wait
    /// during a non-spurious wake event.
    /// Contains the clock of the last thread to
    /// perform a futex-wake.
    clock: VClock,
}

/// A thread waiting on a futex.
#[derive(Debug)]
struct FutexWaiter {
    /// The thread that is waiting on this futex.
    thread: ThreadId,
    /// The bitset used by FUTEX_*_BITSET, or u32::MAX for other operations.
    bitset: u32,
}

/// The state of all synchronization objects.
#[derive(Default, Debug)]
pub struct SynchronizationObjects {
    mutexes: IndexVec<MutexId, Mutex>,
    rwlocks: IndexVec<RwLockId, RwLock>,
    condvars: IndexVec<CondvarId, Condvar>,
    pub(super) init_onces: IndexVec<InitOnceId, InitOnce>,

    /// Futex info for the futex at the given address.
    futexes: FxHashMap<u64, Futex>,
}

// Private extension trait for local helper methods
impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
    fn condvar_reacquire_mutex(
        &mut self,
        mutex: MutexId,
        retval: Scalar,
        dest: MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        if this.mutex_is_locked(mutex) {
            assert_ne!(this.mutex_get_owner(mutex), this.active_thread());
            this.mutex_enqueue_and_block(mutex, Some((retval, dest)));
        } else {
            // We can have it right now!
            this.mutex_lock(mutex);
            // Don't forget to write the return value.
            this.write_scalar(retval, &dest)?;
        }
        interp_ok(())
    }
}

impl SynchronizationObjects {
    pub fn mutex_create(&mut self) -> MutexId {
        self.mutexes.push(Default::default())
    }

    pub fn rwlock_create(&mut self) -> RwLockId {
        self.rwlocks.push(Default::default())
    }

    pub fn condvar_create(&mut self) -> CondvarId {
        self.condvars.push(Default::default())
    }

    pub fn init_once_create(&mut self) -> InitOnceId {
        self.init_onces.push(Default::default())
    }
}

impl<'tcx> AllocExtra<'tcx> {
    pub fn get_sync<T: 'static>(&self, offset: Size) -> Option<&T> {
        self.sync.get(&offset).and_then(|s| s.downcast_ref::<T>())
    }
}

/// We designate an `init`` field in all primitives.
/// If `init` is set to this, we consider the primitive initialized.
pub const LAZY_INIT_COOKIE: u32 = 0xcafe_affe;

// Public interface to synchronization primitives. Please note that in most
// cases, the function calls are infallible and it is the client's (shim
// implementation's) responsibility to detect and deal with erroneous
// situations.
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// Helper for lazily initialized `alloc_extra.sync` data:
    /// this forces an immediate init.
    fn lazy_sync_init<T: 'static + Copy>(
        &mut self,
        primitive: &MPlaceTy<'tcx>,
        init_offset: Size,
        data: T,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        let (alloc, offset, _) = this.ptr_get_alloc_id(primitive.ptr(), 0)?;
        let (alloc_extra, _machine) = this.get_alloc_extra_mut(alloc)?;
        alloc_extra.sync.insert(offset, Box::new(data));
        // Mark this as "initialized".
        let init_field = primitive.offset(init_offset, this.machine.layouts.u32, this)?;
        this.write_scalar_atomic(
            Scalar::from_u32(LAZY_INIT_COOKIE),
            &init_field,
            AtomicWriteOrd::Relaxed,
        )?;
        interp_ok(())
    }

    /// Helper for lazily initialized `alloc_extra.sync` data:
    /// Checks if the primitive is initialized:
    /// - If yes, fetches the data from `alloc_extra.sync`, or calls `missing_data` if that fails
    ///   and stores that in `alloc_extra.sync`.
    /// - Otherwise, calls `new_data` to initialize the primitive.
    fn lazy_sync_get_data<T: 'static + Copy>(
        &mut self,
        primitive: &MPlaceTy<'tcx>,
        init_offset: Size,
        missing_data: impl FnOnce() -> InterpResult<'tcx, T>,
        new_data: impl FnOnce(&mut MiriInterpCx<'tcx>) -> InterpResult<'tcx, T>,
    ) -> InterpResult<'tcx, T> {
        let this = self.eval_context_mut();

        // Check if this is already initialized. Needs to be atomic because we can race with another
        // thread initializing. Needs to be an RMW operation to ensure we read the *latest* value.
        // So we just try to replace MUTEX_INIT_COOKIE with itself.
        let init_cookie = Scalar::from_u32(LAZY_INIT_COOKIE);
        let init_field = primitive.offset(init_offset, this.machine.layouts.u32, this)?;
        let (_init, success) = this
            .atomic_compare_exchange_scalar(
                &init_field,
                &ImmTy::from_scalar(init_cookie, this.machine.layouts.u32),
                init_cookie,
                AtomicRwOrd::Relaxed,
                AtomicReadOrd::Relaxed,
                /* can_fail_spuriously */ false,
            )?
            .to_scalar_pair();

        if success.to_bool()? {
            // If it is initialized, it must be found in the "sync primitive" table,
            // or else it has been moved illegally.
            let (alloc, offset, _) = this.ptr_get_alloc_id(primitive.ptr(), 0)?;
            let (alloc_extra, _machine) = this.get_alloc_extra_mut(alloc)?;
            if let Some(data) = alloc_extra.get_sync::<T>(offset) {
                interp_ok(*data)
            } else {
                let data = missing_data()?;
                alloc_extra.sync.insert(offset, Box::new(data));
                interp_ok(data)
            }
        } else {
            let data = new_data(this)?;
            this.lazy_sync_init(primitive, init_offset, data)?;
            interp_ok(data)
        }
    }

    /// Get the synchronization primitive associated with the given pointer,
    /// or initialize a new one.
    fn get_sync_or_init<'a, T: 'static>(
        &'a mut self,
        ptr: Pointer,
        new: impl FnOnce(&'a mut MiriMachine<'tcx>) -> InterpResult<'tcx, T>,
    ) -> InterpResult<'tcx, &'a T>
    where
        'tcx: 'a,
    {
        let this = self.eval_context_mut();
        // Ensure there is memory behind this pointer, so that this allocation
        // is truly the only place where the data could be stored.
        this.check_ptr_access(ptr, Size::from_bytes(1), CheckInAllocMsg::InboundsTest)?;

        let (alloc, offset, _) = this.ptr_get_alloc_id(ptr, 0)?;
        let (alloc_extra, machine) = this.get_alloc_extra_mut(alloc)?;
        // Due to borrow checker reasons, we have to do the lookup twice.
        if alloc_extra.get_sync::<T>(offset).is_none() {
            let new = new(machine)?;
            alloc_extra.sync.insert(offset, Box::new(new));
        }
        interp_ok(alloc_extra.get_sync::<T>(offset).unwrap())
    }

    #[inline]
    /// Get the id of the thread that currently owns this lock.
    fn mutex_get_owner(&mut self, id: MutexId) -> ThreadId {
        let this = self.eval_context_ref();
        this.machine.sync.mutexes[id].owner.unwrap()
    }

    #[inline]
    /// Check if locked.
    fn mutex_is_locked(&self, id: MutexId) -> bool {
        let this = self.eval_context_ref();
        this.machine.sync.mutexes[id].owner.is_some()
    }

    /// Lock by setting the mutex owner and increasing the lock count.
    fn mutex_lock(&mut self, id: MutexId) {
        let this = self.eval_context_mut();
        let thread = this.active_thread();
        let mutex = &mut this.machine.sync.mutexes[id];
        if let Some(current_owner) = mutex.owner {
            assert_eq!(thread, current_owner, "mutex already locked by another thread");
            assert!(
                mutex.lock_count > 0,
                "invariant violation: lock_count == 0 iff the thread is unlocked"
            );
        } else {
            mutex.owner = Some(thread);
        }
        mutex.lock_count = mutex.lock_count.strict_add(1);
        if let Some(data_race) = &this.machine.data_race {
            data_race.acquire_clock(&mutex.clock, &this.machine.threads);
        }
    }

    /// Try unlocking by decreasing the lock count and returning the old lock
    /// count. If the lock count reaches 0, release the lock and potentially
    /// give to a new owner. If the lock was not locked by the current thread,
    /// return `None`.
    fn mutex_unlock(&mut self, id: MutexId) -> InterpResult<'tcx, Option<usize>> {
        let this = self.eval_context_mut();
        let mutex = &mut this.machine.sync.mutexes[id];
        interp_ok(if let Some(current_owner) = mutex.owner {
            // Mutex is locked.
            if current_owner != this.machine.threads.active_thread() {
                // Only the owner can unlock the mutex.
                return interp_ok(None);
            }
            let old_lock_count = mutex.lock_count;
            mutex.lock_count = old_lock_count.strict_sub(1);
            if mutex.lock_count == 0 {
                mutex.owner = None;
                // The mutex is completely unlocked. Try transferring ownership
                // to another thread.
                if let Some(data_race) = &this.machine.data_race {
                    data_race.release_clock(&this.machine.threads, |clock| {
                        mutex.clock.clone_from(clock)
                    });
                }
                if let Some(thread) = this.machine.sync.mutexes[id].queue.pop_front() {
                    this.unblock_thread(thread, BlockReason::Mutex(id))?;
                }
            }
            Some(old_lock_count)
        } else {
            // Mutex is not locked.
            None
        })
    }

    /// Put the thread into the queue waiting for the mutex.
    ///
    /// Once the Mutex becomes available and if it exists, `retval_dest.0` will
    /// be written to `retval_dest.1`.
    #[inline]
    fn mutex_enqueue_and_block(
        &mut self,
        id: MutexId,
        retval_dest: Option<(Scalar, MPlaceTy<'tcx>)>,
    ) {
        let this = self.eval_context_mut();
        assert!(this.mutex_is_locked(id), "queing on unlocked mutex");
        let thread = this.active_thread();
        this.machine.sync.mutexes[id].queue.push_back(thread);
        this.block_thread(
            BlockReason::Mutex(id),
            None,
            callback!(
                @capture<'tcx> {
                    id: MutexId,
                    retval_dest: Option<(Scalar, MPlaceTy<'tcx>)>,
                }
                @unblock = |this| {
                    assert!(!this.mutex_is_locked(id));
                    this.mutex_lock(id);

                    if let Some((retval, dest)) = retval_dest {
                        this.write_scalar(retval, &dest)?;
                    }

                    interp_ok(())
                }
            ),
        );
    }

    #[inline]
    /// Check if locked.
    fn rwlock_is_locked(&self, id: RwLockId) -> bool {
        let this = self.eval_context_ref();
        let rwlock = &this.machine.sync.rwlocks[id];
        trace!(
            "rwlock_is_locked: {:?} writer is {:?} and there are {} reader threads (some of which could hold multiple read locks)",
            id,
            rwlock.writer,
            rwlock.readers.len(),
        );
        rwlock.writer.is_some() || rwlock.readers.is_empty().not()
    }

    /// Check if write locked.
    #[inline]
    fn rwlock_is_write_locked(&self, id: RwLockId) -> bool {
        let this = self.eval_context_ref();
        let rwlock = &this.machine.sync.rwlocks[id];
        trace!("rwlock_is_write_locked: {:?} writer is {:?}", id, rwlock.writer);
        rwlock.writer.is_some()
    }

    /// Read-lock the lock by adding the `reader` the list of threads that own
    /// this lock.
    fn rwlock_reader_lock(&mut self, id: RwLockId) {
        let this = self.eval_context_mut();
        let thread = this.active_thread();
        assert!(!this.rwlock_is_write_locked(id), "the lock is write locked");
        trace!("rwlock_reader_lock: {:?} now also held (one more time) by {:?}", id, thread);
        let rwlock = &mut this.machine.sync.rwlocks[id];
        let count = rwlock.readers.entry(thread).or_insert(0);
        *count = count.strict_add(1);
        if let Some(data_race) = &this.machine.data_race {
            data_race.acquire_clock(&rwlock.clock_unlocked, &this.machine.threads);
        }
    }

    /// Try read-unlock the lock for the current threads and potentially give the lock to a new owner.
    /// Returns `true` if succeeded, `false` if this `reader` did not hold the lock.
    fn rwlock_reader_unlock(&mut self, id: RwLockId) -> InterpResult<'tcx, bool> {
        let this = self.eval_context_mut();
        let thread = this.active_thread();
        let rwlock = &mut this.machine.sync.rwlocks[id];
        match rwlock.readers.entry(thread) {
            Entry::Occupied(mut entry) => {
                let count = entry.get_mut();
                assert!(*count > 0, "rwlock locked with count == 0");
                *count -= 1;
                if *count == 0 {
                    trace!("rwlock_reader_unlock: {:?} no longer held by {:?}", id, thread);
                    entry.remove();
                } else {
                    trace!("rwlock_reader_unlock: {:?} held one less time by {:?}", id, thread);
                }
            }
            Entry::Vacant(_) => return interp_ok(false), // we did not even own this lock
        }
        if let Some(data_race) = &this.machine.data_race {
            // Add this to the shared-release clock of all concurrent readers.
            data_race.release_clock(&this.machine.threads, |clock| {
                rwlock.clock_current_readers.join(clock)
            });
        }

        // The thread was a reader. If the lock is not held any more, give it to a writer.
        if this.rwlock_is_locked(id).not() {
            // All the readers are finished, so set the writer data-race handle to the value
            // of the union of all reader data race handles, since the set of readers
            // happen-before the writers
            let rwlock = &mut this.machine.sync.rwlocks[id];
            rwlock.clock_unlocked.clone_from(&rwlock.clock_current_readers);
            // See if there is a thread to unblock.
            if let Some(writer) = rwlock.writer_queue.pop_front() {
                this.unblock_thread(writer, BlockReason::RwLock(id))?;
            }
        }
        interp_ok(true)
    }

    /// Put the reader in the queue waiting for the lock and block it.
    /// Once the lock becomes available, `retval` will be written to `dest`.
    #[inline]
    fn rwlock_enqueue_and_block_reader(
        &mut self,
        id: RwLockId,
        retval: Scalar,
        dest: MPlaceTy<'tcx>,
    ) {
        let this = self.eval_context_mut();
        let thread = this.active_thread();
        assert!(this.rwlock_is_write_locked(id), "read-queueing on not write locked rwlock");
        this.machine.sync.rwlocks[id].reader_queue.push_back(thread);
        this.block_thread(
            BlockReason::RwLock(id),
            None,
            callback!(
                @capture<'tcx> {
                    id: RwLockId,
                    retval: Scalar,
                    dest: MPlaceTy<'tcx>,
                }
                @unblock = |this| {
                    this.rwlock_reader_lock(id);
                    this.write_scalar(retval, &dest)?;
                    interp_ok(())
                }
            ),
        );
    }

    /// Lock by setting the writer that owns the lock.
    #[inline]
    fn rwlock_writer_lock(&mut self, id: RwLockId) {
        let this = self.eval_context_mut();
        let thread = this.active_thread();
        assert!(!this.rwlock_is_locked(id), "the rwlock is already locked");
        trace!("rwlock_writer_lock: {:?} now held by {:?}", id, thread);
        let rwlock = &mut this.machine.sync.rwlocks[id];
        rwlock.writer = Some(thread);
        if let Some(data_race) = &this.machine.data_race {
            data_race.acquire_clock(&rwlock.clock_unlocked, &this.machine.threads);
        }
    }

    /// Try to unlock an rwlock held by the current thread.
    /// Return `false` if it is held by another thread.
    #[inline]
    fn rwlock_writer_unlock(&mut self, id: RwLockId) -> InterpResult<'tcx, bool> {
        let this = self.eval_context_mut();
        let thread = this.active_thread();
        let rwlock = &mut this.machine.sync.rwlocks[id];
        interp_ok(if let Some(current_writer) = rwlock.writer {
            if current_writer != thread {
                // Only the owner can unlock the rwlock.
                return interp_ok(false);
            }
            rwlock.writer = None;
            trace!("rwlock_writer_unlock: {:?} unlocked by {:?}", id, thread);
            // Record release clock for next lock holder.
            if let Some(data_race) = &this.machine.data_race {
                data_race.release_clock(&this.machine.threads, |clock| {
                    rwlock.clock_unlocked.clone_from(clock)
                });
            }
            // The thread was a writer.
            //
            // We are prioritizing writers here against the readers. As a
            // result, not only readers can starve writers, but also writers can
            // starve readers.
            if let Some(writer) = rwlock.writer_queue.pop_front() {
                this.unblock_thread(writer, BlockReason::RwLock(id))?;
            } else {
                // Take the entire read queue and wake them all up.
                let readers = std::mem::take(&mut rwlock.reader_queue);
                for reader in readers {
                    this.unblock_thread(reader, BlockReason::RwLock(id))?;
                }
            }
            true
        } else {
            false
        })
    }

    /// Put the writer in the queue waiting for the lock.
    /// Once the lock becomes available, `retval` will be written to `dest`.
    #[inline]
    fn rwlock_enqueue_and_block_writer(
        &mut self,
        id: RwLockId,
        retval: Scalar,
        dest: MPlaceTy<'tcx>,
    ) {
        let this = self.eval_context_mut();
        assert!(this.rwlock_is_locked(id), "write-queueing on unlocked rwlock");
        let thread = this.active_thread();
        this.machine.sync.rwlocks[id].writer_queue.push_back(thread);
        this.block_thread(
            BlockReason::RwLock(id),
            None,
            callback!(
                @capture<'tcx> {
                    id: RwLockId,
                    retval: Scalar,
                    dest: MPlaceTy<'tcx>,
                }
                @unblock = |this| {
                    this.rwlock_writer_lock(id);
                    this.write_scalar(retval, &dest)?;
                    interp_ok(())
                }
            ),
        );
    }

    /// Is the conditional variable awaited?
    #[inline]
    fn condvar_is_awaited(&mut self, id: CondvarId) -> bool {
        let this = self.eval_context_mut();
        !this.machine.sync.condvars[id].waiters.is_empty()
    }

    /// Release the mutex and let the current thread wait on the given condition variable.
    /// Once it is signaled, the mutex will be acquired and `retval_succ` will be written to `dest`.
    /// If the timeout happens first, `retval_timeout` will be written to `dest`.
    fn condvar_wait(
        &mut self,
        condvar: CondvarId,
        mutex: MutexId,
        timeout: Option<(TimeoutClock, TimeoutAnchor, Duration)>,
        retval_succ: Scalar,
        retval_timeout: Scalar,
        dest: MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        if let Some(old_locked_count) = this.mutex_unlock(mutex)? {
            if old_locked_count != 1 {
                throw_unsup_format!(
                    "awaiting a condvar on a mutex acquired multiple times is not supported"
                );
            }
        } else {
            throw_ub_format!(
                "awaiting a condvar on a mutex that is unlocked or owned by a different thread"
            );
        }
        let thread = this.active_thread();
        let waiters = &mut this.machine.sync.condvars[condvar].waiters;
        waiters.push_back(thread);
        this.block_thread(
            BlockReason::Condvar(condvar),
            timeout,
            callback!(
                @capture<'tcx> {
                    condvar: CondvarId,
                    mutex: MutexId,
                    retval_succ: Scalar,
                    retval_timeout: Scalar,
                    dest: MPlaceTy<'tcx>,
                }
                @unblock = |this| {
                    // The condvar was signaled. Make sure we get the clock for that.
                    if let Some(data_race) = &this.machine.data_race {
                        data_race.acquire_clock(
                            &this.machine.sync.condvars[condvar].clock,
                            &this.machine.threads,
                        );
                    }
                    // Try to acquire the mutex.
                    // The timeout only applies to the first wait (until the signal), not for mutex acquisition.
                    this.condvar_reacquire_mutex(mutex, retval_succ, dest)
                }
                @timeout = |this| {
                    // We have to remove the waiter from the queue again.
                    let thread = this.active_thread();
                    let waiters = &mut this.machine.sync.condvars[condvar].waiters;
                    waiters.retain(|waiter| *waiter != thread);
                    // Now get back the lock.
                    this.condvar_reacquire_mutex(mutex, retval_timeout, dest)
                }
            ),
        );
        interp_ok(())
    }

    /// Wake up some thread (if there is any) sleeping on the conditional
    /// variable. Returns `true` iff any thread was woken up.
    fn condvar_signal(&mut self, id: CondvarId) -> InterpResult<'tcx, bool> {
        let this = self.eval_context_mut();
        let condvar = &mut this.machine.sync.condvars[id];
        let data_race = &this.machine.data_race;

        // Each condvar signal happens-before the end of the condvar wake
        if let Some(data_race) = data_race {
            data_race.release_clock(&this.machine.threads, |clock| condvar.clock.clone_from(clock));
        }
        let Some(waiter) = condvar.waiters.pop_front() else {
            return interp_ok(false);
        };
        this.unblock_thread(waiter, BlockReason::Condvar(id))?;
        interp_ok(true)
    }

    /// Wait for the futex to be signaled, or a timeout.
    /// On a signal, `retval_succ` is written to `dest`.
    /// On a timeout, `retval_timeout` is written to `dest` and `errno_timeout` is set as the last error.
    fn futex_wait(
        &mut self,
        addr: u64,
        bitset: u32,
        timeout: Option<(TimeoutClock, TimeoutAnchor, Duration)>,
        retval_succ: Scalar,
        retval_timeout: Scalar,
        dest: MPlaceTy<'tcx>,
        errno_timeout: Scalar,
    ) {
        let this = self.eval_context_mut();
        let thread = this.active_thread();
        let futex = &mut this.machine.sync.futexes.entry(addr).or_default();
        let waiters = &mut futex.waiters;
        assert!(waiters.iter().all(|waiter| waiter.thread != thread), "thread is already waiting");
        waiters.push_back(FutexWaiter { thread, bitset });
        this.block_thread(
            BlockReason::Futex { addr },
            timeout,
            callback!(
                @capture<'tcx> {
                    addr: u64,
                    retval_succ: Scalar,
                    retval_timeout: Scalar,
                    dest: MPlaceTy<'tcx>,
                    errno_timeout: Scalar,
                }
                @unblock = |this| {
                    let futex = this.machine.sync.futexes.get(&addr).unwrap();
                    // Acquire the clock of the futex.
                    if let Some(data_race) = &this.machine.data_race {
                        data_race.acquire_clock(&futex.clock, &this.machine.threads);
                    }
                    // Write the return value.
                    this.write_scalar(retval_succ, &dest)?;
                    interp_ok(())
                }
                @timeout = |this| {
                    // Remove the waiter from the futex.
                    let thread = this.active_thread();
                    let futex = this.machine.sync.futexes.get_mut(&addr).unwrap();
                    futex.waiters.retain(|waiter| waiter.thread != thread);
                    // Set errno and write return value.
                    this.set_last_error(errno_timeout)?;
                    this.write_scalar(retval_timeout, &dest)?;
                    interp_ok(())
                }
            ),
        );
    }

    /// Returns whether anything was woken.
    fn futex_wake(&mut self, addr: u64, bitset: u32) -> InterpResult<'tcx, bool> {
        let this = self.eval_context_mut();
        let Some(futex) = this.machine.sync.futexes.get_mut(&addr) else {
            return interp_ok(false);
        };
        let data_race = &this.machine.data_race;

        // Each futex-wake happens-before the end of the futex wait
        if let Some(data_race) = data_race {
            data_race.release_clock(&this.machine.threads, |clock| futex.clock.clone_from(clock));
        }

        // Wake up the first thread in the queue that matches any of the bits in the bitset.
        let Some(i) = futex.waiters.iter().position(|w| w.bitset & bitset != 0) else {
            return interp_ok(false);
        };
        let waiter = futex.waiters.remove(i).unwrap();
        this.unblock_thread(waiter.thread, BlockReason::Futex { addr })?;
        interp_ok(true)
    }
}