miri/helpers.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
use std::collections::BTreeSet;
use std::num::NonZero;
use std::sync::Mutex;
use std::time::Duration;
use std::{cmp, iter};
use rand::RngCore;
use rustc_apfloat::Float;
use rustc_apfloat::ieee::{Double, Half, Quad, Single};
use rustc_hir::Safety;
use rustc_hir::def::{DefKind, Namespace};
use rustc_hir::def_id::{CRATE_DEF_INDEX, CrateNum, DefId, LOCAL_CRATE};
use rustc_index::IndexVec;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::middle::dependency_format::Linkage;
use rustc_middle::middle::exported_symbols::ExportedSymbol;
use rustc_middle::ty::layout::{FnAbiOf, LayoutOf, MaybeResult, TyAndLayout};
use rustc_middle::ty::{self, FloatTy, IntTy, Ty, TyCtxt, UintTy};
use rustc_session::config::CrateType;
use rustc_span::{Span, Symbol};
use rustc_target::abi::{Align, FieldIdx, FieldsShape, Size, Variants};
use rustc_target::spec::abi::Abi;
use crate::*;
/// Indicates which kind of access is being performed.
#[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
pub enum AccessKind {
Read,
Write,
}
/// Gets an instance for a path.
///
/// A `None` namespace indicates we are looking for a module.
fn try_resolve_did(tcx: TyCtxt<'_>, path: &[&str], namespace: Option<Namespace>) -> Option<DefId> {
/// Yield all children of the given item, that have the given name.
fn find_children<'tcx: 'a, 'a>(
tcx: TyCtxt<'tcx>,
item: DefId,
name: &'a str,
) -> impl Iterator<Item = DefId> + 'a {
tcx.module_children(item)
.iter()
.filter(move |item| item.ident.name.as_str() == name)
.map(move |item| item.res.def_id())
}
// Take apart the path: leading crate, a sequence of modules, and potentially a final item.
let (&crate_name, path) = path.split_first().expect("paths must have at least one segment");
let (modules, item) = if let Some(namespace) = namespace {
let (&item_name, modules) =
path.split_last().expect("non-module paths must have at least 2 segments");
(modules, Some((item_name, namespace)))
} else {
(path, None)
};
// There may be more than one crate with this name. We try them all.
// (This is particularly relevant when running `std` tests as then there are two `std` crates:
// the one in the sysroot and the one locally built by `cargo test`.)
// FIXME: can we prefer the one from the sysroot?
'crates: for krate in
tcx.crates(()).iter().filter(|&&krate| tcx.crate_name(krate).as_str() == crate_name)
{
let mut cur_item = DefId { krate: *krate, index: CRATE_DEF_INDEX };
// Go over the modules.
for &segment in modules {
let Some(next_item) = find_children(tcx, cur_item, segment)
.find(|item| tcx.def_kind(item) == DefKind::Mod)
else {
continue 'crates;
};
cur_item = next_item;
}
// Finally, look up the desired item in this module, if any.
match item {
Some((item_name, namespace)) => {
let Some(item) = find_children(tcx, cur_item, item_name)
.find(|item| tcx.def_kind(item).ns() == Some(namespace))
else {
continue 'crates;
};
return Some(item);
}
None => {
// Just return the module.
return Some(cur_item);
}
}
}
// Item not found in any of the crates with the right name.
None
}
/// Gets an instance for a path; fails gracefully if the path does not exist.
pub fn try_resolve_path<'tcx>(
tcx: TyCtxt<'tcx>,
path: &[&str],
namespace: Namespace,
) -> Option<ty::Instance<'tcx>> {
let did = try_resolve_did(tcx, path, Some(namespace))?;
Some(ty::Instance::mono(tcx, did))
}
/// Gets an instance for a path.
#[track_caller]
pub fn resolve_path<'tcx>(
tcx: TyCtxt<'tcx>,
path: &[&str],
namespace: Namespace,
) -> ty::Instance<'tcx> {
try_resolve_path(tcx, path, namespace)
.unwrap_or_else(|| panic!("failed to find required Rust item: {path:?}"))
}
/// Gets the layout of a type at a path.
#[track_caller]
pub fn path_ty_layout<'tcx>(cx: &impl LayoutOf<'tcx>, path: &[&str]) -> TyAndLayout<'tcx> {
let ty =
resolve_path(cx.tcx(), path, Namespace::TypeNS).ty(cx.tcx(), ty::ParamEnv::reveal_all());
cx.layout_of(ty).to_result().ok().unwrap()
}
/// Call `f` for each exported symbol.
pub fn iter_exported_symbols<'tcx>(
tcx: TyCtxt<'tcx>,
mut f: impl FnMut(CrateNum, DefId) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
// First, the symbols in the local crate. We can't use `exported_symbols` here as that
// skips `#[used]` statics (since `reachable_set` skips them in binary crates).
// So we walk all HIR items ourselves instead.
let crate_items = tcx.hir_crate_items(());
for def_id in crate_items.definitions() {
let exported = tcx.def_kind(def_id).has_codegen_attrs() && {
let codegen_attrs = tcx.codegen_fn_attrs(def_id);
codegen_attrs.contains_extern_indicator()
|| codegen_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL)
|| codegen_attrs.flags.contains(CodegenFnAttrFlags::USED)
|| codegen_attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER)
};
if exported {
f(LOCAL_CRATE, def_id.into())?;
}
}
// Next, all our dependencies.
// `dependency_formats` includes all the transitive informations needed to link a crate,
// which is what we need here since we need to dig out `exported_symbols` from all transitive
// dependencies.
let dependency_formats = tcx.dependency_formats(());
// Find the dependencies of the executable we are running.
let dependency_format = dependency_formats
.iter()
.find(|(crate_type, _)| *crate_type == CrateType::Executable)
.expect("interpreting a non-executable crate");
for cnum in dependency_format.1.iter().enumerate().filter_map(|(num, &linkage)| {
// We add 1 to the number because that's what rustc also does everywhere it
// calls `CrateNum::new`...
#[allow(clippy::arithmetic_side_effects)]
(linkage != Linkage::NotLinked).then_some(CrateNum::new(num + 1))
}) {
// We can ignore `_export_info` here: we are a Rust crate, and everything is exported
// from a Rust crate.
for &(symbol, _export_info) in tcx.exported_symbols(cnum) {
if let ExportedSymbol::NonGeneric(def_id) = symbol {
f(cnum, def_id)?;
}
}
}
interp_ok(())
}
/// Convert a softfloat type to its corresponding hostfloat type.
pub trait ToHost {
type HostFloat;
fn to_host(self) -> Self::HostFloat;
}
/// Convert a hostfloat type to its corresponding softfloat type.
pub trait ToSoft {
type SoftFloat;
fn to_soft(self) -> Self::SoftFloat;
}
impl ToHost for rustc_apfloat::ieee::Double {
type HostFloat = f64;
fn to_host(self) -> Self::HostFloat {
f64::from_bits(self.to_bits().try_into().unwrap())
}
}
impl ToSoft for f64 {
type SoftFloat = rustc_apfloat::ieee::Double;
fn to_soft(self) -> Self::SoftFloat {
Float::from_bits(self.to_bits().into())
}
}
impl ToHost for rustc_apfloat::ieee::Single {
type HostFloat = f32;
fn to_host(self) -> Self::HostFloat {
f32::from_bits(self.to_bits().try_into().unwrap())
}
}
impl ToSoft for f32 {
type SoftFloat = rustc_apfloat::ieee::Single;
fn to_soft(self) -> Self::SoftFloat {
Float::from_bits(self.to_bits().into())
}
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Checks if the given crate/module exists.
fn have_module(&self, path: &[&str]) -> bool {
try_resolve_did(*self.eval_context_ref().tcx, path, None).is_some()
}
/// Evaluates the scalar at the specified path.
fn eval_path(&self, path: &[&str]) -> MPlaceTy<'tcx> {
let this = self.eval_context_ref();
let instance = resolve_path(*this.tcx, path, Namespace::ValueNS);
// We don't give a span -- this isn't actually used directly by the program anyway.
this.eval_global(instance).unwrap_or_else(|err| {
panic!("failed to evaluate required Rust item: {path:?}\n{err:?}")
})
}
fn eval_path_scalar(&self, path: &[&str]) -> Scalar {
let this = self.eval_context_ref();
let val = this.eval_path(path);
this.read_scalar(&val)
.unwrap_or_else(|err| panic!("failed to read required Rust item: {path:?}\n{err:?}"))
}
/// Helper function to get a `libc` constant as a `Scalar`.
fn eval_libc(&self, name: &str) -> Scalar {
if self.eval_context_ref().tcx.sess.target.os == "windows" {
panic!(
"`libc` crate is not reliably available on Windows targets; Miri should not use it there"
);
}
self.eval_path_scalar(&["libc", name])
}
/// Helper function to get a `libc` constant as an `i32`.
fn eval_libc_i32(&self, name: &str) -> i32 {
// TODO: Cache the result.
self.eval_libc(name).to_i32().unwrap_or_else(|_err| {
panic!("required libc item has unexpected type (not `i32`): {name}")
})
}
/// Helper function to get a `libc` constant as an `u32`.
fn eval_libc_u32(&self, name: &str) -> u32 {
// TODO: Cache the result.
self.eval_libc(name).to_u32().unwrap_or_else(|_err| {
panic!("required libc item has unexpected type (not `u32`): {name}")
})
}
/// Helper function to get a `windows` constant as a `Scalar`.
fn eval_windows(&self, module: &str, name: &str) -> Scalar {
self.eval_context_ref().eval_path_scalar(&["std", "sys", "pal", "windows", module, name])
}
/// Helper function to get a `windows` constant as a `u32`.
fn eval_windows_u32(&self, module: &str, name: &str) -> u32 {
// TODO: Cache the result.
self.eval_windows(module, name).to_u32().unwrap_or_else(|_err| {
panic!("required Windows item has unexpected type (not `u32`): {module}::{name}")
})
}
/// Helper function to get a `windows` constant as a `u64`.
fn eval_windows_u64(&self, module: &str, name: &str) -> u64 {
// TODO: Cache the result.
self.eval_windows(module, name).to_u64().unwrap_or_else(|_err| {
panic!("required Windows item has unexpected type (not `u64`): {module}::{name}")
})
}
/// Helper function to get the `TyAndLayout` of a `libc` type
fn libc_ty_layout(&self, name: &str) -> TyAndLayout<'tcx> {
let this = self.eval_context_ref();
if this.tcx.sess.target.os == "windows" {
panic!(
"`libc` crate is not reliably available on Windows targets; Miri should not use it there"
);
}
path_ty_layout(this, &["libc", name])
}
/// Helper function to get the `TyAndLayout` of a `windows` type
fn windows_ty_layout(&self, name: &str) -> TyAndLayout<'tcx> {
let this = self.eval_context_ref();
path_ty_layout(this, &["std", "sys", "pal", "windows", "c", name])
}
/// Helper function to get `TyAndLayout` of an array that consists of `libc` type.
fn libc_array_ty_layout(&self, name: &str, size: u64) -> TyAndLayout<'tcx> {
let this = self.eval_context_ref();
let elem_ty_layout = this.libc_ty_layout(name);
let array_ty = Ty::new_array(*this.tcx, elem_ty_layout.ty, size);
this.layout_of(array_ty).unwrap()
}
/// Project to the given *named* field (which must be a struct or union type).
fn project_field_named<P: Projectable<'tcx, Provenance>>(
&self,
base: &P,
name: &str,
) -> InterpResult<'tcx, P> {
let this = self.eval_context_ref();
let adt = base.layout().ty.ty_adt_def().unwrap();
for (idx, field) in adt.non_enum_variant().fields.iter().enumerate() {
if field.name.as_str() == name {
return this.project_field(base, idx);
}
}
bug!("No field named {} in type {}", name, base.layout().ty);
}
/// Search if `base` (which must be a struct or union type) contains the `name` field.
fn projectable_has_field<P: Projectable<'tcx, Provenance>>(
&self,
base: &P,
name: &str,
) -> bool {
let adt = base.layout().ty.ty_adt_def().unwrap();
for field in adt.non_enum_variant().fields.iter() {
if field.name.as_str() == name {
return true;
}
}
false
}
/// Write an int of the appropriate size to `dest`. The target type may be signed or unsigned,
/// we try to do the right thing anyway. `i128` can fit all integer types except for `u128` so
/// this method is fine for almost all integer types.
fn write_int(
&mut self,
i: impl Into<i128>,
dest: &impl Writeable<'tcx, Provenance>,
) -> InterpResult<'tcx> {
assert!(dest.layout().abi.is_scalar(), "write_int on non-scalar type {}", dest.layout().ty);
let val = if dest.layout().abi.is_signed() {
Scalar::from_int(i, dest.layout().size)
} else {
// `unwrap` can only fail here if `i` is negative
Scalar::from_uint(u128::try_from(i.into()).unwrap(), dest.layout().size)
};
self.eval_context_mut().write_scalar(val, dest)
}
/// Write the first N fields of the given place.
fn write_int_fields(
&mut self,
values: &[i128],
dest: &impl Writeable<'tcx, Provenance>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
for (idx, &val) in values.iter().enumerate() {
let field = this.project_field(dest, idx)?;
this.write_int(val, &field)?;
}
interp_ok(())
}
/// Write the given fields of the given place.
fn write_int_fields_named(
&mut self,
values: &[(&str, i128)],
dest: &impl Writeable<'tcx, Provenance>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
for &(name, val) in values.iter() {
let field = this.project_field_named(dest, name)?;
this.write_int(val, &field)?;
}
interp_ok(())
}
/// Write a 0 of the appropriate size to `dest`.
fn write_null(&mut self, dest: &impl Writeable<'tcx, Provenance>) -> InterpResult<'tcx> {
self.write_int(0, dest)
}
/// Test if this pointer equals 0.
fn ptr_is_null(&self, ptr: Pointer) -> InterpResult<'tcx, bool> {
interp_ok(ptr.addr().bytes() == 0)
}
/// Generate some random bytes, and write them to `dest`.
fn gen_random(&mut self, ptr: Pointer, len: u64) -> InterpResult<'tcx> {
// Some programs pass in a null pointer and a length of 0
// to their platform's random-generation function (e.g. getrandom())
// on Linux. For compatibility with these programs, we don't perform
// any additional checks - it's okay if the pointer is invalid,
// since we wouldn't actually be writing to it.
if len == 0 {
return interp_ok(());
}
let this = self.eval_context_mut();
let mut data = vec![0; usize::try_from(len).unwrap()];
if this.machine.communicate() {
// Fill the buffer using the host's rng.
getrandom::getrandom(&mut data)
.map_err(|err| err_unsup_format!("host getrandom failed: {}", err))?;
} else {
let rng = this.machine.rng.get_mut();
rng.fill_bytes(&mut data);
}
this.write_bytes_ptr(ptr, data.iter().copied())
}
/// Call a function: Push the stack frame and pass the arguments.
/// For now, arguments must be scalars (so that the caller does not have to know the layout).
///
/// If you do not provide a return place, a dangling zero-sized place will be created
/// for your convenience.
fn call_function(
&mut self,
f: ty::Instance<'tcx>,
caller_abi: Abi,
args: &[ImmTy<'tcx>],
dest: Option<&MPlaceTy<'tcx>>,
stack_pop: StackPopCleanup,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Get MIR.
let mir = this.load_mir(f.def, None)?;
let dest = match dest {
Some(dest) => dest.clone(),
None => MPlaceTy::fake_alloc_zst(this.layout_of(mir.return_ty())?),
};
// Construct a function pointer type representing the caller perspective.
let sig = this.tcx.mk_fn_sig(
args.iter().map(|a| a.layout.ty),
dest.layout.ty,
/*c_variadic*/ false,
Safety::Safe,
caller_abi,
);
let caller_fn_abi = this.fn_abi_of_fn_ptr(ty::Binder::dummy(sig), ty::List::empty())?;
this.init_stack_frame(
f,
mir,
caller_fn_abi,
&args.iter().map(|a| FnArg::Copy(a.clone().into())).collect::<Vec<_>>(),
/*with_caller_location*/ false,
&dest,
stack_pop,
)
}
/// Visits the memory covered by `place`, sensitive to freezing: the 2nd parameter
/// of `action` will be true if this is frozen, false if this is in an `UnsafeCell`.
/// The range is relative to `place`.
fn visit_freeze_sensitive(
&self,
place: &MPlaceTy<'tcx>,
size: Size,
mut action: impl FnMut(AllocRange, bool) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
trace!("visit_frozen(place={:?}, size={:?})", *place, size);
debug_assert_eq!(
size,
this.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size)
);
// Store how far we proceeded into the place so far. Everything to the left of
// this offset has already been handled, in the sense that the frozen parts
// have had `action` called on them.
let start_addr = place.ptr().addr();
let mut cur_addr = start_addr;
// Called when we detected an `UnsafeCell` at the given offset and size.
// Calls `action` and advances `cur_ptr`.
let mut unsafe_cell_action = |unsafe_cell_ptr: &Pointer, unsafe_cell_size: Size| {
// We assume that we are given the fields in increasing offset order,
// and nothing else changes.
let unsafe_cell_addr = unsafe_cell_ptr.addr();
assert!(unsafe_cell_addr >= cur_addr);
let frozen_size = unsafe_cell_addr - cur_addr;
// Everything between the cur_ptr and this `UnsafeCell` is frozen.
if frozen_size != Size::ZERO {
action(alloc_range(cur_addr - start_addr, frozen_size), /*frozen*/ true)?;
}
cur_addr += frozen_size;
// This `UnsafeCell` is NOT frozen.
if unsafe_cell_size != Size::ZERO {
action(
alloc_range(cur_addr - start_addr, unsafe_cell_size),
/*frozen*/ false,
)?;
}
cur_addr += unsafe_cell_size;
// Done
interp_ok(())
};
// Run a visitor
{
let mut visitor = UnsafeCellVisitor {
ecx: this,
unsafe_cell_action: |place| {
trace!("unsafe_cell_action on {:?}", place.ptr());
// We need a size to go on.
let unsafe_cell_size = this
.size_and_align_of_mplace(place)?
.map(|(size, _)| size)
// for extern types, just cover what we can
.unwrap_or_else(|| place.layout.size);
// Now handle this `UnsafeCell`, unless it is empty.
if unsafe_cell_size != Size::ZERO {
unsafe_cell_action(&place.ptr(), unsafe_cell_size)
} else {
interp_ok(())
}
},
};
visitor.visit_value(place)?;
}
// The part between the end_ptr and the end of the place is also frozen.
// So pretend there is a 0-sized `UnsafeCell` at the end.
unsafe_cell_action(&place.ptr().wrapping_offset(size, this), Size::ZERO)?;
// Done!
return interp_ok(());
/// Visiting the memory covered by a `MemPlace`, being aware of
/// whether we are inside an `UnsafeCell` or not.
struct UnsafeCellVisitor<'ecx, 'tcx, F>
where
F: FnMut(&MPlaceTy<'tcx>) -> InterpResult<'tcx>,
{
ecx: &'ecx MiriInterpCx<'tcx>,
unsafe_cell_action: F,
}
impl<'ecx, 'tcx, F> ValueVisitor<'tcx, MiriMachine<'tcx>> for UnsafeCellVisitor<'ecx, 'tcx, F>
where
F: FnMut(&MPlaceTy<'tcx>) -> InterpResult<'tcx>,
{
type V = MPlaceTy<'tcx>;
#[inline(always)]
fn ecx(&self) -> &MiriInterpCx<'tcx> {
self.ecx
}
fn aggregate_field_iter(
memory_index: &IndexVec<FieldIdx, u32>,
) -> impl Iterator<Item = FieldIdx> + 'static {
let inverse_memory_index = memory_index.invert_bijective_mapping();
inverse_memory_index.into_iter()
}
// Hook to detect `UnsafeCell`.
fn visit_value(&mut self, v: &MPlaceTy<'tcx>) -> InterpResult<'tcx> {
trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
let is_unsafe_cell = match v.layout.ty.kind() {
ty::Adt(adt, _) =>
Some(adt.did()) == self.ecx.tcx.lang_items().unsafe_cell_type(),
_ => false,
};
if is_unsafe_cell {
// We do not have to recurse further, this is an `UnsafeCell`.
(self.unsafe_cell_action)(v)
} else if self.ecx.type_is_freeze(v.layout.ty) {
// This is `Freeze`, there cannot be an `UnsafeCell`
interp_ok(())
} else if matches!(v.layout.fields, FieldsShape::Union(..)) {
// A (non-frozen) union. We fall back to whatever the type says.
(self.unsafe_cell_action)(v)
} else if matches!(v.layout.ty.kind(), ty::Dynamic(_, _, ty::DynStar)) {
// This needs to read the vtable pointer to proceed type-driven, but we don't
// want to reentrantly read from memory here.
(self.unsafe_cell_action)(v)
} else {
// We want to not actually read from memory for this visit. So, before
// walking this value, we have to make sure it is not a
// `Variants::Multiple`.
match v.layout.variants {
Variants::Multiple { .. } => {
// A multi-variant enum, or coroutine, or so.
// Treat this like a union: without reading from memory,
// we cannot determine the variant we are in. Reading from
// memory would be subject to Stacked Borrows rules, leading
// to all sorts of "funny" recursion.
// We only end up here if the type is *not* freeze, so we just call the
// `UnsafeCell` action.
(self.unsafe_cell_action)(v)
}
Variants::Single { .. } => {
// Proceed further, try to find where exactly that `UnsafeCell`
// is hiding.
self.walk_value(v)
}
}
}
}
fn visit_union(
&mut self,
_v: &MPlaceTy<'tcx>,
_fields: NonZero<usize>,
) -> InterpResult<'tcx> {
bug!("we should have already handled unions in `visit_value`")
}
}
}
/// Helper function used inside the shims of foreign functions to check that isolation is
/// disabled. It returns an error using the `name` of the foreign function if this is not the
/// case.
fn check_no_isolation(&self, name: &str) -> InterpResult<'tcx> {
if !self.eval_context_ref().machine.communicate() {
self.reject_in_isolation(name, RejectOpWith::Abort)?;
}
interp_ok(())
}
/// Helper function used inside the shims of foreign functions which reject the op
/// when isolation is enabled. It is used to print a warning/backtrace about the rejection.
fn reject_in_isolation(&self, op_name: &str, reject_with: RejectOpWith) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
match reject_with {
RejectOpWith::Abort => isolation_abort_error(op_name),
RejectOpWith::WarningWithoutBacktrace => {
// This exists to reduce verbosity; make sure we emit the warning at most once per
// operation.
static EMITTED_WARNINGS: Mutex<BTreeSet<String>> = Mutex::new(BTreeSet::new());
let mut emitted_warnings = EMITTED_WARNINGS.lock().unwrap();
if !emitted_warnings.contains(op_name) {
// First time we are seeing this.
emitted_warnings.insert(op_name.to_owned());
this.tcx
.dcx()
.warn(format!("{op_name} was made to return an error due to isolation"));
}
interp_ok(())
}
RejectOpWith::Warning => {
this.emit_diagnostic(NonHaltingDiagnostic::RejectedIsolatedOp(op_name.to_string()));
interp_ok(())
}
RejectOpWith::NoWarning => interp_ok(()), // no warning
}
}
/// Helper function used inside the shims of foreign functions to assert that the target OS
/// is `target_os`. It panics showing a message with the `name` of the foreign function
/// if this is not the case.
fn assert_target_os(&self, target_os: &str, name: &str) {
assert_eq!(
self.eval_context_ref().tcx.sess.target.os,
target_os,
"`{name}` is only available on the `{target_os}` target OS",
)
}
/// Helper function used inside the shims of foreign functions to assert that the target OS
/// is part of the UNIX family. It panics showing a message with the `name` of the foreign function
/// if this is not the case.
fn assert_target_os_is_unix(&self, name: &str) {
assert!(self.target_os_is_unix(), "`{name}` is only available for unix targets",);
}
fn target_os_is_unix(&self) -> bool {
self.eval_context_ref().tcx.sess.target.families.iter().any(|f| f == "unix")
}
/// Dereference a pointer operand to a place using `layout` instead of the pointer's declared type
fn deref_pointer_as(
&self,
op: &impl Projectable<'tcx, Provenance>,
layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
let this = self.eval_context_ref();
let ptr = this.read_pointer(op)?;
interp_ok(this.ptr_to_mplace(ptr, layout))
}
/// Calculates the MPlaceTy given the offset and layout of an access on an operand
fn deref_pointer_and_offset(
&self,
op: &impl Projectable<'tcx, Provenance>,
offset: u64,
base_layout: TyAndLayout<'tcx>,
value_layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx>> {
let this = self.eval_context_ref();
let op_place = this.deref_pointer_as(op, base_layout)?;
let offset = Size::from_bytes(offset);
// Ensure that the access is within bounds.
assert!(base_layout.size >= offset + value_layout.size);
let value_place = op_place.offset(offset, value_layout, this)?;
interp_ok(value_place)
}
fn deref_pointer_and_read(
&self,
op: &impl Projectable<'tcx, Provenance>,
offset: u64,
base_layout: TyAndLayout<'tcx>,
value_layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, Scalar> {
let this = self.eval_context_ref();
let value_place = this.deref_pointer_and_offset(op, offset, base_layout, value_layout)?;
this.read_scalar(&value_place)
}
fn deref_pointer_and_write(
&mut self,
op: &impl Projectable<'tcx, Provenance>,
offset: u64,
value: impl Into<Scalar>,
base_layout: TyAndLayout<'tcx>,
value_layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let value_place = this.deref_pointer_and_offset(op, offset, base_layout, value_layout)?;
this.write_scalar(value, &value_place)
}
/// Parse a `timespec` struct and return it as a `std::time::Duration`. It returns `None`
/// if the value in the `timespec` struct is invalid. Some libc functions will return
/// `EINVAL` in this case.
fn read_timespec(&mut self, tp: &MPlaceTy<'tcx>) -> InterpResult<'tcx, Option<Duration>> {
let this = self.eval_context_mut();
let seconds_place = this.project_field(tp, 0)?;
let seconds_scalar = this.read_scalar(&seconds_place)?;
let seconds = seconds_scalar.to_target_isize(this)?;
let nanoseconds_place = this.project_field(tp, 1)?;
let nanoseconds_scalar = this.read_scalar(&nanoseconds_place)?;
let nanoseconds = nanoseconds_scalar.to_target_isize(this)?;
interp_ok(
try {
// tv_sec must be non-negative.
let seconds: u64 = seconds.try_into().ok()?;
// tv_nsec must be non-negative.
let nanoseconds: u32 = nanoseconds.try_into().ok()?;
if nanoseconds >= 1_000_000_000 {
// tv_nsec must not be greater than 999,999,999.
None?
}
Duration::new(seconds, nanoseconds)
},
)
}
/// Read bytes from a byte slice.
fn read_byte_slice<'a>(&'a self, slice: &ImmTy<'tcx>) -> InterpResult<'tcx, &'a [u8]>
where
'tcx: 'a,
{
let this = self.eval_context_ref();
let (ptr, len) = slice.to_scalar_pair();
let ptr = ptr.to_pointer(this)?;
let len = len.to_target_usize(this)?;
let bytes = this.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(len))?;
interp_ok(bytes)
}
/// Read a sequence of bytes until the first null terminator.
fn read_c_str<'a>(&'a self, ptr: Pointer) -> InterpResult<'tcx, &'a [u8]>
where
'tcx: 'a,
{
let this = self.eval_context_ref();
let size1 = Size::from_bytes(1);
// Step 1: determine the length.
let mut len = Size::ZERO;
loop {
// FIXME: We are re-getting the allocation each time around the loop.
// Would be nice if we could somehow "extend" an existing AllocRange.
let alloc = this.get_ptr_alloc(ptr.wrapping_offset(len, this), size1)?.unwrap(); // not a ZST, so we will get a result
let byte = alloc.read_integer(alloc_range(Size::ZERO, size1))?.to_u8()?;
if byte == 0 {
break;
} else {
len += size1;
}
}
// Step 2: get the bytes.
this.read_bytes_ptr_strip_provenance(ptr, len)
}
/// Helper function to write a sequence of bytes with an added null-terminator, which is what
/// the Unix APIs usually handle. This function returns `Ok((false, length))` without trying
/// to write if `size` is not large enough to fit the contents of `c_str` plus a null
/// terminator. It returns `Ok((true, length))` if the writing process was successful. The
/// string length returned does include the null terminator.
fn write_c_str(
&mut self,
c_str: &[u8],
ptr: Pointer,
size: u64,
) -> InterpResult<'tcx, (bool, u64)> {
// If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null
// terminator to memory using the `ptr` pointer would cause an out-of-bounds access.
let string_length = u64::try_from(c_str.len()).unwrap();
let string_length = string_length.strict_add(1);
if size < string_length {
return interp_ok((false, string_length));
}
self.eval_context_mut()
.write_bytes_ptr(ptr, c_str.iter().copied().chain(iter::once(0u8)))?;
interp_ok((true, string_length))
}
/// Helper function to read a sequence of unsigned integers of the given size and alignment
/// until the first null terminator.
fn read_c_str_with_char_size<T>(
&self,
mut ptr: Pointer,
size: Size,
align: Align,
) -> InterpResult<'tcx, Vec<T>>
where
T: TryFrom<u128>,
<T as TryFrom<u128>>::Error: std::fmt::Debug,
{
assert_ne!(size, Size::ZERO);
let this = self.eval_context_ref();
this.check_ptr_align(ptr, align)?;
let mut wchars = Vec::new();
loop {
// FIXME: We are re-getting the allocation each time around the loop.
// Would be nice if we could somehow "extend" an existing AllocRange.
let alloc = this.get_ptr_alloc(ptr, size)?.unwrap(); // not a ZST, so we will get a result
let wchar_int = alloc.read_integer(alloc_range(Size::ZERO, size))?.to_bits(size)?;
if wchar_int == 0 {
break;
} else {
wchars.push(wchar_int.try_into().unwrap());
ptr = ptr.wrapping_offset(size, this);
}
}
interp_ok(wchars)
}
/// Read a sequence of u16 until the first null terminator.
fn read_wide_str(&self, ptr: Pointer) -> InterpResult<'tcx, Vec<u16>> {
self.read_c_str_with_char_size(ptr, Size::from_bytes(2), Align::from_bytes(2).unwrap())
}
/// Helper function to write a sequence of u16 with an added 0x0000-terminator, which is what
/// the Windows APIs usually handle. This function returns `Ok((false, length))` without trying
/// to write if `size` is not large enough to fit the contents of `os_string` plus a null
/// terminator. It returns `Ok((true, length))` if the writing process was successful. The
/// string length returned does include the null terminator. Length is measured in units of
/// `u16.`
fn write_wide_str(
&mut self,
wide_str: &[u16],
ptr: Pointer,
size: u64,
) -> InterpResult<'tcx, (bool, u64)> {
// If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required
// 0x0000 terminator to memory would cause an out-of-bounds access.
let string_length = u64::try_from(wide_str.len()).unwrap();
let string_length = string_length.strict_add(1);
if size < string_length {
return interp_ok((false, string_length));
}
// Store the UTF-16 string.
let size2 = Size::from_bytes(2);
let this = self.eval_context_mut();
this.check_ptr_align(ptr, Align::from_bytes(2).unwrap())?;
let mut alloc = this.get_ptr_alloc_mut(ptr, size2 * string_length)?.unwrap(); // not a ZST, so we will get a result
for (offset, wchar) in wide_str.iter().copied().chain(iter::once(0x0000)).enumerate() {
let offset = u64::try_from(offset).unwrap();
alloc.write_scalar(alloc_range(size2 * offset, size2), Scalar::from_u16(wchar))?;
}
interp_ok((true, string_length))
}
/// Read a sequence of wchar_t until the first null terminator.
/// Always returns a `Vec<u32>` no matter the size of `wchar_t`.
fn read_wchar_t_str(&self, ptr: Pointer) -> InterpResult<'tcx, Vec<u32>> {
let this = self.eval_context_ref();
let wchar_t = if this.tcx.sess.target.os == "windows" {
// We don't have libc on Windows so we have to hard-code the type ourselves.
this.machine.layouts.u16
} else {
this.libc_ty_layout("wchar_t")
};
self.read_c_str_with_char_size(ptr, wchar_t.size, wchar_t.align.abi)
}
/// Check that the ABI is what we expect.
fn check_abi<'a>(&self, abi: Abi, exp_abi: Abi) -> InterpResult<'a, ()> {
if abi != exp_abi {
throw_ub_format!(
"calling a function with ABI {} using caller ABI {}",
exp_abi.name(),
abi.name()
)
}
interp_ok(())
}
fn frame_in_std(&self) -> bool {
let this = self.eval_context_ref();
let frame = this.frame();
// Make an attempt to get at the instance of the function this is inlined from.
let instance: Option<_> = try {
let scope = frame.current_source_info()?.scope;
let inlined_parent = frame.body().source_scopes[scope].inlined_parent_scope?;
let source = &frame.body().source_scopes[inlined_parent];
source.inlined.expect("inlined_parent_scope points to scope without inline info").0
};
// Fall back to the instance of the function itself.
let instance = instance.unwrap_or(frame.instance());
// Now check the crate it is in. We could try to be clever here and e.g. check if this is
// the same crate as `start_fn`, but that would not work for running std tests in Miri, so
// we'd need some more hacks anyway. So we just check the name of the crate. If someone
// calls their crate `std` then we'll just let them keep the pieces.
let frame_crate = this.tcx.def_path(instance.def_id()).krate;
let crate_name = this.tcx.crate_name(frame_crate);
let crate_name = crate_name.as_str();
// On miri-test-libstd, the name of the crate is different.
crate_name == "std" || crate_name == "std_miri_test"
}
fn check_abi_and_shim_symbol_clash(
&mut self,
abi: Abi,
exp_abi: Abi,
link_name: Symbol,
) -> InterpResult<'tcx, ()> {
self.check_abi(abi, exp_abi)?;
if let Some((body, instance)) = self.eval_context_mut().lookup_exported_symbol(link_name)? {
// If compiler-builtins is providing the symbol, then don't treat it as a clash.
// We'll use our built-in implementation in `emulate_foreign_item_inner` for increased
// performance. Note that this means we won't catch any undefined behavior in
// compiler-builtins when running other crates, but Miri can still be run on
// compiler-builtins itself (or any crate that uses it as a normal dependency)
if self.eval_context_ref().tcx.is_compiler_builtins(instance.def_id().krate) {
return interp_ok(());
}
throw_machine_stop!(TerminationInfo::SymbolShimClashing {
link_name,
span: body.span.data(),
})
}
interp_ok(())
}
fn check_shim<'a, const N: usize>(
&mut self,
abi: Abi,
exp_abi: Abi,
link_name: Symbol,
args: &'a [OpTy<'tcx>],
) -> InterpResult<'tcx, &'a [OpTy<'tcx>; N]>
where
&'a [OpTy<'tcx>; N]: TryFrom<&'a [OpTy<'tcx>]>,
{
self.check_abi_and_shim_symbol_clash(abi, exp_abi, link_name)?;
check_arg_count(args)
}
/// Mark a machine allocation that was just created as immutable.
fn mark_immutable(&mut self, mplace: &MPlaceTy<'tcx>) {
let this = self.eval_context_mut();
// This got just allocated, so there definitely is a pointer here.
let provenance = mplace.ptr().into_pointer_or_addr().unwrap().provenance;
this.alloc_mark_immutable(provenance.get_alloc_id().unwrap()).unwrap();
}
/// Converts `src` from floating point to integer type `dest_ty`
/// after rounding with mode `round`.
/// Returns `None` if `f` is NaN or out of range.
fn float_to_int_checked(
&self,
src: &ImmTy<'tcx>,
cast_to: TyAndLayout<'tcx>,
round: rustc_apfloat::Round,
) -> InterpResult<'tcx, Option<ImmTy<'tcx>>> {
let this = self.eval_context_ref();
fn float_to_int_inner<'tcx, F: rustc_apfloat::Float>(
this: &MiriInterpCx<'tcx>,
src: F,
cast_to: TyAndLayout<'tcx>,
round: rustc_apfloat::Round,
) -> (Scalar, rustc_apfloat::Status) {
let int_size = cast_to.layout.size;
match cast_to.ty.kind() {
// Unsigned
ty::Uint(_) => {
let res = src.to_u128_r(int_size.bits_usize(), round, &mut false);
(Scalar::from_uint(res.value, int_size), res.status)
}
// Signed
ty::Int(_) => {
let res = src.to_i128_r(int_size.bits_usize(), round, &mut false);
(Scalar::from_int(res.value, int_size), res.status)
}
// Nothing else
_ =>
span_bug!(
this.cur_span(),
"attempted float-to-int conversion with non-int output type {}",
cast_to.ty,
),
}
}
let ty::Float(fty) = src.layout.ty.kind() else {
bug!("float_to_int_checked: non-float input type {}", src.layout.ty)
};
let (val, status) = match fty {
FloatTy::F16 =>
float_to_int_inner::<Half>(this, src.to_scalar().to_f16()?, cast_to, round),
FloatTy::F32 =>
float_to_int_inner::<Single>(this, src.to_scalar().to_f32()?, cast_to, round),
FloatTy::F64 =>
float_to_int_inner::<Double>(this, src.to_scalar().to_f64()?, cast_to, round),
FloatTy::F128 =>
float_to_int_inner::<Quad>(this, src.to_scalar().to_f128()?, cast_to, round),
};
if status.intersects(
rustc_apfloat::Status::INVALID_OP
| rustc_apfloat::Status::OVERFLOW
| rustc_apfloat::Status::UNDERFLOW,
) {
// Floating point value is NaN (flagged with INVALID_OP) or outside the range
// of values of the integer type (flagged with OVERFLOW or UNDERFLOW).
interp_ok(None)
} else {
// Floating point value can be represented by the integer type after rounding.
// The INEXACT flag is ignored on purpose to allow rounding.
interp_ok(Some(ImmTy::from_scalar(val, cast_to)))
}
}
/// Returns an integer type that is twice wide as `ty`
fn get_twice_wide_int_ty(&self, ty: Ty<'tcx>) -> Ty<'tcx> {
let this = self.eval_context_ref();
match ty.kind() {
// Unsigned
ty::Uint(UintTy::U8) => this.tcx.types.u16,
ty::Uint(UintTy::U16) => this.tcx.types.u32,
ty::Uint(UintTy::U32) => this.tcx.types.u64,
ty::Uint(UintTy::U64) => this.tcx.types.u128,
// Signed
ty::Int(IntTy::I8) => this.tcx.types.i16,
ty::Int(IntTy::I16) => this.tcx.types.i32,
ty::Int(IntTy::I32) => this.tcx.types.i64,
ty::Int(IntTy::I64) => this.tcx.types.i128,
_ => span_bug!(this.cur_span(), "unexpected type: {ty:?}"),
}
}
/// Checks that target feature `target_feature` is enabled.
///
/// If not enabled, emits an UB error that states that the feature is
/// required by `intrinsic`.
fn expect_target_feature_for_intrinsic(
&self,
intrinsic: Symbol,
target_feature: &str,
) -> InterpResult<'tcx, ()> {
let this = self.eval_context_ref();
if !this.tcx.sess.unstable_target_features.contains(&Symbol::intern(target_feature)) {
throw_ub_format!(
"attempted to call intrinsic `{intrinsic}` that requires missing target feature {target_feature}"
);
}
interp_ok(())
}
/// Lookup an array of immediates stored as a linker section of name `name`.
fn lookup_link_section(&mut self, name: &str) -> InterpResult<'tcx, Vec<ImmTy<'tcx>>> {
let this = self.eval_context_mut();
let tcx = this.tcx.tcx;
let mut array = vec![];
iter_exported_symbols(tcx, |_cnum, def_id| {
let attrs = tcx.codegen_fn_attrs(def_id);
let Some(link_section) = attrs.link_section else {
return interp_ok(());
};
if link_section.as_str() == name {
let instance = ty::Instance::mono(tcx, def_id);
let const_val = this.eval_global(instance).unwrap_or_else(|err| {
panic!(
"failed to evaluate static in required link_section: {def_id:?}\n{err:?}"
)
});
let val = this.read_immediate(&const_val)?;
array.push(val);
}
interp_ok(())
})?;
interp_ok(array)
}
}
impl<'tcx> MiriMachine<'tcx> {
/// Get the current span in the topmost function which is workspace-local and not
/// `#[track_caller]`.
/// This function is backed by a cache, and can be assumed to be very fast.
/// It will work even when the stack is empty.
pub fn current_span(&self) -> Span {
self.threads.active_thread_ref().current_span()
}
/// Returns the span of the *caller* of the current operation, again
/// walking down the stack to find the closest frame in a local crate, if the caller of the
/// current operation is not in a local crate.
/// This is useful when we are processing something which occurs on function-entry and we want
/// to point at the call to the function, not the function definition generally.
pub fn caller_span(&self) -> Span {
// We need to go down at least to the caller (len - 2), or however
// far we have to go to find a frame in a local crate which is also not #[track_caller].
let frame_idx = self.top_user_relevant_frame().unwrap();
let frame_idx = cmp::min(frame_idx, self.stack().len().saturating_sub(2));
self.stack()[frame_idx].current_span()
}
fn stack(&self) -> &[Frame<'tcx, Provenance, machine::FrameExtra<'tcx>>] {
self.threads.active_thread_stack()
}
fn top_user_relevant_frame(&self) -> Option<usize> {
self.threads.active_thread_ref().top_user_relevant_frame()
}
/// This is the source of truth for the `is_user_relevant` flag in our `FrameExtra`.
pub fn is_user_relevant(&self, frame: &Frame<'tcx, Provenance>) -> bool {
let def_id = frame.instance().def_id();
(def_id.is_local() || self.local_crates.contains(&def_id.krate))
&& !frame.instance().def.requires_caller_location(self.tcx)
}
}
/// Check that the number of args is what we expect.
pub fn check_arg_count<'a, 'tcx, const N: usize>(
args: &'a [OpTy<'tcx>],
) -> InterpResult<'tcx, &'a [OpTy<'tcx>; N]>
where
&'a [OpTy<'tcx>; N]: TryFrom<&'a [OpTy<'tcx>]>,
{
if let Ok(ops) = args.try_into() {
return interp_ok(ops);
}
throw_ub_format!("incorrect number of arguments: got {}, expected {}", args.len(), N)
}
/// Check that the number of args is at least the minumim what we expect.
pub fn check_min_arg_count<'a, 'tcx, const N: usize>(
name: &'a str,
args: &'a [OpTy<'tcx>],
) -> InterpResult<'tcx, &'a [OpTy<'tcx>; N]> {
if let Some((ops, _)) = args.split_first_chunk() {
return interp_ok(ops);
}
throw_ub_format!(
"incorrect number of arguments for `{name}`: got {}, expected at least {}",
args.len(),
N
)
}
pub fn isolation_abort_error<'tcx>(name: &str) -> InterpResult<'tcx> {
throw_machine_stop!(TerminationInfo::UnsupportedInIsolation(format!(
"{name} not available when isolation is enabled",
)))
}
/// Retrieve the list of local crates that should have been passed by cargo-miri in
/// MIRI_LOCAL_CRATES and turn them into `CrateNum`s.
pub fn get_local_crates(tcx: TyCtxt<'_>) -> Vec<CrateNum> {
// Convert the local crate names from the passed-in config into CrateNums so that they can
// be looked up quickly during execution
let local_crate_names = std::env::var("MIRI_LOCAL_CRATES")
.map(|crates| crates.split(',').map(|krate| krate.to_string()).collect::<Vec<_>>())
.unwrap_or_default();
let mut local_crates = Vec::new();
for &crate_num in tcx.crates(()) {
let name = tcx.crate_name(crate_num);
let name = name.as_str();
if local_crate_names.iter().any(|local_name| local_name == name) {
local_crates.push(crate_num);
}
}
local_crates
}
pub(crate) fn bool_to_simd_element(b: bool, size: Size) -> Scalar {
// SIMD uses all-1 as pattern for "true". In two's complement,
// -1 has all its bits set to one and `from_int` will truncate or
// sign-extend it to `size` as required.
let val = if b { -1 } else { 0 };
Scalar::from_int(val, size)
}
pub(crate) fn simd_element_to_bool(elem: ImmTy<'_>) -> InterpResult<'_, bool> {
let val = elem.to_scalar().to_int(elem.layout.size)?;
interp_ok(match val {
0 => false,
-1 => true,
_ => throw_ub_format!("each element of a SIMD mask must be all-0-bits or all-1-bits"),
})
}
/// Check whether an operation that writes to a target buffer was successful.
/// Accordingly select return value.
/// Local helper function to be used in Windows shims.
pub(crate) fn windows_check_buffer_size((success, len): (bool, u64)) -> u32 {
if success {
// If the function succeeds, the return value is the number of characters stored in the target buffer,
// not including the terminating null character.
u32::try_from(len.strict_sub(1)).unwrap()
} else {
// If the target buffer was not large enough to hold the data, the return value is the buffer size, in characters,
// required to hold the string and its terminating null character.
u32::try_from(len).unwrap()
}
}