miri/shims/foreign_items.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
use std::collections::hash_map::Entry;
use std::io::Write;
use std::iter;
use std::path::Path;
use rustc_apfloat::Float;
use rustc_ast::expand::allocator::alloc_error_handler_name;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::CrateNum;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrFlags;
use rustc_middle::{mir, ty};
use rustc_span::Symbol;
use rustc_target::abi::{Align, AlignFromBytesError, Size};
use rustc_target::spec::abi::Abi;
use self::helpers::{ToHost, ToSoft};
use super::alloc::EvalContextExt as _;
use super::backtrace::EvalContextExt as _;
use crate::*;
/// Type of dynamic symbols (for `dlsym` et al)
#[derive(Debug, Copy, Clone)]
pub struct DynSym(Symbol);
#[allow(clippy::should_implement_trait)]
impl DynSym {
pub fn from_str(name: &str) -> Self {
DynSym(Symbol::intern(name))
}
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Emulates calling a foreign item, failing if the item is not supported.
/// This function will handle `goto_block` if needed.
/// Returns Ok(None) if the foreign item was completely handled
/// by this function.
/// Returns Ok(Some(body)) if processing the foreign item
/// is delegated to another function.
fn emulate_foreign_item(
&mut self,
link_name: Symbol,
abi: Abi,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
ret: Option<mir::BasicBlock>,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>> {
let this = self.eval_context_mut();
// Some shims forward to other MIR bodies.
match link_name.as_str() {
"__rust_alloc_error_handler" => {
// Forward to the right symbol that implements this function.
let Some(handler_kind) = this.tcx.alloc_error_handler_kind(()) else {
// in real code, this symbol does not exist without an allocator
throw_unsup_format!(
"`__rust_alloc_error_handler` cannot be called when no alloc error handler is set"
);
};
let name = alloc_error_handler_name(handler_kind);
let handler = this
.lookup_exported_symbol(Symbol::intern(name))?
.expect("missing alloc error handler symbol");
return interp_ok(Some(handler));
}
_ => {}
}
// The rest either implements the logic, or falls back to `lookup_exported_symbol`.
match this.emulate_foreign_item_inner(link_name, abi, args, dest)? {
EmulateItemResult::NeedsReturn => {
trace!("{:?}", this.dump_place(&dest.clone().into()));
this.return_to_block(ret)?;
}
EmulateItemResult::NeedsUnwind => {
// Jump to the unwind block to begin unwinding.
this.unwind_to_block(unwind)?;
}
EmulateItemResult::AlreadyJumped => (),
EmulateItemResult::NotSupported => {
if let Some(body) = this.lookup_exported_symbol(link_name)? {
return interp_ok(Some(body));
}
throw_machine_stop!(TerminationInfo::UnsupportedForeignItem(format!(
"can't call foreign function `{link_name}` on OS `{os}`",
os = this.tcx.sess.target.os,
)));
}
}
interp_ok(None)
}
fn is_dyn_sym(&self, name: &str) -> bool {
let this = self.eval_context_ref();
match this.tcx.sess.target.os.as_ref() {
os if this.target_os_is_unix() => shims::unix::foreign_items::is_dyn_sym(name, os),
"wasi" => shims::wasi::foreign_items::is_dyn_sym(name),
"windows" => shims::windows::foreign_items::is_dyn_sym(name),
_ => false,
}
}
/// Emulates a call to a `DynSym`.
fn emulate_dyn_sym(
&mut self,
sym: DynSym,
abi: Abi,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
ret: Option<mir::BasicBlock>,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx> {
let res = self.emulate_foreign_item(sym.0, abi, args, dest, ret, unwind)?;
assert!(res.is_none(), "DynSyms that delegate are not supported");
interp_ok(())
}
/// Lookup the body of a function that has `link_name` as the symbol name.
fn lookup_exported_symbol(
&mut self,
link_name: Symbol,
) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>> {
let this = self.eval_context_mut();
let tcx = this.tcx.tcx;
// If the result was cached, just return it.
// (Cannot use `or_insert` since the code below might have to throw an error.)
let entry = this.machine.exported_symbols_cache.entry(link_name);
let instance = *match entry {
Entry::Occupied(e) => e.into_mut(),
Entry::Vacant(e) => {
// Find it if it was not cached.
let mut instance_and_crate: Option<(ty::Instance<'_>, CrateNum)> = None;
helpers::iter_exported_symbols(tcx, |cnum, def_id| {
let attrs = tcx.codegen_fn_attrs(def_id);
let symbol_name = if let Some(export_name) = attrs.export_name {
export_name
} else if attrs.flags.contains(CodegenFnAttrFlags::NO_MANGLE) {
tcx.item_name(def_id)
} else {
// Skip over items without an explicitly defined symbol name.
return interp_ok(());
};
if symbol_name == link_name {
if let Some((original_instance, original_cnum)) = instance_and_crate {
// Make sure we are consistent wrt what is 'first' and 'second'.
let original_span = tcx.def_span(original_instance.def_id()).data();
let span = tcx.def_span(def_id).data();
if original_span < span {
throw_machine_stop!(TerminationInfo::MultipleSymbolDefinitions {
link_name,
first: original_span,
first_crate: tcx.crate_name(original_cnum),
second: span,
second_crate: tcx.crate_name(cnum),
});
} else {
throw_machine_stop!(TerminationInfo::MultipleSymbolDefinitions {
link_name,
first: span,
first_crate: tcx.crate_name(cnum),
second: original_span,
second_crate: tcx.crate_name(original_cnum),
});
}
}
if !matches!(tcx.def_kind(def_id), DefKind::Fn | DefKind::AssocFn) {
throw_ub_format!(
"attempt to call an exported symbol that is not defined as a function"
);
}
instance_and_crate = Some((ty::Instance::mono(tcx, def_id), cnum));
}
interp_ok(())
})?;
e.insert(instance_and_crate.map(|ic| ic.0))
}
};
match instance {
None => interp_ok(None), // no symbol with this name
Some(instance) => interp_ok(Some((this.load_mir(instance.def, None)?, instance))),
}
}
}
impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Check some basic requirements for this allocation request:
/// non-zero size, power-of-two alignment.
fn check_rustc_alloc_request(&self, size: u64, align: u64) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
if size == 0 {
throw_ub_format!("creating allocation with size 0");
}
if size > this.max_size_of_val().bytes() {
throw_ub_format!("creating an allocation larger than half the address space");
}
if let Err(e) = Align::from_bytes(align) {
match e {
AlignFromBytesError::TooLarge(_) => {
throw_unsup_format!(
"creating allocation with alignment {align} exceeding rustc's maximum \
supported value"
);
}
AlignFromBytesError::NotPowerOfTwo(_) => {
throw_ub_format!("creating allocation with non-power-of-two alignment {align}");
}
}
}
interp_ok(())
}
fn emulate_foreign_item_inner(
&mut self,
link_name: Symbol,
abi: Abi,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx, EmulateItemResult> {
let this = self.eval_context_mut();
// First deal with any external C functions in linked .so file.
#[cfg(unix)]
if this.machine.native_lib.as_ref().is_some() {
use crate::shims::native_lib::EvalContextExt as _;
// An Ok(false) here means that the function being called was not exported
// by the specified `.so` file; we should continue and check if it corresponds to
// a provided shim.
if this.call_native_fn(link_name, dest, args)? {
return interp_ok(EmulateItemResult::NeedsReturn);
}
}
// When adding a new shim, you should follow the following pattern:
// ```
// "shim_name" => {
// let [arg1, arg2, arg3] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
// let result = this.shim_name(arg1, arg2, arg3)?;
// this.write_scalar(result, dest)?;
// }
// ```
// and then define `shim_name` as a helper function in an extension trait in a suitable file
// (see e.g. `unix/fs.rs`):
// ```
// fn shim_name(
// &mut self,
// arg1: &OpTy<'tcx>,
// arg2: &OpTy<'tcx>,
// arg3: &OpTy<'tcx>,
// arg4: &OpTy<'tcx>)
// -> InterpResult<'tcx, Scalar> {
// let this = self.eval_context_mut();
//
// // First thing: load all the arguments. Details depend on the shim.
// let arg1 = this.read_scalar(arg1)?.to_u32()?;
// let arg2 = this.read_pointer(arg2)?; // when you need to work with the pointer directly
// let arg3 = this.deref_pointer_as(arg3, this.libc_ty_layout("some_libc_struct"))?; // when you want to load/store
// // through the pointer and supply the type information yourself
// let arg4 = this.deref_pointer(arg4)?; // when you want to load/store through the pointer and trust
// // the user-given type (which you shouldn't usually do)
//
// // ...
//
// interp_ok(Scalar::from_u32(42))
// }
// ```
// You might find existing shims not following this pattern, most
// likely because they predate it or because for some reason they cannot be made to fit.
// Here we dispatch all the shims for foreign functions. If you have a platform specific
// shim, add it to the corresponding submodule.
match link_name.as_str() {
// Miri-specific extern functions
"miri_start_unwind" => {
let [payload] = this.check_shim(abi, Abi::Rust, link_name, args)?;
this.handle_miri_start_unwind(payload)?;
return interp_ok(EmulateItemResult::NeedsUnwind);
}
"miri_run_provenance_gc" => {
let [] = this.check_shim(abi, Abi::Rust, link_name, args)?;
this.run_provenance_gc();
}
"miri_get_alloc_id" => {
let [ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let (alloc_id, _, _) = this.ptr_get_alloc_id(ptr, 0).map_err_kind(|_e| {
err_machine_stop!(TerminationInfo::Abort(format!(
"pointer passed to `miri_get_alloc_id` must not be dangling, got {ptr:?}"
)))
})?;
this.write_scalar(Scalar::from_u64(alloc_id.0.get()), dest)?;
}
"miri_print_borrow_state" => {
let [id, show_unnamed] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let id = this.read_scalar(id)?.to_u64()?;
let show_unnamed = this.read_scalar(show_unnamed)?.to_bool()?;
if let Some(id) = std::num::NonZero::new(id).map(AllocId)
&& this.get_alloc_info(id).2 == AllocKind::LiveData
{
this.print_borrow_state(id, show_unnamed)?;
} else {
eprintln!("{id} is not the ID of a live data allocation");
}
}
"miri_pointer_name" => {
// This associates a name to a tag. Very useful for debugging, and also makes
// tests more strict.
let [ptr, nth_parent, name] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let nth_parent = this.read_scalar(nth_parent)?.to_u8()?;
let name = this.read_immediate(name)?;
let name = this.read_byte_slice(&name)?;
// We must make `name` owned because we need to
// end the shared borrow from `read_byte_slice` before we can
// start the mutable borrow for `give_pointer_debug_name`.
let name = String::from_utf8_lossy(name).into_owned();
this.give_pointer_debug_name(ptr, nth_parent, &name)?;
}
"miri_static_root" => {
let [ptr] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let (alloc_id, offset, _) = this.ptr_get_alloc_id(ptr, 0)?;
if offset != Size::ZERO {
throw_unsup_format!(
"pointer passed to `miri_static_root` must point to beginning of an allocated block"
);
}
this.machine.static_roots.push(alloc_id);
}
"miri_host_to_target_path" => {
let [ptr, out, out_size] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let out = this.read_pointer(out)?;
let out_size = this.read_scalar(out_size)?.to_target_usize(this)?;
// The host affects program behavior here, so this requires isolation to be disabled.
this.check_no_isolation("`miri_host_to_target_path`")?;
// We read this as a plain OsStr and write it as a path, which will convert it to the target.
let path = this.read_os_str_from_c_str(ptr)?.to_owned();
let (success, needed_size) =
this.write_path_to_c_str(Path::new(&path), out, out_size)?;
// Return value: 0 on success, otherwise the size it would have needed.
this.write_int(if success { 0 } else { needed_size }, dest)?;
}
// Obtains the size of a Miri backtrace. See the README for details.
"miri_backtrace_size" => {
this.handle_miri_backtrace_size(abi, link_name, args, dest)?;
}
// Obtains a Miri backtrace. See the README for details.
"miri_get_backtrace" => {
// `check_shim` happens inside `handle_miri_get_backtrace`.
this.handle_miri_get_backtrace(abi, link_name, args, dest)?;
}
// Resolves a Miri backtrace frame. See the README for details.
"miri_resolve_frame" => {
// `check_shim` happens inside `handle_miri_resolve_frame`.
this.handle_miri_resolve_frame(abi, link_name, args, dest)?;
}
// Writes the function and file names of a Miri backtrace frame into a user provided buffer. See the README for details.
"miri_resolve_frame_names" => {
this.handle_miri_resolve_frame_names(abi, link_name, args)?;
}
// Writes some bytes to the interpreter's stdout/stderr. See the
// README for details.
"miri_write_to_stdout" | "miri_write_to_stderr" => {
let [msg] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let msg = this.read_immediate(msg)?;
let msg = this.read_byte_slice(&msg)?;
// Note: we're ignoring errors writing to host stdout/stderr.
let _ignore = match link_name.as_str() {
"miri_write_to_stdout" => std::io::stdout().write_all(msg),
"miri_write_to_stderr" => std::io::stderr().write_all(msg),
_ => unreachable!(),
};
}
// Promises that a pointer has a given symbolic alignment.
"miri_promise_symbolic_alignment" => {
use rustc_target::abi::AlignFromBytesError;
let [ptr, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let align = this.read_target_usize(align)?;
if !align.is_power_of_two() {
throw_unsup_format!(
"`miri_promise_symbolic_alignment`: alignment must be a power of 2, got {align}"
);
}
let align = Align::from_bytes(align).unwrap_or_else(|err| {
match err {
AlignFromBytesError::NotPowerOfTwo(_) => unreachable!(),
// When the alignment is a power of 2 but too big, clamp it to MAX.
AlignFromBytesError::TooLarge(_) => Align::MAX,
}
});
let (_, addr) = ptr.into_parts(); // we know the offset is absolute
// Cannot panic since `align` is a power of 2 and hence non-zero.
if addr.bytes().strict_rem(align.bytes()) != 0 {
throw_unsup_format!(
"`miri_promise_symbolic_alignment`: pointer is not actually aligned"
);
}
if let Ok((alloc_id, offset, ..)) = this.ptr_try_get_alloc_id(ptr, 0) {
let (_size, alloc_align, _kind) = this.get_alloc_info(alloc_id);
// If the newly promised alignment is bigger than the native alignment of this
// allocation, and bigger than the previously promised alignment, then set it.
if align > alloc_align
&& this
.machine
.symbolic_alignment
.get_mut()
.get(&alloc_id)
.is_none_or(|&(_, old_align)| align > old_align)
{
this.machine.symbolic_alignment.get_mut().insert(alloc_id, (offset, align));
}
}
}
// Aborting the process.
"exit" => {
let [code] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let code = this.read_scalar(code)?.to_i32()?;
throw_machine_stop!(TerminationInfo::Exit { code: code.into(), leak_check: false });
}
"abort" => {
let [] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
throw_machine_stop!(TerminationInfo::Abort(
"the program aborted execution".to_owned()
))
}
// Standard C allocation
"malloc" => {
let [size] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let size = this.read_target_usize(size)?;
if size <= this.max_size_of_val().bytes() {
let res = this.malloc(size, /*zero_init:*/ false)?;
this.write_pointer(res, dest)?;
} else {
// If this does not fit in an isize, return null and, on Unix, set errno.
if this.target_os_is_unix() {
let einval = this.eval_libc("ENOMEM");
this.set_last_error(einval)?;
}
this.write_null(dest)?;
}
}
"calloc" => {
let [items, elem_size] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let items = this.read_target_usize(items)?;
let elem_size = this.read_target_usize(elem_size)?;
if let Some(size) = this.compute_size_in_bytes(Size::from_bytes(elem_size), items) {
let res = this.malloc(size.bytes(), /*zero_init:*/ true)?;
this.write_pointer(res, dest)?;
} else {
// On size overflow, return null and, on Unix, set errno.
if this.target_os_is_unix() {
let einval = this.eval_libc("ENOMEM");
this.set_last_error(einval)?;
}
this.write_null(dest)?;
}
}
"free" => {
let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
this.free(ptr)?;
}
"realloc" => {
let [old_ptr, new_size] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let old_ptr = this.read_pointer(old_ptr)?;
let new_size = this.read_target_usize(new_size)?;
if new_size <= this.max_size_of_val().bytes() {
let res = this.realloc(old_ptr, new_size)?;
this.write_pointer(res, dest)?;
} else {
// If this does not fit in an isize, return null and, on Unix, set errno.
if this.target_os_is_unix() {
let einval = this.eval_libc("ENOMEM");
this.set_last_error(einval)?;
}
this.write_null(dest)?;
}
}
// Rust allocation
"__rust_alloc" | "miri_alloc" => {
let default = |this: &mut MiriInterpCx<'tcx>| {
// Only call `check_shim` when `#[global_allocator]` isn't used. When that
// macro is used, we act like no shim exists, so that the exported function can run.
let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let size = this.read_target_usize(size)?;
let align = this.read_target_usize(align)?;
this.check_rustc_alloc_request(size, align)?;
let memory_kind = match link_name.as_str() {
"__rust_alloc" => MiriMemoryKind::Rust,
"miri_alloc" => MiriMemoryKind::Miri,
_ => unreachable!(),
};
let ptr = this.allocate_ptr(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
memory_kind.into(),
)?;
this.write_pointer(ptr, dest)
};
match link_name.as_str() {
"__rust_alloc" => return this.emulate_allocator(default),
"miri_alloc" => {
default(this)?;
return interp_ok(EmulateItemResult::NeedsReturn);
}
_ => unreachable!(),
}
}
"__rust_alloc_zeroed" => {
return this.emulate_allocator(|this| {
// See the comment for `__rust_alloc` why `check_shim` is only called in the
// default case.
let [size, align] = this.check_shim(abi, Abi::Rust, link_name, args)?;
let size = this.read_target_usize(size)?;
let align = this.read_target_usize(align)?;
this.check_rustc_alloc_request(size, align)?;
let ptr = this.allocate_ptr(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::Rust.into(),
)?;
// We just allocated this, the access is definitely in-bounds.
this.write_bytes_ptr(
ptr.into(),
iter::repeat(0u8).take(usize::try_from(size).unwrap()),
)
.unwrap();
this.write_pointer(ptr, dest)
});
}
"__rust_dealloc" | "miri_dealloc" => {
let default = |this: &mut MiriInterpCx<'tcx>| {
// See the comment for `__rust_alloc` why `check_shim` is only called in the
// default case.
let [ptr, old_size, align] =
this.check_shim(abi, Abi::Rust, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let old_size = this.read_target_usize(old_size)?;
let align = this.read_target_usize(align)?;
let memory_kind = match link_name.as_str() {
"__rust_dealloc" => MiriMemoryKind::Rust,
"miri_dealloc" => MiriMemoryKind::Miri,
_ => unreachable!(),
};
// No need to check old_size/align; we anyway check that they match the allocation.
this.deallocate_ptr(
ptr,
Some((Size::from_bytes(old_size), Align::from_bytes(align).unwrap())),
memory_kind.into(),
)
};
match link_name.as_str() {
"__rust_dealloc" => {
return this.emulate_allocator(default);
}
"miri_dealloc" => {
default(this)?;
return interp_ok(EmulateItemResult::NeedsReturn);
}
_ => unreachable!(),
}
}
"__rust_realloc" => {
return this.emulate_allocator(|this| {
// See the comment for `__rust_alloc` why `check_shim` is only called in the
// default case.
let [ptr, old_size, align, new_size] =
this.check_shim(abi, Abi::Rust, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let old_size = this.read_target_usize(old_size)?;
let align = this.read_target_usize(align)?;
let new_size = this.read_target_usize(new_size)?;
// No need to check old_size; we anyway check that they match the allocation.
this.check_rustc_alloc_request(new_size, align)?;
let align = Align::from_bytes(align).unwrap();
let new_ptr = this.reallocate_ptr(
ptr,
Some((Size::from_bytes(old_size), align)),
Size::from_bytes(new_size),
align,
MiriMemoryKind::Rust.into(),
)?;
this.write_pointer(new_ptr, dest)
});
}
// C memory handling functions
"memcmp" => {
let [left, right, n] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let left = this.read_pointer(left)?;
let right = this.read_pointer(right)?;
let n = Size::from_bytes(this.read_target_usize(n)?);
// C requires that this must always be a valid pointer (C18 §7.1.4).
this.ptr_get_alloc_id(left, 0)?;
this.ptr_get_alloc_id(right, 0)?;
let result = {
let left_bytes = this.read_bytes_ptr_strip_provenance(left, n)?;
let right_bytes = this.read_bytes_ptr_strip_provenance(right, n)?;
use std::cmp::Ordering::*;
match left_bytes.cmp(right_bytes) {
Less => -1i32,
Equal => 0,
Greater => 1,
}
};
this.write_scalar(Scalar::from_i32(result), dest)?;
}
"memrchr" => {
let [ptr, val, num] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let val = this.read_scalar(val)?.to_i32()?;
let num = this.read_target_usize(num)?;
// The docs say val is "interpreted as unsigned char".
#[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
let val = val as u8;
// C requires that this must always be a valid pointer (C18 §7.1.4).
this.ptr_get_alloc_id(ptr, 0)?;
if let Some(idx) = this
.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(num))?
.iter()
.rev()
.position(|&c| c == val)
{
let idx = u64::try_from(idx).unwrap();
#[allow(clippy::arithmetic_side_effects)] // idx < num, so this never wraps
let new_ptr = ptr.wrapping_offset(Size::from_bytes(num - idx - 1), this);
this.write_pointer(new_ptr, dest)?;
} else {
this.write_null(dest)?;
}
}
"memchr" => {
let [ptr, val, num] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
let val = this.read_scalar(val)?.to_i32()?;
let num = this.read_target_usize(num)?;
// The docs say val is "interpreted as unsigned char".
#[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
let val = val as u8;
// C requires that this must always be a valid pointer (C18 §7.1.4).
this.ptr_get_alloc_id(ptr, 0)?;
let idx = this
.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(num))?
.iter()
.position(|&c| c == val);
if let Some(idx) = idx {
let new_ptr = ptr.wrapping_offset(Size::from_bytes(idx as u64), this);
this.write_pointer(new_ptr, dest)?;
} else {
this.write_null(dest)?;
}
}
"strlen" => {
let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
// This reads at least 1 byte, so we are already enforcing that this is a valid pointer.
let n = this.read_c_str(ptr)?.len();
this.write_scalar(
Scalar::from_target_usize(u64::try_from(n).unwrap(), this),
dest,
)?;
}
"wcslen" => {
let [ptr] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let ptr = this.read_pointer(ptr)?;
// This reads at least 1 byte, so we are already enforcing that this is a valid pointer.
let n = this.read_wchar_t_str(ptr)?.len();
this.write_scalar(
Scalar::from_target_usize(u64::try_from(n).unwrap(), this),
dest,
)?;
}
"memcpy" => {
let [ptr_dest, ptr_src, n] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let ptr_dest = this.read_pointer(ptr_dest)?;
let ptr_src = this.read_pointer(ptr_src)?;
let n = this.read_target_usize(n)?;
// C requires that this must always be a valid pointer, even if `n` is zero, so we better check that.
// (This is more than Rust requires, so `mem_copy` is not sufficient.)
this.ptr_get_alloc_id(ptr_dest, 0)?;
this.ptr_get_alloc_id(ptr_src, 0)?;
this.mem_copy(ptr_src, ptr_dest, Size::from_bytes(n), true)?;
this.write_pointer(ptr_dest, dest)?;
}
"strcpy" => {
let [ptr_dest, ptr_src] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let ptr_dest = this.read_pointer(ptr_dest)?;
let ptr_src = this.read_pointer(ptr_src)?;
// We use `read_c_str` to determine the amount of data to copy,
// and then use `mem_copy` for the actual copy. This means
// pointer provenance is preserved by this implementation of `strcpy`.
// That is probably overly cautious, but there also is no fundamental
// reason to have `strcpy` destroy pointer provenance.
// This reads at least 1 byte, so we are already enforcing that this is a valid pointer.
let n = this.read_c_str(ptr_src)?.len().strict_add(1);
this.mem_copy(ptr_src, ptr_dest, Size::from_bytes(n), true)?;
this.write_pointer(ptr_dest, dest)?;
}
// math functions (note that there are also intrinsics for some other functions)
#[rustfmt::skip]
| "cbrtf"
| "coshf"
| "sinhf"
| "tanf"
| "tanhf"
| "acosf"
| "asinf"
| "atanf"
| "log1pf"
| "expm1f"
| "tgammaf"
=> {
let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let f = this.read_scalar(f)?.to_f32()?;
// Using host floats (but it's fine, these operations do not have guaranteed precision).
let f_host = f.to_host();
let res = match link_name.as_str() {
"cbrtf" => f_host.cbrt(),
"coshf" => f_host.cosh(),
"sinhf" => f_host.sinh(),
"tanf" => f_host.tan(),
"tanhf" => f_host.tanh(),
"acosf" => f_host.acos(),
"asinf" => f_host.asin(),
"atanf" => f_host.atan(),
"log1pf" => f_host.ln_1p(),
"expm1f" => f_host.exp_m1(),
"tgammaf" => f_host.gamma(),
_ => bug!(),
};
let res = res.to_soft();
let res = this.adjust_nan(res, &[f]);
this.write_scalar(res, dest)?;
}
#[rustfmt::skip]
| "_hypotf"
| "hypotf"
| "atan2f"
| "fdimf"
=> {
let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let f1 = this.read_scalar(f1)?.to_f32()?;
let f2 = this.read_scalar(f2)?.to_f32()?;
// underscore case for windows, here and below
// (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
// Using host floats (but it's fine, these operations do not have guaranteed precision).
let res = match link_name.as_str() {
"_hypotf" | "hypotf" => f1.to_host().hypot(f2.to_host()).to_soft(),
"atan2f" => f1.to_host().atan2(f2.to_host()).to_soft(),
#[allow(deprecated)]
"fdimf" => f1.to_host().abs_sub(f2.to_host()).to_soft(),
_ => bug!(),
};
let res = this.adjust_nan(res, &[f1, f2]);
this.write_scalar(res, dest)?;
}
#[rustfmt::skip]
| "cbrt"
| "cosh"
| "sinh"
| "tan"
| "tanh"
| "acos"
| "asin"
| "atan"
| "log1p"
| "expm1"
| "tgamma"
=> {
let [f] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let f = this.read_scalar(f)?.to_f64()?;
// Using host floats (but it's fine, these operations do not have guaranteed precision).
let f_host = f.to_host();
let res = match link_name.as_str() {
"cbrt" => f_host.cbrt(),
"cosh" => f_host.cosh(),
"sinh" => f_host.sinh(),
"tan" => f_host.tan(),
"tanh" => f_host.tanh(),
"acos" => f_host.acos(),
"asin" => f_host.asin(),
"atan" => f_host.atan(),
"log1p" => f_host.ln_1p(),
"expm1" => f_host.exp_m1(),
"tgamma" => f_host.gamma(),
_ => bug!(),
};
let res = res.to_soft();
let res = this.adjust_nan(res, &[f]);
this.write_scalar(res, dest)?;
}
#[rustfmt::skip]
| "_hypot"
| "hypot"
| "atan2"
| "fdim"
=> {
let [f1, f2] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let f1 = this.read_scalar(f1)?.to_f64()?;
let f2 = this.read_scalar(f2)?.to_f64()?;
// underscore case for windows, here and below
// (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
// Using host floats (but it's fine, these operations do not have guaranteed precision).
let res = match link_name.as_str() {
"_hypot" | "hypot" => f1.to_host().hypot(f2.to_host()).to_soft(),
"atan2" => f1.to_host().atan2(f2.to_host()).to_soft(),
#[allow(deprecated)]
"fdim" => f1.to_host().abs_sub(f2.to_host()).to_soft(),
_ => bug!(),
};
let res = this.adjust_nan(res, &[f1, f2]);
this.write_scalar(res, dest)?;
}
#[rustfmt::skip]
| "_ldexp"
| "ldexp"
| "scalbn"
=> {
let [x, exp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
// For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
let x = this.read_scalar(x)?.to_f64()?;
let exp = this.read_scalar(exp)?.to_i32()?;
let res = x.scalbn(exp);
let res = this.adjust_nan(res, &[x]);
this.write_scalar(res, dest)?;
}
"lgammaf_r" => {
let [x, signp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let x = this.read_scalar(x)?.to_f32()?;
let signp = this.deref_pointer(signp)?;
// Using host floats (but it's fine, these operations do not have guaranteed precision).
let (res, sign) = x.to_host().ln_gamma();
this.write_int(sign, &signp)?;
let res = this.adjust_nan(res.to_soft(), &[x]);
this.write_scalar(res, dest)?;
}
"lgamma_r" => {
let [x, signp] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let x = this.read_scalar(x)?.to_f64()?;
let signp = this.deref_pointer(signp)?;
// Using host floats (but it's fine, these operations do not have guaranteed precision).
let (res, sign) = x.to_host().ln_gamma();
this.write_int(sign, &signp)?;
let res = this.adjust_nan(res.to_soft(), &[x]);
this.write_scalar(res, dest)?;
}
// LLVM intrinsics
"llvm.prefetch" => {
let [p, rw, loc, ty] =
this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let _ = this.read_pointer(p)?;
let rw = this.read_scalar(rw)?.to_i32()?;
let loc = this.read_scalar(loc)?.to_i32()?;
let ty = this.read_scalar(ty)?.to_i32()?;
if ty == 1 {
// Data cache prefetch.
// Notably, we do not have to check the pointer, this operation is never UB!
if !matches!(rw, 0 | 1) {
throw_unsup_format!("invalid `rw` value passed to `llvm.prefetch`: {}", rw);
}
if !matches!(loc, 0..=3) {
throw_unsup_format!(
"invalid `loc` value passed to `llvm.prefetch`: {}",
loc
);
}
} else {
throw_unsup_format!("unsupported `llvm.prefetch` type argument: {}", ty);
}
}
// Used to implement the x86 `_mm{,256,512}_popcnt_epi{8,16,32,64}` and wasm
// `{i,u}8x16_popcnt` functions.
name if name.starts_with("llvm.ctpop.v") => {
let [op] = this.check_shim(abi, Abi::C { unwind: false }, link_name, args)?;
let (op, op_len) = this.project_to_simd(op)?;
let (dest, dest_len) = this.project_to_simd(dest)?;
assert_eq!(dest_len, op_len);
for i in 0..dest_len {
let op = this.read_immediate(&this.project_index(&op, i)?)?;
// Use `to_uint` to get a zero-extended `u128`. Those
// extra zeros will not affect `count_ones`.
let res = op.to_scalar().to_uint(op.layout.size)?.count_ones();
this.write_scalar(
Scalar::from_uint(res, op.layout.size),
&this.project_index(&dest, i)?,
)?;
}
}
// Target-specific shims
name if name.starts_with("llvm.x86.")
&& (this.tcx.sess.target.arch == "x86"
|| this.tcx.sess.target.arch == "x86_64") =>
{
return shims::x86::EvalContextExt::emulate_x86_intrinsic(
this, link_name, abi, args, dest,
);
}
// FIXME: Move these to an `arm` submodule.
"llvm.aarch64.isb" if this.tcx.sess.target.arch == "aarch64" => {
let [arg] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
let arg = this.read_scalar(arg)?.to_i32()?;
match arg {
// SY ("full system scope")
15 => {
this.yield_active_thread();
}
_ => {
throw_unsup_format!("unsupported llvm.aarch64.isb argument {}", arg);
}
}
}
"llvm.arm.hint" if this.tcx.sess.target.arch == "arm" => {
let [arg] = this.check_shim(abi, Abi::Unadjusted, link_name, args)?;
let arg = this.read_scalar(arg)?.to_i32()?;
// Note that different arguments might have different target feature requirements.
match arg {
// YIELD
1 => {
this.expect_target_feature_for_intrinsic(link_name, "v6")?;
this.yield_active_thread();
}
_ => {
throw_unsup_format!("unsupported llvm.arm.hint argument {}", arg);
}
}
}
// Platform-specific shims
_ =>
return match this.tcx.sess.target.os.as_ref() {
_ if this.target_os_is_unix() =>
shims::unix::foreign_items::EvalContextExt::emulate_foreign_item_inner(
this, link_name, abi, args, dest,
),
"wasi" =>
shims::wasi::foreign_items::EvalContextExt::emulate_foreign_item_inner(
this, link_name, abi, args, dest,
),
"windows" =>
shims::windows::foreign_items::EvalContextExt::emulate_foreign_item_inner(
this, link_name, abi, args, dest,
),
_ => interp_ok(EmulateItemResult::NotSupported),
},
};
// We only fall through to here if we did *not* hit the `_` arm above,
// i.e., if we actually emulated the function with one of the shims.
interp_ok(EmulateItemResult::NeedsReturn)
}
}