miri/shims/unix/
fd.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
//! General management of file descriptors, and support for
//! standard file descriptors (stdin/stdout/stderr).

use std::any::Any;
use std::collections::BTreeMap;
use std::io::{self, ErrorKind, IsTerminal, Read, SeekFrom, Write};
use std::ops::Deref;
use std::rc::{Rc, Weak};

use rustc_target::abi::Size;

use crate::helpers::check_min_arg_count;
use crate::shims::unix::linux::epoll::EpollReadyEvents;
use crate::shims::unix::*;
use crate::*;

#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub(crate) enum FlockOp {
    SharedLock { nonblocking: bool },
    ExclusiveLock { nonblocking: bool },
    Unlock,
}

/// Represents an open file description.
pub trait FileDescription: std::fmt::Debug + Any {
    fn name(&self) -> &'static str;

    /// Reads as much as possible into the given buffer `ptr`.
    /// `len` indicates how many bytes we should try to read.
    /// `dest` is where the return value should be stored: number of bytes read, or `-1` in case of error.
    fn read<'tcx>(
        &self,
        _self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        _ptr: Pointer,
        _len: usize,
        _dest: &MPlaceTy<'tcx>,
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        throw_unsup_format!("cannot read from {}", self.name());
    }

    /// Writes as much as possible from the given buffer `ptr`.
    /// `len` indicates how many bytes we should try to write.
    /// `dest` is where the return value should be stored: number of bytes written, or `-1` in case of error.
    fn write<'tcx>(
        &self,
        _self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        _ptr: Pointer,
        _len: usize,
        _dest: &MPlaceTy<'tcx>,
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        throw_unsup_format!("cannot write to {}", self.name());
    }

    /// Reads as much as possible into the given buffer `ptr` from a given offset.
    /// `len` indicates how many bytes we should try to read.
    /// `dest` is where the return value should be stored: number of bytes read, or `-1` in case of error.
    fn pread<'tcx>(
        &self,
        _communicate_allowed: bool,
        _offset: u64,
        _ptr: Pointer,
        _len: usize,
        _dest: &MPlaceTy<'tcx>,
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        throw_unsup_format!("cannot pread from {}", self.name());
    }

    /// Writes as much as possible from the given buffer `ptr` starting at a given offset.
    /// `ptr` is the pointer to the user supplied read buffer.
    /// `len` indicates how many bytes we should try to write.
    /// `dest` is where the return value should be stored: number of bytes written, or `-1` in case of error.
    fn pwrite<'tcx>(
        &self,
        _communicate_allowed: bool,
        _ptr: Pointer,
        _len: usize,
        _offset: u64,
        _dest: &MPlaceTy<'tcx>,
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        throw_unsup_format!("cannot pwrite to {}", self.name());
    }

    /// Seeks to the given offset (which can be relative to the beginning, end, or current position).
    /// Returns the new position from the start of the stream.
    fn seek<'tcx>(
        &self,
        _communicate_allowed: bool,
        _offset: SeekFrom,
    ) -> InterpResult<'tcx, io::Result<u64>> {
        throw_unsup_format!("cannot seek on {}", self.name());
    }

    fn close<'tcx>(
        self: Box<Self>,
        _communicate_allowed: bool,
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<()>> {
        throw_unsup_format!("cannot close {}", self.name());
    }

    fn flock<'tcx>(
        &self,
        _communicate_allowed: bool,
        _op: FlockOp,
    ) -> InterpResult<'tcx, io::Result<()>> {
        throw_unsup_format!("cannot flock {}", self.name());
    }

    fn is_tty(&self, _communicate_allowed: bool) -> bool {
        // Most FDs are not tty's and the consequence of a wrong `false` are minor,
        // so we use a default impl here.
        false
    }

    /// Check the readiness of file description.
    fn get_epoll_ready_events<'tcx>(&self) -> InterpResult<'tcx, EpollReadyEvents> {
        throw_unsup_format!("{}: epoll does not support this file description", self.name());
    }
}

impl dyn FileDescription {
    #[inline(always)]
    pub fn downcast<T: Any>(&self) -> Option<&T> {
        (self as &dyn Any).downcast_ref()
    }
}

impl FileDescription for io::Stdin {
    fn name(&self) -> &'static str {
        "stdin"
    }

    fn read<'tcx>(
        &self,
        _self_ref: &FileDescriptionRef,
        communicate_allowed: bool,
        ptr: Pointer,
        len: usize,
        dest: &MPlaceTy<'tcx>,
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        let mut bytes = vec![0; len];
        if !communicate_allowed {
            // We want isolation mode to be deterministic, so we have to disallow all reads, even stdin.
            helpers::isolation_abort_error("`read` from stdin")?;
        }
        let result = Read::read(&mut { self }, &mut bytes);
        match result {
            Ok(read_size) => ecx.return_read_success(ptr, &bytes, read_size, dest),
            Err(e) => ecx.set_last_error_and_return(e, dest),
        }
    }

    fn is_tty(&self, communicate_allowed: bool) -> bool {
        communicate_allowed && self.is_terminal()
    }
}

impl FileDescription for io::Stdout {
    fn name(&self) -> &'static str {
        "stdout"
    }

    fn write<'tcx>(
        &self,
        _self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        ptr: Pointer,
        len: usize,
        dest: &MPlaceTy<'tcx>,
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        let bytes = ecx.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(len))?;
        // We allow writing to stderr even with isolation enabled.
        let result = Write::write(&mut { self }, bytes);
        // Stdout is buffered, flush to make sure it appears on the
        // screen.  This is the write() syscall of the interpreted
        // program, we want it to correspond to a write() syscall on
        // the host -- there is no good in adding extra buffering
        // here.
        io::stdout().flush().unwrap();
        match result {
            Ok(write_size) => ecx.return_write_success(write_size, dest),
            Err(e) => ecx.set_last_error_and_return(e, dest),
        }
    }

    fn is_tty(&self, communicate_allowed: bool) -> bool {
        communicate_allowed && self.is_terminal()
    }
}

impl FileDescription for io::Stderr {
    fn name(&self) -> &'static str {
        "stderr"
    }

    fn write<'tcx>(
        &self,
        _self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        ptr: Pointer,
        len: usize,
        dest: &MPlaceTy<'tcx>,
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        let bytes = ecx.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(len))?;
        // We allow writing to stderr even with isolation enabled.
        // No need to flush, stderr is not buffered.
        let result = Write::write(&mut { self }, bytes);
        match result {
            Ok(write_size) => ecx.return_write_success(write_size, dest),
            Err(e) => ecx.set_last_error_and_return(e, dest),
        }
    }

    fn is_tty(&self, communicate_allowed: bool) -> bool {
        communicate_allowed && self.is_terminal()
    }
}

/// Like /dev/null
#[derive(Debug)]
pub struct NullOutput;

impl FileDescription for NullOutput {
    fn name(&self) -> &'static str {
        "stderr and stdout"
    }

    fn write<'tcx>(
        &self,
        _self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        _ptr: Pointer,
        len: usize,
        dest: &MPlaceTy<'tcx>,
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        // We just don't write anything, but report to the user that we did.
        ecx.return_write_success(len, dest)
    }
}

/// Structure contains both the file description and its unique identifier.
#[derive(Clone, Debug)]
pub struct FileDescWithId<T: FileDescription + ?Sized> {
    id: FdId,
    file_description: Box<T>,
}

#[derive(Clone, Debug)]
pub struct FileDescriptionRef(Rc<FileDescWithId<dyn FileDescription>>);

impl Deref for FileDescriptionRef {
    type Target = dyn FileDescription;

    fn deref(&self) -> &Self::Target {
        &*self.0.file_description
    }
}

impl FileDescriptionRef {
    fn new(fd: impl FileDescription, id: FdId) -> Self {
        FileDescriptionRef(Rc::new(FileDescWithId { id, file_description: Box::new(fd) }))
    }

    pub fn close<'tcx>(
        self,
        communicate_allowed: bool,
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<()>> {
        // Destroy this `Rc` using `into_inner` so we can call `close` instead of
        // implicitly running the destructor of the file description.
        let id = self.get_id();
        match Rc::into_inner(self.0) {
            Some(fd) => {
                // Remove entry from the global epoll_event_interest table.
                ecx.machine.epoll_interests.remove(id);

                fd.file_description.close(communicate_allowed, ecx)
            }
            None => interp_ok(Ok(())),
        }
    }

    pub fn downgrade(&self) -> WeakFileDescriptionRef {
        WeakFileDescriptionRef { weak_ref: Rc::downgrade(&self.0) }
    }

    pub fn get_id(&self) -> FdId {
        self.0.id
    }
}

/// Holds a weak reference to the actual file description.
#[derive(Clone, Debug, Default)]
pub struct WeakFileDescriptionRef {
    weak_ref: Weak<FileDescWithId<dyn FileDescription>>,
}

impl WeakFileDescriptionRef {
    pub fn upgrade(&self) -> Option<FileDescriptionRef> {
        if let Some(file_desc_with_id) = self.weak_ref.upgrade() {
            return Some(FileDescriptionRef(file_desc_with_id));
        }
        None
    }
}

impl VisitProvenance for WeakFileDescriptionRef {
    fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
        // A weak reference can never be the only reference to some pointer or place.
        // Since the actual file description is tracked by strong ref somewhere,
        // it is ok to make this a NOP operation.
    }
}

/// A unique id for file descriptions. While we could use the address, considering that
/// is definitely unique, the address would expose interpreter internal state when used
/// for sorting things. So instead we generate a unique id per file description that stays
/// the same even if a file descriptor is duplicated and gets a new integer file descriptor.
#[derive(Debug, Copy, Clone, Default, Eq, PartialEq, Ord, PartialOrd)]
pub struct FdId(usize);

/// The file descriptor table
#[derive(Debug)]
pub struct FdTable {
    pub fds: BTreeMap<i32, FileDescriptionRef>,
    /// Unique identifier for file description, used to differentiate between various file description.
    next_file_description_id: FdId,
}

impl VisitProvenance for FdTable {
    fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
        // All our FileDescription instances do not have any tags.
    }
}

impl FdTable {
    fn new() -> Self {
        FdTable { fds: BTreeMap::new(), next_file_description_id: FdId(0) }
    }
    pub(crate) fn init(mute_stdout_stderr: bool) -> FdTable {
        let mut fds = FdTable::new();
        fds.insert_new(io::stdin());
        if mute_stdout_stderr {
            assert_eq!(fds.insert_new(NullOutput), 1);
            assert_eq!(fds.insert_new(NullOutput), 2);
        } else {
            assert_eq!(fds.insert_new(io::stdout()), 1);
            assert_eq!(fds.insert_new(io::stderr()), 2);
        }
        fds
    }

    pub fn new_ref(&mut self, fd: impl FileDescription) -> FileDescriptionRef {
        let file_handle = FileDescriptionRef::new(fd, self.next_file_description_id);
        self.next_file_description_id = FdId(self.next_file_description_id.0.strict_add(1));
        file_handle
    }

    /// Insert a new file description to the FdTable.
    pub fn insert_new(&mut self, fd: impl FileDescription) -> i32 {
        let fd_ref = self.new_ref(fd);
        self.insert(fd_ref)
    }

    pub fn insert(&mut self, fd_ref: FileDescriptionRef) -> i32 {
        self.insert_with_min_num(fd_ref, 0)
    }

    /// Insert a file description, giving it a file descriptor that is at least `min_fd_num`.
    fn insert_with_min_num(&mut self, file_handle: FileDescriptionRef, min_fd_num: i32) -> i32 {
        // Find the lowest unused FD, starting from min_fd. If the first such unused FD is in
        // between used FDs, the find_map combinator will return it. If the first such unused FD
        // is after all other used FDs, the find_map combinator will return None, and we will use
        // the FD following the greatest FD thus far.
        let candidate_new_fd =
            self.fds.range(min_fd_num..).zip(min_fd_num..).find_map(|((fd_num, _fd), counter)| {
                if *fd_num != counter {
                    // There was a gap in the fds stored, return the first unused one
                    // (note that this relies on BTreeMap iterating in key order)
                    Some(counter)
                } else {
                    // This fd is used, keep going
                    None
                }
            });
        let new_fd_num = candidate_new_fd.unwrap_or_else(|| {
            // find_map ran out of BTreeMap entries before finding a free fd, use one plus the
            // maximum fd in the map
            self.fds.last_key_value().map(|(fd_num, _)| fd_num.strict_add(1)).unwrap_or(min_fd_num)
        });

        self.fds.try_insert(new_fd_num, file_handle).unwrap();
        new_fd_num
    }

    pub fn get(&self, fd_num: i32) -> Option<FileDescriptionRef> {
        let fd = self.fds.get(&fd_num)?;
        Some(fd.clone())
    }

    pub fn remove(&mut self, fd_num: i32) -> Option<FileDescriptionRef> {
        self.fds.remove(&fd_num)
    }

    pub fn is_fd_num(&self, fd_num: i32) -> bool {
        self.fds.contains_key(&fd_num)
    }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    fn dup(&mut self, old_fd_num: i32) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        let Some(fd) = this.machine.fds.get(old_fd_num) else {
            return interp_ok(Scalar::from_i32(this.fd_not_found()?));
        };
        interp_ok(Scalar::from_i32(this.machine.fds.insert(fd)))
    }

    fn dup2(&mut self, old_fd_num: i32, new_fd_num: i32) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        let Some(fd) = this.machine.fds.get(old_fd_num) else {
            return interp_ok(Scalar::from_i32(this.fd_not_found()?));
        };
        if new_fd_num != old_fd_num {
            // Close new_fd if it is previously opened.
            // If old_fd and new_fd point to the same description, then `dup_fd` ensures we keep the underlying file description alive.
            if let Some(old_new_fd) = this.machine.fds.fds.insert(new_fd_num, fd) {
                // Ignore close error (not interpreter's) according to dup2() doc.
                old_new_fd.close(this.machine.communicate(), this)?.ok();
            }
        }
        interp_ok(Scalar::from_i32(new_fd_num))
    }

    fn flock(&mut self, fd_num: i32, op: i32) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();
        let Some(fd) = this.machine.fds.get(fd_num) else {
            return interp_ok(Scalar::from_i32(this.fd_not_found()?));
        };

        // We need to check that there aren't unsupported options in `op`.
        let lock_sh = this.eval_libc_i32("LOCK_SH");
        let lock_ex = this.eval_libc_i32("LOCK_EX");
        let lock_nb = this.eval_libc_i32("LOCK_NB");
        let lock_un = this.eval_libc_i32("LOCK_UN");

        use FlockOp::*;
        let parsed_op = if op == lock_sh {
            SharedLock { nonblocking: false }
        } else if op == lock_sh | lock_nb {
            SharedLock { nonblocking: true }
        } else if op == lock_ex {
            ExclusiveLock { nonblocking: false }
        } else if op == lock_ex | lock_nb {
            ExclusiveLock { nonblocking: true }
        } else if op == lock_un {
            Unlock
        } else {
            throw_unsup_format!("unsupported flags {:#x}", op);
        };

        let result = fd.flock(this.machine.communicate(), parsed_op)?;
        drop(fd);
        // return `0` if flock is successful
        let result = result.map(|()| 0i32);
        interp_ok(Scalar::from_i32(this.try_unwrap_io_result(result)?))
    }

    fn fcntl(&mut self, args: &[OpTy<'tcx>]) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        let [fd_num, cmd] = check_min_arg_count("fcntl", args)?;

        let fd_num = this.read_scalar(fd_num)?.to_i32()?;
        let cmd = this.read_scalar(cmd)?.to_i32()?;

        let f_getfd = this.eval_libc_i32("F_GETFD");
        let f_dupfd = this.eval_libc_i32("F_DUPFD");
        let f_dupfd_cloexec = this.eval_libc_i32("F_DUPFD_CLOEXEC");

        // We only support getting the flags for a descriptor.
        match cmd {
            cmd if cmd == f_getfd => {
                // Currently this is the only flag that `F_GETFD` returns. It is OK to just return the
                // `FD_CLOEXEC` value without checking if the flag is set for the file because `std`
                // always sets this flag when opening a file. However we still need to check that the
                // file itself is open.
                interp_ok(Scalar::from_i32(if this.machine.fds.is_fd_num(fd_num) {
                    this.eval_libc_i32("FD_CLOEXEC")
                } else {
                    this.fd_not_found()?
                }))
            }
            cmd if cmd == f_dupfd || cmd == f_dupfd_cloexec => {
                // Note that we always assume the FD_CLOEXEC flag is set for every open file, in part
                // because exec() isn't supported. The F_DUPFD and F_DUPFD_CLOEXEC commands only
                // differ in whether the FD_CLOEXEC flag is pre-set on the new file descriptor,
                // thus they can share the same implementation here.
                let cmd_name = if cmd == f_dupfd {
                    "fcntl(fd, F_DUPFD, ...)"
                } else {
                    "fcntl(fd, F_DUPFD_CLOEXEC, ...)"
                };

                let [_, _, start] = check_min_arg_count(cmd_name, args)?;
                let start = this.read_scalar(start)?.to_i32()?;

                if let Some(fd) = this.machine.fds.get(fd_num) {
                    interp_ok(Scalar::from_i32(this.machine.fds.insert_with_min_num(fd, start)))
                } else {
                    interp_ok(Scalar::from_i32(this.fd_not_found()?))
                }
            }
            cmd if this.tcx.sess.target.os == "macos"
                && cmd == this.eval_libc_i32("F_FULLFSYNC") =>
            {
                // Reject if isolation is enabled.
                if let IsolatedOp::Reject(reject_with) = this.machine.isolated_op {
                    this.reject_in_isolation("`fcntl`", reject_with)?;
                    return this.set_last_error_and_return_i32(ErrorKind::PermissionDenied);
                }

                this.ffullsync_fd(fd_num)
            }
            cmd => {
                throw_unsup_format!("fcntl: unsupported command {cmd:#x}");
            }
        }
    }

    fn close(&mut self, fd_op: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        let fd_num = this.read_scalar(fd_op)?.to_i32()?;

        let Some(fd) = this.machine.fds.remove(fd_num) else {
            return interp_ok(Scalar::from_i32(this.fd_not_found()?));
        };
        let result = fd.close(this.machine.communicate(), this)?;
        // return `0` if close is successful
        let result = result.map(|()| 0i32);
        interp_ok(Scalar::from_i32(this.try_unwrap_io_result(result)?))
    }

    /// Function used when a file descriptor does not exist. It returns `Ok(-1)`and sets
    /// the last OS error to `libc::EBADF` (invalid file descriptor). This function uses
    /// `T: From<i32>` instead of `i32` directly because some fs functions return different integer
    /// types (like `read`, that returns an `i64`).
    fn fd_not_found<T: From<i32>>(&mut self) -> InterpResult<'tcx, T> {
        let this = self.eval_context_mut();
        let ebadf = this.eval_libc("EBADF");
        this.set_last_error(ebadf)?;
        interp_ok((-1).into())
    }

    /// Read data from `fd` into buffer specified by `buf` and `count`.
    ///
    /// If `offset` is `None`, reads data from current cursor position associated with `fd`
    /// and updates cursor position on completion. Otherwise, reads from the specified offset
    /// and keeps the cursor unchanged.
    fn read(
        &mut self,
        fd_num: i32,
        buf: Pointer,
        count: u64,
        offset: Option<i128>,
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        // Isolation check is done via `FileDescription` trait.

        trace!("Reading from FD {}, size {}", fd_num, count);

        // Check that the *entire* buffer is actually valid memory.
        this.check_ptr_access(buf, Size::from_bytes(count), CheckInAllocMsg::MemoryAccessTest)?;

        // We cap the number of read bytes to the largest value that we are able to fit in both the
        // host's and target's `isize`. This saves us from having to handle overflows later.
        let count = count
            .min(u64::try_from(this.target_isize_max()).unwrap())
            .min(u64::try_from(isize::MAX).unwrap());
        let count = usize::try_from(count).unwrap(); // now it fits in a `usize`
        let communicate = this.machine.communicate();

        // We temporarily dup the FD to be able to retain mutable access to `this`.
        let Some(fd) = this.machine.fds.get(fd_num) else {
            trace!("read: FD not found");
            let res: i32 = this.fd_not_found()?;
            this.write_int(res, dest)?;
            return interp_ok(());
        };

        trace!("read: FD mapped to {fd:?}");
        // We want to read at most `count` bytes. We are sure that `count` is not negative
        // because it was a target's `usize`. Also we are sure that its smaller than
        // `usize::MAX` because it is bounded by the host's `isize`.

        match offset {
            None => fd.read(&fd, communicate, buf, count, dest, this)?,
            Some(offset) => {
                let Ok(offset) = u64::try_from(offset) else {
                    return this.set_last_error_and_return(LibcError("EINVAL"), dest);
                };
                fd.pread(communicate, offset, buf, count, dest, this)?
            }
        };
        interp_ok(())
    }

    fn write(
        &mut self,
        fd_num: i32,
        buf: Pointer,
        count: u64,
        offset: Option<i128>,
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();

        // Isolation check is done via `FileDescription` trait.

        // Check that the *entire* buffer is actually valid memory.
        this.check_ptr_access(buf, Size::from_bytes(count), CheckInAllocMsg::MemoryAccessTest)?;

        // We cap the number of written bytes to the largest value that we are able to fit in both the
        // host's and target's `isize`. This saves us from having to handle overflows later.
        let count = count
            .min(u64::try_from(this.target_isize_max()).unwrap())
            .min(u64::try_from(isize::MAX).unwrap());
        let count = usize::try_from(count).unwrap(); // now it fits in a `usize`
        let communicate = this.machine.communicate();

        // We temporarily dup the FD to be able to retain mutable access to `this`.
        let Some(fd) = this.machine.fds.get(fd_num) else {
            let res: i32 = this.fd_not_found()?;
            this.write_int(res, dest)?;
            return interp_ok(());
        };

        match offset {
            None => fd.write(&fd, communicate, buf, count, dest, this)?,
            Some(offset) => {
                let Ok(offset) = u64::try_from(offset) else {
                    return this.set_last_error_and_return(LibcError("EINVAL"), dest);
                };
                fd.pwrite(communicate, buf, count, offset, dest, this)?
            }
        };
        interp_ok(())
    }

    /// Helper to implement `FileDescription::read`:
    /// This is only used when `read` is successful.
    /// `actual_read_size` should be the return value of some underlying `read` call that used
    /// `bytes` as its output buffer.
    /// The length of `bytes` must not exceed either the host's or the target's `isize`.
    /// `bytes` is written to `buf` and the size is written to `dest`.
    fn return_read_success(
        &mut self,
        buf: Pointer,
        bytes: &[u8],
        actual_read_size: usize,
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        // If reading to `bytes` did not fail, we write those bytes to the buffer.
        // Crucially, if fewer than `bytes.len()` bytes were read, only write
        // that much into the output buffer!
        this.write_bytes_ptr(buf, bytes[..actual_read_size].iter().copied())?;

        // The actual read size is always less than what got originally requested so this cannot fail.
        this.write_int(u64::try_from(actual_read_size).unwrap(), dest)?;
        interp_ok(())
    }

    /// Helper to implement `FileDescription::write`:
    /// This function is only used when `write` is successful, and writes `actual_write_size` to `dest`
    fn return_write_success(
        &mut self,
        actual_write_size: usize,
        dest: &MPlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        let this = self.eval_context_mut();
        // The actual write size is always less than what got originally requested so this cannot fail.
        this.write_int(u64::try_from(actual_write_size).unwrap(), dest)?;
        interp_ok(())
    }
}