miri/shims/unix/
unnamed_socket.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
//! This implements "anonymous" sockets, that do not correspond to anything on the host system and
//! are entirely implemented inside Miri.
//! We also use the same infrastructure to implement unnamed pipes.

use std::cell::{Cell, OnceCell, RefCell};
use std::collections::VecDeque;
use std::io;
use std::io::{ErrorKind, Read};

use rustc_target::abi::Size;

use crate::concurrency::VClock;
use crate::shims::unix::fd::{FileDescriptionRef, WeakFileDescriptionRef};
use crate::shims::unix::linux::epoll::{EpollReadyEvents, EvalContextExt as _};
use crate::shims::unix::*;
use crate::*;

/// The maximum capacity of the socketpair buffer in bytes.
/// This number is arbitrary as the value can always
/// be configured in the real system.
const MAX_SOCKETPAIR_BUFFER_CAPACITY: usize = 212992;

/// One end of a pair of connected unnamed sockets.
#[derive(Debug)]
struct AnonSocket {
    /// The buffer we are reading from, or `None` if this is the writing end of a pipe.
    /// (In that case, the peer FD will be the reading end of that pipe.)
    readbuf: Option<RefCell<Buffer>>,
    /// The `AnonSocket` file descriptor that is our "peer", and that holds the buffer we are
    /// writing to. This is a weak reference because the other side may be closed before us; all
    /// future writes will then trigger EPIPE.
    peer_fd: OnceCell<WeakFileDescriptionRef>,
    /// Indicates whether the peer has lost data when the file description is closed.
    /// This flag is set to `true` if the peer's `readbuf` is non-empty at the time
    /// of closure.
    peer_lost_data: Cell<bool>,
    is_nonblock: bool,
}

#[derive(Debug)]
struct Buffer {
    buf: VecDeque<u8>,
    clock: VClock,
}

impl Buffer {
    fn new() -> Self {
        Buffer { buf: VecDeque::new(), clock: VClock::default() }
    }
}

impl AnonSocket {
    fn peer_fd(&self) -> &WeakFileDescriptionRef {
        self.peer_fd.get().unwrap()
    }
}

impl FileDescription for AnonSocket {
    fn name(&self) -> &'static str {
        "socketpair"
    }

    fn get_epoll_ready_events<'tcx>(&self) -> InterpResult<'tcx, EpollReadyEvents> {
        // We only check the status of EPOLLIN, EPOLLOUT, EPOLLHUP and EPOLLRDHUP flags.
        // If other event flags need to be supported in the future, the check should be added here.

        let mut epoll_ready_events = EpollReadyEvents::new();

        // Check if it is readable.
        if let Some(readbuf) = &self.readbuf {
            if !readbuf.borrow().buf.is_empty() {
                epoll_ready_events.epollin = true;
            }
        } else {
            // Without a read buffer, reading never blocks, so we are always ready.
            epoll_ready_events.epollin = true;
        }

        // Check if is writable.
        if let Some(peer_fd) = self.peer_fd().upgrade() {
            if let Some(writebuf) = &peer_fd.downcast::<AnonSocket>().unwrap().readbuf {
                let data_size = writebuf.borrow().buf.len();
                let available_space = MAX_SOCKETPAIR_BUFFER_CAPACITY.strict_sub(data_size);
                if available_space != 0 {
                    epoll_ready_events.epollout = true;
                }
            } else {
                // Without a write buffer, writing never blocks.
                epoll_ready_events.epollout = true;
            }
        } else {
            // Peer FD has been closed. This always sets both the RDHUP and HUP flags
            // as we do not support `shutdown` that could be used to partially close the stream.
            epoll_ready_events.epollrdhup = true;
            epoll_ready_events.epollhup = true;
            // Since the peer is closed, even if no data is available reads will return EOF and
            // writes will return EPIPE. In other words, they won't block, so we mark this as ready
            // for read and write.
            epoll_ready_events.epollin = true;
            epoll_ready_events.epollout = true;
            // If there is data lost in peer_fd, set EPOLLERR.
            if self.peer_lost_data.get() {
                epoll_ready_events.epollerr = true;
            }
        }
        interp_ok(epoll_ready_events)
    }

    fn close<'tcx>(
        self: Box<Self>,
        _communicate_allowed: bool,
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<()>> {
        if let Some(peer_fd) = self.peer_fd().upgrade() {
            // If the current readbuf is non-empty when the file description is closed,
            // notify the peer that data lost has happened in current file description.
            if let Some(readbuf) = &self.readbuf {
                if !readbuf.borrow().buf.is_empty() {
                    peer_fd.downcast::<AnonSocket>().unwrap().peer_lost_data.set(true);
                }
            }
            // Notify peer fd that close has happened, since that can unblock reads and writes.
            ecx.check_and_update_readiness(&peer_fd)?;
        }
        interp_ok(Ok(()))
    }

    fn read<'tcx>(
        &self,
        _self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        ptr: Pointer,
        len: usize,
        dest: &MPlaceTy<'tcx>,
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        let mut bytes = vec![0; len];

        // Always succeed on read size 0.
        if len == 0 {
            return ecx.return_read_success(ptr, &bytes, 0, dest);
        }

        let Some(readbuf) = &self.readbuf else {
            // FIXME: This should return EBADF, but there's no nice way to do that as there's no
            // corresponding ErrorKind variant.
            throw_unsup_format!("reading from the write end of a pipe");
        };
        let mut readbuf = readbuf.borrow_mut();
        if readbuf.buf.is_empty() {
            if self.peer_fd().upgrade().is_none() {
                // Socketpair with no peer and empty buffer.
                // 0 bytes successfully read indicates end-of-file.
                return ecx.return_read_success(ptr, &bytes, 0, dest);
            } else {
                if self.is_nonblock {
                    // Non-blocking socketpair with writer and empty buffer.
                    // https://linux.die.net/man/2/read
                    // EAGAIN or EWOULDBLOCK can be returned for socket,
                    // POSIX.1-2001 allows either error to be returned for this case.
                    // Since there is no ErrorKind for EAGAIN, WouldBlock is used.
                    return ecx.set_last_error_and_return(ErrorKind::WouldBlock, dest);
                } else {
                    // Blocking socketpair with writer and empty buffer.
                    // FIXME: blocking is currently not supported
                    throw_unsup_format!("socketpair/pipe/pipe2 read: blocking isn't supported yet");
                }
            }
        }

        // Synchronize with all previous writes to this buffer.
        // FIXME: this over-synchronizes; a more precise approach would be to
        // only sync with the writes whose data we will read.
        ecx.acquire_clock(&readbuf.clock);

        // Do full read / partial read based on the space available.
        // Conveniently, `read` exists on `VecDeque` and has exactly the desired behavior.
        let actual_read_size = readbuf.buf.read(&mut bytes).unwrap();

        // Need to drop before others can access the readbuf again.
        drop(readbuf);

        // A notification should be provided for the peer file description even when it can
        // only write 1 byte. This implementation is not compliant with the actual Linux kernel
        // implementation. For optimization reasons, the kernel will only mark the file description
        // as "writable" when it can write more than a certain number of bytes. Since we
        // don't know what that *certain number* is, we will provide a notification every time
        // a read is successful. This might result in our epoll emulation providing more
        // notifications than the real system.
        if let Some(peer_fd) = self.peer_fd().upgrade() {
            ecx.check_and_update_readiness(&peer_fd)?;
        }

        ecx.return_read_success(ptr, &bytes, actual_read_size, dest)
    }

    fn write<'tcx>(
        &self,
        _self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        ptr: Pointer,
        len: usize,
        dest: &MPlaceTy<'tcx>,
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx> {
        // Always succeed on write size 0.
        // ("If count is zero and fd refers to a file other than a regular file, the results are not specified.")
        if len == 0 {
            return ecx.return_write_success(0, dest);
        }

        // We are writing to our peer's readbuf.
        let Some(peer_fd) = self.peer_fd().upgrade() else {
            // If the upgrade from Weak to Rc fails, it indicates that all read ends have been
            // closed.
            return ecx.set_last_error_and_return(ErrorKind::BrokenPipe, dest);
        };

        let Some(writebuf) = &peer_fd.downcast::<AnonSocket>().unwrap().readbuf else {
            // FIXME: This should return EBADF, but there's no nice way to do that as there's no
            // corresponding ErrorKind variant.
            throw_unsup_format!("writing to the reading end of a pipe");
        };
        let mut writebuf = writebuf.borrow_mut();
        let data_size = writebuf.buf.len();
        let available_space = MAX_SOCKETPAIR_BUFFER_CAPACITY.strict_sub(data_size);
        if available_space == 0 {
            if self.is_nonblock {
                // Non-blocking socketpair with a full buffer.
                return ecx.set_last_error_and_return(ErrorKind::WouldBlock, dest);
            } else {
                // Blocking socketpair with a full buffer.
                throw_unsup_format!("socketpair/pipe/pipe2 write: blocking isn't supported yet");
            }
        }
        // Remember this clock so `read` can synchronize with us.
        ecx.release_clock(|clock| {
            writebuf.clock.join(clock);
        });
        // Do full write / partial write based on the space available.
        let actual_write_size = len.min(available_space);
        let bytes = ecx.read_bytes_ptr_strip_provenance(ptr, Size::from_bytes(len))?;
        writebuf.buf.extend(&bytes[..actual_write_size]);

        // Need to stop accessing peer_fd so that it can be notified.
        drop(writebuf);

        // Notification should be provided for peer fd as it became readable.
        // The kernel does this even if the fd was already readable before, so we follow suit.
        ecx.check_and_update_readiness(&peer_fd)?;

        ecx.return_write_success(actual_write_size, dest)
    }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// For more information on the arguments see the socketpair manpage:
    /// <https://linux.die.net/man/2/socketpair>
    fn socketpair(
        &mut self,
        domain: &OpTy<'tcx>,
        type_: &OpTy<'tcx>,
        protocol: &OpTy<'tcx>,
        sv: &OpTy<'tcx>,
    ) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        let domain = this.read_scalar(domain)?.to_i32()?;
        let mut flags = this.read_scalar(type_)?.to_i32()?;
        let protocol = this.read_scalar(protocol)?.to_i32()?;
        let sv = this.deref_pointer(sv)?;

        let mut is_sock_nonblock = false;

        // Interpret the flag. Every flag we recognize is "subtracted" from `flags`, so
        // if there is anything left at the end, that's an unsupported flag.
        if this.tcx.sess.target.os == "linux" {
            // SOCK_NONBLOCK only exists on Linux.
            let sock_nonblock = this.eval_libc_i32("SOCK_NONBLOCK");
            let sock_cloexec = this.eval_libc_i32("SOCK_CLOEXEC");
            if flags & sock_nonblock == sock_nonblock {
                is_sock_nonblock = true;
                flags &= !sock_nonblock;
            }
            if flags & sock_cloexec == sock_cloexec {
                flags &= !sock_cloexec;
            }
        }

        // Fail on unsupported input.
        // AF_UNIX and AF_LOCAL are synonyms, so we accept both in case
        // their values differ.
        if domain != this.eval_libc_i32("AF_UNIX") && domain != this.eval_libc_i32("AF_LOCAL") {
            throw_unsup_format!(
                "socketpair: domain {:#x} is unsupported, only AF_UNIX \
                                 and AF_LOCAL are allowed",
                domain
            );
        } else if flags != this.eval_libc_i32("SOCK_STREAM") {
            throw_unsup_format!(
                "socketpair: type {:#x} is unsupported, only SOCK_STREAM, \
                                 SOCK_CLOEXEC and SOCK_NONBLOCK are allowed",
                flags
            );
        } else if protocol != 0 {
            throw_unsup_format!(
                "socketpair: socket protocol {protocol} is unsupported, \
                                 only 0 is allowed",
            );
        }

        // Generate file descriptions.
        let fds = &mut this.machine.fds;
        let fd0 = fds.new_ref(AnonSocket {
            readbuf: Some(RefCell::new(Buffer::new())),
            peer_fd: OnceCell::new(),
            peer_lost_data: Cell::new(false),
            is_nonblock: is_sock_nonblock,
        });
        let fd1 = fds.new_ref(AnonSocket {
            readbuf: Some(RefCell::new(Buffer::new())),
            peer_fd: OnceCell::new(),
            peer_lost_data: Cell::new(false),
            is_nonblock: is_sock_nonblock,
        });

        // Make the file descriptions point to each other.
        fd0.downcast::<AnonSocket>().unwrap().peer_fd.set(fd1.downgrade()).unwrap();
        fd1.downcast::<AnonSocket>().unwrap().peer_fd.set(fd0.downgrade()).unwrap();

        // Insert the file description to the fd table, generating the file descriptors.
        let sv0 = fds.insert(fd0);
        let sv1 = fds.insert(fd1);

        // Return socketpair file descriptors to the caller.
        let sv0 = Scalar::from_int(sv0, sv.layout.size);
        let sv1 = Scalar::from_int(sv1, sv.layout.size);
        this.write_scalar(sv0, &sv)?;
        this.write_scalar(sv1, &sv.offset(sv.layout.size, sv.layout, this)?)?;

        interp_ok(Scalar::from_i32(0))
    }

    fn pipe2(
        &mut self,
        pipefd: &OpTy<'tcx>,
        flags: Option<&OpTy<'tcx>>,
    ) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        let pipefd = this.deref_pointer_as(pipefd, this.machine.layouts.i32)?;
        let mut flags = match flags {
            Some(flags) => this.read_scalar(flags)?.to_i32()?,
            None => 0,
        };

        let cloexec = this.eval_libc_i32("O_CLOEXEC");
        let o_nonblock = this.eval_libc_i32("O_NONBLOCK");

        // Interpret the flag. Every flag we recognize is "subtracted" from `flags`, so
        // if there is anything left at the end, that's an unsupported flag.
        let mut is_nonblock = false;
        if flags & o_nonblock == o_nonblock {
            is_nonblock = true;
            flags &= !o_nonblock;
        }
        // As usual we ignore CLOEXEC.
        if flags & cloexec == cloexec {
            flags &= !cloexec;
        }
        if flags != 0 {
            throw_unsup_format!("unsupported flags in `pipe2`");
        }

        // Generate file descriptions.
        // pipefd[0] refers to the read end of the pipe.
        let fds = &mut this.machine.fds;
        let fd0 = fds.new_ref(AnonSocket {
            readbuf: Some(RefCell::new(Buffer::new())),
            peer_fd: OnceCell::new(),
            peer_lost_data: Cell::new(false),
            is_nonblock,
        });
        let fd1 = fds.new_ref(AnonSocket {
            readbuf: None,
            peer_fd: OnceCell::new(),
            peer_lost_data: Cell::new(false),
            is_nonblock,
        });

        // Make the file descriptions point to each other.
        fd0.downcast::<AnonSocket>().unwrap().peer_fd.set(fd1.downgrade()).unwrap();
        fd1.downcast::<AnonSocket>().unwrap().peer_fd.set(fd0.downgrade()).unwrap();

        // Insert the file description to the fd table, generating the file descriptors.
        let pipefd0 = fds.insert(fd0);
        let pipefd1 = fds.insert(fd1);

        // Return file descriptors to the caller.
        let pipefd0 = Scalar::from_int(pipefd0, pipefd.layout.size);
        let pipefd1 = Scalar::from_int(pipefd1, pipefd.layout.size);
        this.write_scalar(pipefd0, &pipefd)?;
        this.write_scalar(pipefd1, &pipefd.offset(pipefd.layout.size, pipefd.layout, this)?)?;

        interp_ok(Scalar::from_i32(0))
    }
}