rustc_builtin_macros/deriving/
smart_ptr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
use ast::HasAttrs;
use ast::ptr::P;
use rustc_ast::mut_visit::MutVisitor;
use rustc_ast::visit::BoundKind;
use rustc_ast::{
    self as ast, GenericArg, GenericBound, GenericParamKind, ItemKind, MetaItem,
    TraitBoundModifiers, VariantData, WherePredicate,
};
use rustc_attr as attr;
use rustc_data_structures::flat_map_in_place::FlatMapInPlace;
use rustc_expand::base::{Annotatable, ExtCtxt};
use rustc_span::symbol::{Ident, sym};
use rustc_span::{Span, Symbol};
use thin_vec::{ThinVec, thin_vec};

use crate::errors;

macro_rules! path {
    ($span:expr, $($part:ident)::*) => { vec![$(Ident::new(sym::$part, $span),)*] }
}

pub(crate) fn expand_deriving_smart_ptr(
    cx: &ExtCtxt<'_>,
    span: Span,
    _mitem: &MetaItem,
    item: &Annotatable,
    push: &mut dyn FnMut(Annotatable),
    _is_const: bool,
) {
    item.visit_with(&mut DetectNonGenericPointeeAttr { cx });

    let (name_ident, generics) = if let Annotatable::Item(aitem) = item
        && let ItemKind::Struct(struct_data, g) = &aitem.kind
    {
        let is_transparent = aitem.attrs.iter().any(|attr| {
            attr::find_repr_attrs(cx.sess, attr)
                .into_iter()
                .any(|r| matches!(r, attr::ReprTransparent))
        });
        if !is_transparent {
            cx.dcx()
                .struct_span_err(
                    span,
                    "`SmartPointer` can only be derived on `struct`s with `#[repr(transparent)]`",
                )
                .emit();
            return;
        }
        if !matches!(
            struct_data,
            VariantData::Struct { fields, recovered: _ } | VariantData::Tuple(fields, _)
                if !fields.is_empty())
        {
            cx.dcx()
                .struct_span_err(
                    span,
                    "`SmartPointer` can only be derived on `struct`s with at least one field",
                )
                .emit();
            return;
        }
        (aitem.ident, g)
    } else {
        cx.dcx()
            .struct_span_err(
                span,
                "`SmartPointer` can only be derived on `struct`s with `#[repr(transparent)]`",
            )
            .emit();
        return;
    };

    // Convert generic parameters (from the struct) into generic args.
    let self_params: Vec<_> = generics
        .params
        .iter()
        .map(|p| match p.kind {
            GenericParamKind::Lifetime => GenericArg::Lifetime(cx.lifetime(p.span(), p.ident)),
            GenericParamKind::Type { .. } => GenericArg::Type(cx.ty_ident(p.span(), p.ident)),
            GenericParamKind::Const { .. } => GenericArg::Const(cx.const_ident(p.span(), p.ident)),
        })
        .collect();
    let type_params: Vec<_> = generics
        .params
        .iter()
        .enumerate()
        .filter_map(|(idx, p)| {
            if let GenericParamKind::Type { .. } = p.kind {
                Some((idx, p.span(), p.attrs().iter().any(|attr| attr.has_name(sym::pointee))))
            } else {
                None
            }
        })
        .collect();

    let pointee_param_idx = if type_params.is_empty() {
        // `#[derive(SmartPointer)]` requires at least one generic type on the target `struct`
        cx.dcx().struct_span_err(
            span,
            "`SmartPointer` can only be derived on `struct`s that are generic over at least one type",
        ).emit();
        return;
    } else if type_params.len() == 1 {
        // Regardless of the only type param being designed as `#[pointee]` or not, we can just use it as such
        type_params[0].0
    } else {
        let mut pointees = type_params
            .iter()
            .filter_map(|&(idx, span, is_pointee)| is_pointee.then_some((idx, span)))
            .fuse();
        match (pointees.next(), pointees.next()) {
            (Some((idx, _span)), None) => idx,
            (None, _) => {
                cx.dcx().struct_span_err(
                    span,
                    "exactly one generic type parameter must be marked as #[pointee] to derive SmartPointer traits",
                ).emit();
                return;
            }
            (Some((_, one)), Some((_, another))) => {
                cx.dcx()
                    .struct_span_err(
                        vec![one, another],
                        "only one type parameter can be marked as `#[pointee]` when deriving SmartPointer traits",
                    )
                    .emit();
                return;
            }
        }
    };

    // Create the type of `self`.
    let path = cx.path_all(span, false, vec![name_ident], self_params.clone());
    let self_type = cx.ty_path(path);

    // Declare helper function that adds implementation blocks.
    // FIXME(dingxiangfei2009): Investigate the set of attributes on target struct to be propagated to impls
    let attrs = thin_vec![cx.attr_word(sym::automatically_derived, span),];
    let mut add_impl_block = |generics, trait_symbol, trait_args| {
        let mut parts = path!(span, core::ops);
        parts.push(Ident::new(trait_symbol, span));
        let trait_path = cx.path_all(span, true, parts, trait_args);
        let trait_ref = cx.trait_ref(trait_path);
        let item = cx.item(
            span,
            Ident::empty(),
            attrs.clone(),
            ast::ItemKind::Impl(Box::new(ast::Impl {
                safety: ast::Safety::Default,
                polarity: ast::ImplPolarity::Positive,
                defaultness: ast::Defaultness::Final,
                constness: ast::Const::No,
                generics,
                of_trait: Some(trait_ref),
                self_ty: self_type.clone(),
                items: ThinVec::new(),
            })),
        );
        push(Annotatable::Item(item));
    };

    // Create unsized `self`, that is, one where the `#[pointee]` type arg is replaced with `__S`. For
    // example, instead of `MyType<'a, T>`, it will be `MyType<'a, __S>`.
    let s_ty = cx.ty_ident(span, Ident::new(sym::__S, span));
    let mut alt_self_params = self_params;
    alt_self_params[pointee_param_idx] = GenericArg::Type(s_ty.clone());
    let alt_self_type = cx.ty_path(cx.path_all(span, false, vec![name_ident], alt_self_params));

    // # Add `Unsize<__S>` bound to `#[pointee]` at the generic parameter location
    //
    // Find the `#[pointee]` parameter and add an `Unsize<__S>` bound to it.
    let mut impl_generics = generics.clone();
    let pointee_ty_ident = generics.params[pointee_param_idx].ident;
    let mut self_bounds;
    {
        let pointee = &mut impl_generics.params[pointee_param_idx];
        self_bounds = pointee.bounds.clone();
        if !contains_maybe_sized_bound(&self_bounds)
            && !contains_maybe_sized_bound_on_pointee(
                &generics.where_clause.predicates,
                pointee_ty_ident.name,
            )
        {
            cx.dcx()
                .struct_span_err(
                    pointee_ty_ident.span,
                    format!(
                        "`derive(SmartPointer)` requires {} to be marked `?Sized`",
                        pointee_ty_ident.name
                    ),
                )
                .emit();
            return;
        }
        let arg = GenericArg::Type(s_ty.clone());
        let unsize = cx.path_all(span, true, path!(span, core::marker::Unsize), vec![arg]);
        pointee.bounds.push(cx.trait_bound(unsize, false));
        // Drop `#[pointee]` attribute since it should not be recognized outside `derive(SmartPointer)`
        pointee.attrs.retain(|attr| !attr.has_name(sym::pointee));
    }

    // # Rewrite generic parameter bounds
    // For each bound `U: ..` in `struct<U: ..>`, make a new bound with `__S` in place of `#[pointee]`
    // Example:
    // ```
    // struct<
    //     U: Trait<T>,
    //     #[pointee] T: Trait<T> + ?Sized,
    //     V: Trait<T>> ...
    // ```
    // ... generates this `impl` generic parameters
    // ```
    // impl<
    //     U: Trait<T> + Trait<__S>,
    //     T: Trait<T> + ?Sized + Unsize<__S>, // (**)
    //     __S: Trait<__S> + ?Sized, // (*)
    //     V: Trait<T> + Trait<__S>> ...
    // ```
    // The new bound marked with (*) has to be done separately.
    // See next section
    for (idx, (params, orig_params)) in
        impl_generics.params.iter_mut().zip(&generics.params).enumerate()
    {
        // Default type parameters are rejected for `impl` block.
        // We should drop them now.
        match &mut params.kind {
            ast::GenericParamKind::Const { default, .. } => *default = None,
            ast::GenericParamKind::Type { default } => *default = None,
            ast::GenericParamKind::Lifetime => {}
        }
        // We CANNOT rewrite `#[pointee]` type parameter bounds.
        // This has been set in stone. (**)
        // So we skip over it.
        // Otherwise, we push extra bounds involving `__S`.
        if idx != pointee_param_idx {
            for bound in &orig_params.bounds {
                let mut bound = bound.clone();
                let mut substitution = TypeSubstitution {
                    from_name: pointee_ty_ident.name,
                    to_ty: &s_ty,
                    rewritten: false,
                };
                substitution.visit_param_bound(&mut bound, BoundKind::Bound);
                if substitution.rewritten {
                    // We found use of `#[pointee]` somewhere,
                    // so we make a new bound using `__S` in place of `#[pointee]`
                    params.bounds.push(bound);
                }
            }
        }
    }

    // # Insert `__S` type parameter
    //
    // We now insert `__S` with the missing bounds marked with (*) above.
    // We should also write the bounds from `#[pointee]` to `__S` as required by `Unsize<__S>`.
    {
        let mut substitution =
            TypeSubstitution { from_name: pointee_ty_ident.name, to_ty: &s_ty, rewritten: false };
        for bound in &mut self_bounds {
            substitution.visit_param_bound(bound, BoundKind::Bound);
        }
    }

    // # Rewrite `where` clauses
    //
    // Move on to `where` clauses.
    // Example:
    // ```
    // struct MyPointer<#[pointee] T, ..>
    // where
    //   U: Trait<V> + Trait<T>,
    //   Companion<T>: Trait<T>,
    //   T: Trait<T> + ?Sized,
    // { .. }
    // ```
    // ... will have a impl prelude like so
    // ```
    // impl<..> ..
    // where
    //   U: Trait<V> + Trait<T>,
    //   U: Trait<__S>,
    //   Companion<T>: Trait<T>,
    //   Companion<__S>: Trait<__S>,
    //   T: Trait<T> + ?Sized,
    //   __S: Trait<__S> + ?Sized,
    // ```
    //
    // We should also write a few new `where` bounds from `#[pointee] T` to `__S`
    // as well as any bound that indirectly involves the `#[pointee] T` type.
    for bound in &generics.where_clause.predicates {
        if let ast::WherePredicate::BoundPredicate(bound) = bound {
            let mut substitution = TypeSubstitution {
                from_name: pointee_ty_ident.name,
                to_ty: &s_ty,
                rewritten: false,
            };
            let mut predicate = ast::WherePredicate::BoundPredicate(ast::WhereBoundPredicate {
                span: bound.span,
                bound_generic_params: bound.bound_generic_params.clone(),
                bounded_ty: bound.bounded_ty.clone(),
                bounds: bound.bounds.clone(),
            });
            substitution.visit_where_predicate(&mut predicate);
            if substitution.rewritten {
                impl_generics.where_clause.predicates.push(predicate);
            }
        }
    }

    let extra_param = cx.typaram(span, Ident::new(sym::__S, span), self_bounds, None);
    impl_generics.params.insert(pointee_param_idx + 1, extra_param);

    // Add the impl blocks for `DispatchFromDyn` and `CoerceUnsized`.
    let gen_args = vec![GenericArg::Type(alt_self_type)];
    add_impl_block(impl_generics.clone(), sym::DispatchFromDyn, gen_args.clone());
    add_impl_block(impl_generics.clone(), sym::CoerceUnsized, gen_args);
}

fn contains_maybe_sized_bound_on_pointee(predicates: &[WherePredicate], pointee: Symbol) -> bool {
    for bound in predicates {
        if let ast::WherePredicate::BoundPredicate(bound) = bound
            && bound.bounded_ty.kind.is_simple_path().is_some_and(|name| name == pointee)
        {
            for bound in &bound.bounds {
                if is_maybe_sized_bound(bound) {
                    return true;
                }
            }
        }
    }
    false
}

fn is_maybe_sized_bound(bound: &GenericBound) -> bool {
    if let GenericBound::Trait(trait_ref) = bound
        && let TraitBoundModifiers { polarity: ast::BoundPolarity::Maybe(_), .. } =
            trait_ref.modifiers
        && is_sized_marker(&trait_ref.trait_ref.path)
    {
        true
    } else {
        false
    }
}

fn contains_maybe_sized_bound(bounds: &[GenericBound]) -> bool {
    bounds.iter().any(is_maybe_sized_bound)
}

fn path_segment_is_exact_match(path_segments: &[ast::PathSegment], syms: &[Symbol]) -> bool {
    path_segments.iter().zip(syms).all(|(segment, &symbol)| segment.ident.name == symbol)
}

fn is_sized_marker(path: &ast::Path) -> bool {
    const CORE_UNSIZE: [Symbol; 3] = [sym::core, sym::marker, sym::Sized];
    const STD_UNSIZE: [Symbol; 3] = [sym::std, sym::marker, sym::Sized];
    if path.segments.len() == 4 && path.is_global() {
        path_segment_is_exact_match(&path.segments[1..], &CORE_UNSIZE)
            || path_segment_is_exact_match(&path.segments[1..], &STD_UNSIZE)
    } else if path.segments.len() == 3 {
        path_segment_is_exact_match(&path.segments, &CORE_UNSIZE)
            || path_segment_is_exact_match(&path.segments, &STD_UNSIZE)
    } else {
        *path == sym::Sized
    }
}

struct TypeSubstitution<'a> {
    from_name: Symbol,
    to_ty: &'a ast::Ty,
    rewritten: bool,
}

impl<'a> ast::mut_visit::MutVisitor for TypeSubstitution<'a> {
    fn visit_ty(&mut self, ty: &mut P<ast::Ty>) {
        if let Some(name) = ty.kind.is_simple_path()
            && name == self.from_name
        {
            **ty = self.to_ty.clone();
            self.rewritten = true;
        } else {
            ast::mut_visit::walk_ty(self, ty);
        }
    }

    fn visit_where_predicate(&mut self, where_predicate: &mut ast::WherePredicate) {
        match where_predicate {
            rustc_ast::WherePredicate::BoundPredicate(bound) => {
                bound
                    .bound_generic_params
                    .flat_map_in_place(|param| self.flat_map_generic_param(param));
                self.visit_ty(&mut bound.bounded_ty);
                for bound in &mut bound.bounds {
                    self.visit_param_bound(bound, BoundKind::Bound)
                }
            }
            rustc_ast::WherePredicate::RegionPredicate(_)
            | rustc_ast::WherePredicate::EqPredicate(_) => {}
        }
    }
}

struct DetectNonGenericPointeeAttr<'a, 'b> {
    cx: &'a ExtCtxt<'b>,
}

impl<'a, 'b> rustc_ast::visit::Visitor<'a> for DetectNonGenericPointeeAttr<'a, 'b> {
    fn visit_attribute(&mut self, attr: &'a rustc_ast::Attribute) -> Self::Result {
        if attr.has_name(sym::pointee) {
            self.cx.dcx().emit_err(errors::NonGenericPointee { span: attr.span });
        }
    }

    fn visit_generic_param(&mut self, param: &'a rustc_ast::GenericParam) -> Self::Result {
        let mut error_on_pointee = AlwaysErrorOnGenericParam { cx: self.cx };

        match &param.kind {
            GenericParamKind::Type { default } => {
                // The `default` may end up containing a block expression.
                // The problem is block expressions  may define structs with generics.
                // A user may attach a #[pointee] attribute to one of these generics
                // We want to catch that. The simple solution is to just
                // always raise a `NonGenericPointee` error when this happens.
                //
                // This solution does reject valid rust programs but,
                // such a code would have to, in order:
                // - Define a smart pointer struct.
                // - Somewhere in this struct definition use a type with a const generic argument.
                // - Calculate this const generic in a expression block.
                // - Define a new smart pointer type in this block.
                // - Have this smart pointer type have more than 1 generic type.
                // In this case, the inner smart pointer derive would be complaining that it
                // needs a pointer attribute. Meanwhile, the outer macro would be complaining
                // that we attached a #[pointee] to a generic type argument while helpfully
                // informing the user that #[pointee] can only be attached to generic pointer arguments
                rustc_ast::visit::visit_opt!(error_on_pointee, visit_ty, default);
            }

            GenericParamKind::Const { .. } | GenericParamKind::Lifetime => {
                rustc_ast::visit::walk_generic_param(&mut error_on_pointee, param);
            }
        }
    }

    fn visit_ty(&mut self, t: &'a rustc_ast::Ty) -> Self::Result {
        let mut error_on_pointee = AlwaysErrorOnGenericParam { cx: self.cx };
        error_on_pointee.visit_ty(t)
    }
}

struct AlwaysErrorOnGenericParam<'a, 'b> {
    cx: &'a ExtCtxt<'b>,
}

impl<'a, 'b> rustc_ast::visit::Visitor<'a> for AlwaysErrorOnGenericParam<'a, 'b> {
    fn visit_attribute(&mut self, attr: &'a rustc_ast::Attribute) -> Self::Result {
        if attr.has_name(sym::pointee) {
            self.cx.dcx().emit_err(errors::NonGenericPointee { span: attr.span });
        }
    }
}