rustc_codegen_ssa/base.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
use std::cmp;
use std::collections::BTreeSet;
use std::time::{Duration, Instant};
use itertools::Itertools;
use rustc_ast::expand::allocator::{ALLOCATOR_METHODS, AllocatorKind, global_fn_name};
use rustc_attr as attr;
use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
use rustc_data_structures::sync::par_map;
use rustc_data_structures::unord::UnordMap;
use rustc_hir::def_id::{DefId, LOCAL_CRATE};
use rustc_hir::lang_items::LangItem;
use rustc_metadata::EncodedMetadata;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
use rustc_middle::middle::debugger_visualizer::{DebuggerVisualizerFile, DebuggerVisualizerType};
use rustc_middle::middle::exported_symbols::SymbolExportKind;
use rustc_middle::middle::{exported_symbols, lang_items};
use rustc_middle::mir::BinOp;
use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem};
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
use rustc_session::Session;
use rustc_session::config::{self, CrateType, EntryFnType, OptLevel, OutputType};
use rustc_span::symbol::sym;
use rustc_span::{DUMMY_SP, Symbol};
use rustc_target::abi::FIRST_VARIANT;
use rustc_trait_selection::infer::at::ToTrace;
use rustc_trait_selection::infer::{BoundRegionConversionTime, TyCtxtInferExt};
use rustc_trait_selection::traits::{ObligationCause, ObligationCtxt};
use tracing::{debug, info};
use crate::assert_module_sources::CguReuse;
use crate::back::link::are_upstream_rust_objects_already_included;
use crate::back::metadata::create_compressed_metadata_file;
use crate::back::write::{
ComputedLtoType, OngoingCodegen, compute_per_cgu_lto_type, start_async_codegen,
submit_codegened_module_to_llvm, submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm,
};
use crate::common::{self, IntPredicate, RealPredicate, TypeKind};
use crate::meth::load_vtable;
use crate::mir::operand::OperandValue;
use crate::mir::place::PlaceRef;
use crate::traits::*;
use crate::{
CachedModuleCodegen, CompiledModule, CrateInfo, ModuleCodegen, ModuleKind, errors, meth, mir,
};
pub(crate) fn bin_op_to_icmp_predicate(op: BinOp, signed: bool) -> IntPredicate {
match (op, signed) {
(BinOp::Eq, _) => IntPredicate::IntEQ,
(BinOp::Ne, _) => IntPredicate::IntNE,
(BinOp::Lt, true) => IntPredicate::IntSLT,
(BinOp::Lt, false) => IntPredicate::IntULT,
(BinOp::Le, true) => IntPredicate::IntSLE,
(BinOp::Le, false) => IntPredicate::IntULE,
(BinOp::Gt, true) => IntPredicate::IntSGT,
(BinOp::Gt, false) => IntPredicate::IntUGT,
(BinOp::Ge, true) => IntPredicate::IntSGE,
(BinOp::Ge, false) => IntPredicate::IntUGE,
op => bug!("bin_op_to_icmp_predicate: expected comparison operator, found {:?}", op),
}
}
pub(crate) fn bin_op_to_fcmp_predicate(op: BinOp) -> RealPredicate {
match op {
BinOp::Eq => RealPredicate::RealOEQ,
BinOp::Ne => RealPredicate::RealUNE,
BinOp::Lt => RealPredicate::RealOLT,
BinOp::Le => RealPredicate::RealOLE,
BinOp::Gt => RealPredicate::RealOGT,
BinOp::Ge => RealPredicate::RealOGE,
op => bug!("bin_op_to_fcmp_predicate: expected comparison operator, found {:?}", op),
}
}
pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
lhs: Bx::Value,
rhs: Bx::Value,
t: Ty<'tcx>,
ret_ty: Bx::Type,
op: BinOp,
) -> Bx::Value {
let signed = match t.kind() {
ty::Float(_) => {
let cmp = bin_op_to_fcmp_predicate(op);
let cmp = bx.fcmp(cmp, lhs, rhs);
return bx.sext(cmp, ret_ty);
}
ty::Uint(_) => false,
ty::Int(_) => true,
_ => bug!("compare_simd_types: invalid SIMD type"),
};
let cmp = bin_op_to_icmp_predicate(op, signed);
let cmp = bx.icmp(cmp, lhs, rhs);
// LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
// to get the correctly sized type. This will compile to a single instruction
// once the IR is converted to assembly if the SIMD instruction is supported
// by the target architecture.
bx.sext(cmp, ret_ty)
}
/// Codegen takes advantage of the additional assumption, where if the
/// principal trait def id of what's being casted doesn't change,
/// then we don't need to adjust the vtable at all. This
/// corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
/// requires that `A = B`; we don't allow *upcasting* objects
/// between the same trait with different args. If we, for
/// some reason, were to relax the `Unsize` trait, it could become
/// unsound, so let's validate here that the trait refs are subtypes.
pub fn validate_trivial_unsize<'tcx>(
tcx: TyCtxt<'tcx>,
source_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
target_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
) -> bool {
match (source_data.principal(), target_data.principal()) {
(Some(hr_source_principal), Some(hr_target_principal)) => {
let infcx = tcx.infer_ctxt().build();
let universe = infcx.universe();
let ocx = ObligationCtxt::new(&infcx);
infcx.enter_forall(hr_target_principal, |target_principal| {
let source_principal = infcx.instantiate_binder_with_fresh_vars(
DUMMY_SP,
BoundRegionConversionTime::HigherRankedType,
hr_source_principal,
);
let Ok(()) = ocx.eq_trace(
&ObligationCause::dummy(),
ty::ParamEnv::reveal_all(),
ToTrace::to_trace(
&ObligationCause::dummy(),
hr_target_principal,
hr_source_principal,
),
target_principal,
source_principal,
) else {
return false;
};
if !ocx.select_all_or_error().is_empty() {
return false;
}
infcx.leak_check(universe, None).is_ok()
})
}
(_, None) => true,
_ => false,
}
}
/// Retrieves the information we are losing (making dynamic) in an unsizing
/// adjustment.
///
/// The `old_info` argument is a bit odd. It is intended for use in an upcast,
/// where the new vtable for an object will be derived from the old one.
fn unsized_info<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
source: Ty<'tcx>,
target: Ty<'tcx>,
old_info: Option<Bx::Value>,
) -> Bx::Value {
let cx = bx.cx();
let (source, target) =
cx.tcx().struct_lockstep_tails_for_codegen(source, target, bx.param_env());
match (source.kind(), target.kind()) {
(&ty::Array(_, len), &ty::Slice(_)) => cx.const_usize(
len.try_to_target_usize(cx.tcx()).expect("expected monomorphic const in codegen"),
),
(&ty::Dynamic(data_a, _, src_dyn_kind), &ty::Dynamic(data_b, _, target_dyn_kind))
if src_dyn_kind == target_dyn_kind =>
{
let old_info =
old_info.expect("unsized_info: missing old info for trait upcasting coercion");
let b_principal_def_id = data_b.principal_def_id();
if data_a.principal_def_id() == b_principal_def_id || b_principal_def_id.is_none() {
// Codegen takes advantage of the additional assumption, where if the
// principal trait def id of what's being casted doesn't change,
// then we don't need to adjust the vtable at all. This
// corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
// requires that `A = B`; we don't allow *upcasting* objects
// between the same trait with different args. If we, for
// some reason, were to relax the `Unsize` trait, it could become
// unsound, so let's assert here that the trait refs are *equal*.
debug_assert!(
validate_trivial_unsize(cx.tcx(), data_a, data_b),
"NOP unsize vtable changed principal trait ref: {data_a} -> {data_b}"
);
// A NOP cast that doesn't actually change anything, let's avoid any
// unnecessary work. This relies on the assumption that if the principal
// traits are equal, then the associated type bounds (`dyn Trait<Assoc=T>`)
// are also equal, which is ensured by the fact that normalization is
// a function and we do not allow overlapping impls.
return old_info;
}
// trait upcasting coercion
let vptr_entry_idx = cx.tcx().supertrait_vtable_slot((source, target));
if let Some(entry_idx) = vptr_entry_idx {
let ptr_size = bx.data_layout().pointer_size;
let vtable_byte_offset = u64::try_from(entry_idx).unwrap() * ptr_size.bytes();
load_vtable(bx, old_info, bx.type_ptr(), vtable_byte_offset, source, true)
} else {
old_info
}
}
(_, ty::Dynamic(data, _, _)) => meth::get_vtable(cx, source, data.principal()),
_ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
}
}
/// Coerces `src` to `dst_ty`. `src_ty` must be a pointer.
pub(crate) fn unsize_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
src: Bx::Value,
src_ty: Ty<'tcx>,
dst_ty: Ty<'tcx>,
old_info: Option<Bx::Value>,
) -> (Bx::Value, Bx::Value) {
debug!("unsize_ptr: {:?} => {:?}", src_ty, dst_ty);
match (src_ty.kind(), dst_ty.kind()) {
(&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(b, _))
| (&ty::RawPtr(a, _), &ty::RawPtr(b, _)) => {
assert_eq!(bx.cx().type_is_sized(a), old_info.is_none());
(src, unsized_info(bx, a, b, old_info))
}
(&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
assert_eq!(def_a, def_b); // implies same number of fields
let src_layout = bx.cx().layout_of(src_ty);
let dst_layout = bx.cx().layout_of(dst_ty);
if src_ty == dst_ty {
return (src, old_info.unwrap());
}
let mut result = None;
for i in 0..src_layout.fields.count() {
let src_f = src_layout.field(bx.cx(), i);
if src_f.is_1zst() {
// We are looking for the one non-1-ZST field; this is not it.
continue;
}
assert_eq!(src_layout.fields.offset(i).bytes(), 0);
assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
assert_eq!(src_layout.size, src_f.size);
let dst_f = dst_layout.field(bx.cx(), i);
assert_ne!(src_f.ty, dst_f.ty);
assert_eq!(result, None);
result = Some(unsize_ptr(bx, src, src_f.ty, dst_f.ty, old_info));
}
result.unwrap()
}
_ => bug!("unsize_ptr: called on bad types"),
}
}
/// Coerces `src` to `dst_ty` which is guaranteed to be a `dyn*` type.
pub(crate) fn cast_to_dyn_star<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
src: Bx::Value,
src_ty_and_layout: TyAndLayout<'tcx>,
dst_ty: Ty<'tcx>,
old_info: Option<Bx::Value>,
) -> (Bx::Value, Bx::Value) {
debug!("cast_to_dyn_star: {:?} => {:?}", src_ty_and_layout.ty, dst_ty);
assert!(
matches!(dst_ty.kind(), ty::Dynamic(_, _, ty::DynStar)),
"destination type must be a dyn*"
);
let src = match bx.cx().type_kind(bx.cx().backend_type(src_ty_and_layout)) {
TypeKind::Pointer => src,
TypeKind::Integer => bx.inttoptr(src, bx.type_ptr()),
// FIXME(dyn-star): We probably have to do a bitcast first, then inttoptr.
kind => bug!("unexpected TypeKind for left-hand side of `dyn*` cast: {kind:?}"),
};
(src, unsized_info(bx, src_ty_and_layout.ty, dst_ty, old_info))
}
/// Coerces `src`, which is a reference to a value of type `src_ty`,
/// to a value of type `dst_ty`, and stores the result in `dst`.
pub(crate) fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
src: PlaceRef<'tcx, Bx::Value>,
dst: PlaceRef<'tcx, Bx::Value>,
) {
let src_ty = src.layout.ty;
let dst_ty = dst.layout.ty;
match (src_ty.kind(), dst_ty.kind()) {
(&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
let (base, info) = match bx.load_operand(src).val {
OperandValue::Pair(base, info) => unsize_ptr(bx, base, src_ty, dst_ty, Some(info)),
OperandValue::Immediate(base) => unsize_ptr(bx, base, src_ty, dst_ty, None),
OperandValue::Ref(..) | OperandValue::ZeroSized => bug!(),
};
OperandValue::Pair(base, info).store(bx, dst);
}
(&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
assert_eq!(def_a, def_b); // implies same number of fields
for i in def_a.variant(FIRST_VARIANT).fields.indices() {
let src_f = src.project_field(bx, i.as_usize());
let dst_f = dst.project_field(bx, i.as_usize());
if dst_f.layout.is_zst() {
// No data here, nothing to copy/coerce.
continue;
}
if src_f.layout.ty == dst_f.layout.ty {
bx.typed_place_copy(dst_f.val, src_f.val, src_f.layout);
} else {
coerce_unsized_into(bx, src_f, dst_f);
}
}
}
_ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
}
}
/// Returns `rhs` sufficiently masked, truncated, and/or extended so that it can be used to shift
/// `lhs`: it has the same size as `lhs`, and the value, when interpreted unsigned (no matter its
/// type), will not exceed the size of `lhs`.
///
/// Shifts in MIR are all allowed to have mismatched LHS & RHS types, and signed RHS.
/// The shift methods in `BuilderMethods`, however, are fully homogeneous
/// (both parameters and the return type are all the same size) and assume an unsigned RHS.
///
/// If `is_unchecked` is false, this masks the RHS to ensure it stays in-bounds,
/// as the `BuilderMethods` shifts are UB for out-of-bounds shift amounts.
/// For 32- and 64-bit types, this matches the semantics
/// of Java. (See related discussion on #1877 and #10183.)
///
/// If `is_unchecked` is true, this does no masking, and adds sufficient `assume`
/// calls or operation flags to preserve as much freedom to optimize as possible.
pub(crate) fn build_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
bx: &mut Bx,
lhs: Bx::Value,
mut rhs: Bx::Value,
is_unchecked: bool,
) -> Bx::Value {
// Shifts may have any size int on the rhs
let mut rhs_llty = bx.cx().val_ty(rhs);
let mut lhs_llty = bx.cx().val_ty(lhs);
let mask = common::shift_mask_val(bx, lhs_llty, rhs_llty, false);
if !is_unchecked {
rhs = bx.and(rhs, mask);
}
if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
rhs_llty = bx.cx().element_type(rhs_llty)
}
if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
lhs_llty = bx.cx().element_type(lhs_llty)
}
let rhs_sz = bx.cx().int_width(rhs_llty);
let lhs_sz = bx.cx().int_width(lhs_llty);
if lhs_sz < rhs_sz {
if is_unchecked && bx.sess().opts.optimize != OptLevel::No {
// FIXME: Use `trunc nuw` once that's available
let inrange = bx.icmp(IntPredicate::IntULE, rhs, mask);
bx.assume(inrange);
}
bx.trunc(rhs, lhs_llty)
} else if lhs_sz > rhs_sz {
// We zero-extend even if the RHS is signed. So e.g. `(x: i32) << -1i8` will zero-extend the
// RHS to `255i32`. But then we mask the shift amount to be within the size of the LHS
// anyway so the result is `31` as it should be. All the extra bits introduced by zext
// are masked off so their value does not matter.
// FIXME: if we ever support 512bit integers, this will be wrong! For such large integers,
// the extra bits introduced by zext are *not* all masked away any more.
assert!(lhs_sz <= 256);
bx.zext(rhs, lhs_llty)
} else {
rhs
}
}
// Returns `true` if this session's target will use native wasm
// exceptions. This means that the VM does the unwinding for
// us
pub fn wants_wasm_eh(sess: &Session) -> bool {
sess.target.is_like_wasm && sess.target.os != "emscripten"
}
/// Returns `true` if this session's target will use SEH-based unwinding.
///
/// This is only true for MSVC targets, and even then the 64-bit MSVC target
/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
/// 64-bit MinGW) instead of "full SEH".
pub fn wants_msvc_seh(sess: &Session) -> bool {
sess.target.is_like_msvc
}
/// Returns `true` if this session's target requires the new exception
/// handling LLVM IR instructions (catchpad / cleanuppad / ... instead
/// of landingpad)
pub(crate) fn wants_new_eh_instructions(sess: &Session) -> bool {
wants_wasm_eh(sess) || wants_msvc_seh(sess)
}
pub(crate) fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
cx: &'a Bx::CodegenCx,
instance: Instance<'tcx>,
) {
// this is an info! to allow collecting monomorphization statistics
// and to allow finding the last function before LLVM aborts from
// release builds.
info!("codegen_instance({})", instance);
mir::codegen_mir::<Bx>(cx, instance);
}
/// Creates the `main` function which will initialize the rust runtime and call
/// users main function.
pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
cx: &'a Bx::CodegenCx,
) -> Option<Bx::Function> {
let (main_def_id, entry_type) = cx.tcx().entry_fn(())?;
let main_is_local = main_def_id.is_local();
let instance = Instance::mono(cx.tcx(), main_def_id);
if main_is_local {
// We want to create the wrapper in the same codegen unit as Rust's main
// function.
if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
return None;
}
} else if !cx.codegen_unit().is_primary() {
// We want to create the wrapper only when the codegen unit is the primary one
return None;
}
let main_llfn = cx.get_fn_addr(instance);
let entry_fn = create_entry_fn::<Bx>(cx, main_llfn, main_def_id, entry_type);
return Some(entry_fn);
fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
cx: &'a Bx::CodegenCx,
rust_main: Bx::Value,
rust_main_def_id: DefId,
entry_type: EntryFnType,
) -> Bx::Function {
// The entry function is either `int main(void)` or `int main(int argc, char **argv)`, or
// `usize efi_main(void *handle, void *system_table)` depending on the target.
let llfty = if cx.sess().target.os.contains("uefi") {
cx.type_func(&[cx.type_ptr(), cx.type_ptr()], cx.type_isize())
} else if cx.sess().target.main_needs_argc_argv {
cx.type_func(&[cx.type_int(), cx.type_ptr()], cx.type_int())
} else {
cx.type_func(&[], cx.type_int())
};
let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).no_bound_vars().unwrap().output();
// Given that `main()` has no arguments,
// then its return type cannot have
// late-bound regions, since late-bound
// regions must appear in the argument
// listing.
let main_ret_ty = cx.tcx().normalize_erasing_regions(
ty::ParamEnv::reveal_all(),
main_ret_ty.no_bound_vars().unwrap(),
);
let Some(llfn) = cx.declare_c_main(llfty) else {
// FIXME: We should be smart and show a better diagnostic here.
let span = cx.tcx().def_span(rust_main_def_id);
cx.tcx().dcx().emit_fatal(errors::MultipleMainFunctions { span });
};
// `main` should respect same config for frame pointer elimination as rest of code
cx.set_frame_pointer_type(llfn);
cx.apply_target_cpu_attr(llfn);
let llbb = Bx::append_block(cx, llfn, "top");
let mut bx = Bx::build(cx, llbb);
bx.insert_reference_to_gdb_debug_scripts_section_global();
let isize_ty = cx.type_isize();
let ptr_ty = cx.type_ptr();
let (arg_argc, arg_argv) = get_argc_argv(&mut bx);
let (start_fn, start_ty, args, instance) = if let EntryFnType::Main { sigpipe } = entry_type
{
let start_def_id = cx.tcx().require_lang_item(LangItem::Start, None);
let start_instance = ty::Instance::expect_resolve(
cx.tcx(),
ty::ParamEnv::reveal_all(),
start_def_id,
cx.tcx().mk_args(&[main_ret_ty.into()]),
DUMMY_SP,
);
let start_fn = cx.get_fn_addr(start_instance);
let i8_ty = cx.type_i8();
let arg_sigpipe = bx.const_u8(sigpipe);
let start_ty = cx.type_func(&[cx.val_ty(rust_main), isize_ty, ptr_ty, i8_ty], isize_ty);
(
start_fn,
start_ty,
vec![rust_main, arg_argc, arg_argv, arg_sigpipe],
Some(start_instance),
)
} else {
debug!("using user-defined start fn");
let start_ty = cx.type_func(&[isize_ty, ptr_ty], isize_ty);
(rust_main, start_ty, vec![arg_argc, arg_argv], None)
};
let result = bx.call(start_ty, None, None, start_fn, &args, None, instance);
if cx.sess().target.os.contains("uefi") {
bx.ret(result);
} else {
let cast = bx.intcast(result, cx.type_int(), true);
bx.ret(cast);
}
llfn
}
}
/// Obtain the `argc` and `argv` values to pass to the rust start function.
fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(bx: &mut Bx) -> (Bx::Value, Bx::Value) {
if bx.cx().sess().target.os.contains("uefi") {
// Params for UEFI
let param_handle = bx.get_param(0);
let param_system_table = bx.get_param(1);
let ptr_size = bx.tcx().data_layout.pointer_size;
let ptr_align = bx.tcx().data_layout.pointer_align.abi;
let arg_argc = bx.const_int(bx.cx().type_isize(), 2);
let arg_argv = bx.alloca(2 * ptr_size, ptr_align);
bx.store(param_handle, arg_argv, ptr_align);
let arg_argv_el1 = bx.inbounds_ptradd(arg_argv, bx.const_usize(ptr_size.bytes()));
bx.store(param_system_table, arg_argv_el1, ptr_align);
(arg_argc, arg_argv)
} else if bx.cx().sess().target.main_needs_argc_argv {
// Params from native `main()` used as args for rust start function
let param_argc = bx.get_param(0);
let param_argv = bx.get_param(1);
let arg_argc = bx.intcast(param_argc, bx.cx().type_isize(), true);
let arg_argv = param_argv;
(arg_argc, arg_argv)
} else {
// The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
let arg_argc = bx.const_int(bx.cx().type_int(), 0);
let arg_argv = bx.const_null(bx.cx().type_ptr());
(arg_argc, arg_argv)
}
}
/// This function returns all of the debugger visualizers specified for the
/// current crate as well as all upstream crates transitively that match the
/// `visualizer_type` specified.
pub fn collect_debugger_visualizers_transitive(
tcx: TyCtxt<'_>,
visualizer_type: DebuggerVisualizerType,
) -> BTreeSet<DebuggerVisualizerFile> {
tcx.debugger_visualizers(LOCAL_CRATE)
.iter()
.chain(
tcx.crates(())
.iter()
.filter(|&cnum| {
let used_crate_source = tcx.used_crate_source(*cnum);
used_crate_source.rlib.is_some() || used_crate_source.rmeta.is_some()
})
.flat_map(|&cnum| tcx.debugger_visualizers(cnum)),
)
.filter(|visualizer| visualizer.visualizer_type == visualizer_type)
.cloned()
.collect::<BTreeSet<_>>()
}
/// Decide allocator kind to codegen. If `Some(_)` this will be the same as
/// `tcx.allocator_kind`, but it may be `None` in more cases (e.g. if using
/// allocator definitions from a dylib dependency).
pub fn allocator_kind_for_codegen(tcx: TyCtxt<'_>) -> Option<AllocatorKind> {
// If the crate doesn't have an `allocator_kind` set then there's definitely
// no shim to generate. Otherwise we also check our dependency graph for all
// our output crate types. If anything there looks like its a `Dynamic`
// linkage, then it's already got an allocator shim and we'll be using that
// one instead. If nothing exists then it's our job to generate the
// allocator!
let any_dynamic_crate = tcx.dependency_formats(()).iter().any(|(_, list)| {
use rustc_middle::middle::dependency_format::Linkage;
list.iter().any(|&linkage| linkage == Linkage::Dynamic)
});
if any_dynamic_crate { None } else { tcx.allocator_kind(()) }
}
pub fn codegen_crate<B: ExtraBackendMethods>(
backend: B,
tcx: TyCtxt<'_>,
target_cpu: String,
metadata: EncodedMetadata,
need_metadata_module: bool,
) -> OngoingCodegen<B> {
// Skip crate items and just output metadata in -Z no-codegen mode.
if tcx.sess.opts.unstable_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
let ongoing_codegen = start_async_codegen(backend, tcx, target_cpu, metadata, None);
ongoing_codegen.codegen_finished(tcx);
ongoing_codegen.check_for_errors(tcx.sess);
return ongoing_codegen;
}
let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
// Run the monomorphization collector and partition the collected items into
// codegen units.
let codegen_units = tcx.collect_and_partition_mono_items(()).1;
// Force all codegen_unit queries so they are already either red or green
// when compile_codegen_unit accesses them. We are not able to re-execute
// the codegen_unit query from just the DepNode, so an unknown color would
// lead to having to re-execute compile_codegen_unit, possibly
// unnecessarily.
if tcx.dep_graph.is_fully_enabled() {
for cgu in codegen_units {
tcx.ensure().codegen_unit(cgu.name());
}
}
let metadata_module = need_metadata_module.then(|| {
// Emit compressed metadata object.
let metadata_cgu_name =
cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
tcx.sess.time("write_compressed_metadata", || {
let file_name =
tcx.output_filenames(()).temp_path(OutputType::Metadata, Some(&metadata_cgu_name));
let data = create_compressed_metadata_file(
tcx.sess,
&metadata,
&exported_symbols::metadata_symbol_name(tcx),
);
if let Err(error) = std::fs::write(&file_name, data) {
tcx.dcx().emit_fatal(errors::MetadataObjectFileWrite { error });
}
CompiledModule {
name: metadata_cgu_name,
kind: ModuleKind::Metadata,
object: Some(file_name),
dwarf_object: None,
bytecode: None,
assembly: None,
llvm_ir: None,
}
})
});
let ongoing_codegen =
start_async_codegen(backend.clone(), tcx, target_cpu, metadata, metadata_module);
// Codegen an allocator shim, if necessary.
if let Some(kind) = allocator_kind_for_codegen(tcx) {
let llmod_id =
cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
let module_llvm = tcx.sess.time("write_allocator_module", || {
backend.codegen_allocator(
tcx,
&llmod_id,
kind,
// If allocator_kind is Some then alloc_error_handler_kind must
// also be Some.
tcx.alloc_error_handler_kind(()).unwrap(),
)
});
ongoing_codegen.wait_for_signal_to_codegen_item();
ongoing_codegen.check_for_errors(tcx.sess);
// These modules are generally cheap and won't throw off scheduling.
let cost = 0;
submit_codegened_module_to_llvm(
&backend,
&ongoing_codegen.coordinator.sender,
ModuleCodegen { name: llmod_id, module_llvm, kind: ModuleKind::Allocator },
cost,
);
}
// For better throughput during parallel processing by LLVM, we used to sort
// CGUs largest to smallest. This would lead to better thread utilization
// by, for example, preventing a large CGU from being processed last and
// having only one LLVM thread working while the rest remained idle.
//
// However, this strategy would lead to high memory usage, as it meant the
// LLVM-IR for all of the largest CGUs would be resident in memory at once.
//
// Instead, we can compromise by ordering CGUs such that the largest and
// smallest are first, second largest and smallest are next, etc. If there
// are large size variations, this can reduce memory usage significantly.
let codegen_units: Vec<_> = {
let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
sorted_cgus.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
first_half.iter().interleave(second_half.iter().rev()).copied().collect()
};
// Calculate the CGU reuse
let cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, cgu)).collect::<Vec<_>>()
});
crate::assert_module_sources::assert_module_sources(tcx, &|cgu_reuse_tracker| {
for (i, cgu) in codegen_units.iter().enumerate() {
let cgu_reuse = cgu_reuse[i];
cgu_reuse_tracker.set_actual_reuse(cgu.name().as_str(), cgu_reuse);
}
});
let mut total_codegen_time = Duration::new(0, 0);
let start_rss = tcx.sess.opts.unstable_opts.time_passes.then(|| get_resident_set_size());
// The non-parallel compiler can only translate codegen units to LLVM IR
// on a single thread, leading to a staircase effect where the N LLVM
// threads have to wait on the single codegen threads to generate work
// for them. The parallel compiler does not have this restriction, so
// we can pre-load the LLVM queue in parallel before handing off
// coordination to the OnGoingCodegen scheduler.
//
// This likely is a temporary measure. Once we don't have to support the
// non-parallel compiler anymore, we can compile CGUs end-to-end in
// parallel and get rid of the complicated scheduling logic.
let mut pre_compiled_cgus = if tcx.sess.threads() > 1 {
tcx.sess.time("compile_first_CGU_batch", || {
// Try to find one CGU to compile per thread.
let cgus: Vec<_> = cgu_reuse
.iter()
.enumerate()
.filter(|&(_, reuse)| reuse == &CguReuse::No)
.take(tcx.sess.threads())
.collect();
// Compile the found CGUs in parallel.
let start_time = Instant::now();
let pre_compiled_cgus = par_map(cgus, |(i, _)| {
let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
(i, module)
});
total_codegen_time += start_time.elapsed();
pre_compiled_cgus
})
} else {
FxHashMap::default()
};
for (i, cgu) in codegen_units.iter().enumerate() {
ongoing_codegen.wait_for_signal_to_codegen_item();
ongoing_codegen.check_for_errors(tcx.sess);
let cgu_reuse = cgu_reuse[i];
match cgu_reuse {
CguReuse::No => {
let (module, cost) = if let Some(cgu) = pre_compiled_cgus.remove(&i) {
cgu
} else {
let start_time = Instant::now();
let module = backend.compile_codegen_unit(tcx, cgu.name());
total_codegen_time += start_time.elapsed();
module
};
// This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
// guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
// compilation hang on post-monomorphization errors.
tcx.dcx().abort_if_errors();
submit_codegened_module_to_llvm(
&backend,
&ongoing_codegen.coordinator.sender,
module,
cost,
);
}
CguReuse::PreLto => {
submit_pre_lto_module_to_llvm(
&backend,
tcx,
&ongoing_codegen.coordinator.sender,
CachedModuleCodegen {
name: cgu.name().to_string(),
source: cgu.previous_work_product(tcx),
},
);
}
CguReuse::PostLto => {
submit_post_lto_module_to_llvm(
&backend,
&ongoing_codegen.coordinator.sender,
CachedModuleCodegen {
name: cgu.name().to_string(),
source: cgu.previous_work_product(tcx),
},
);
}
}
}
ongoing_codegen.codegen_finished(tcx);
// Since the main thread is sometimes blocked during codegen, we keep track
// -Ztime-passes output manually.
if tcx.sess.opts.unstable_opts.time_passes {
let end_rss = get_resident_set_size();
print_time_passes_entry(
"codegen_to_LLVM_IR",
total_codegen_time,
start_rss.unwrap(),
end_rss,
tcx.sess.opts.unstable_opts.time_passes_format,
);
}
ongoing_codegen.check_for_errors(tcx.sess);
ongoing_codegen
}
/// Returns whether a call from the current crate to the [`Instance`] would produce a call
/// from `compiler_builtins` to a symbol the linker must resolve.
///
/// Such calls from `compiler_bultins` are effectively impossible for the linker to handle. Some
/// linkers will optimize such that dead calls to unresolved symbols are not an error, but this is
/// not guaranteed. So we used this function in codegen backends to ensure we do not generate any
/// unlinkable calls.
///
/// Note that calls to LLVM intrinsics are uniquely okay because they won't make it to the linker.
pub fn is_call_from_compiler_builtins_to_upstream_monomorphization<'tcx>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
) -> bool {
fn is_llvm_intrinsic(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
if let Some(name) = tcx.codegen_fn_attrs(def_id).link_name {
name.as_str().starts_with("llvm.")
} else {
false
}
}
let def_id = instance.def_id();
!def_id.is_local()
&& tcx.is_compiler_builtins(LOCAL_CRATE)
&& !is_llvm_intrinsic(tcx, def_id)
&& !tcx.should_codegen_locally(instance)
}
impl CrateInfo {
pub fn new(tcx: TyCtxt<'_>, target_cpu: String) -> CrateInfo {
let crate_types = tcx.crate_types().to_vec();
let exported_symbols = crate_types
.iter()
.map(|&c| (c, crate::back::linker::exported_symbols(tcx, c)))
.collect();
let linked_symbols =
crate_types.iter().map(|&c| (c, crate::back::linker::linked_symbols(tcx, c))).collect();
let local_crate_name = tcx.crate_name(LOCAL_CRATE);
let crate_attrs = tcx.hir().attrs(rustc_hir::CRATE_HIR_ID);
let subsystem = attr::first_attr_value_str_by_name(crate_attrs, sym::windows_subsystem);
let windows_subsystem = subsystem.map(|subsystem| {
if subsystem != sym::windows && subsystem != sym::console {
tcx.dcx().emit_fatal(errors::InvalidWindowsSubsystem { subsystem });
}
subsystem.to_string()
});
// This list is used when generating the command line to pass through to
// system linker. The linker expects undefined symbols on the left of the
// command line to be defined in libraries on the right, not the other way
// around. For more info, see some comments in the add_used_library function
// below.
//
// In order to get this left-to-right dependency ordering, we use the reverse
// postorder of all crates putting the leaves at the right-most positions.
let mut compiler_builtins = None;
let mut used_crates: Vec<_> = tcx
.postorder_cnums(())
.iter()
.rev()
.copied()
.filter(|&cnum| {
let link = !tcx.dep_kind(cnum).macros_only();
if link && tcx.is_compiler_builtins(cnum) {
compiler_builtins = Some(cnum);
return false;
}
link
})
.collect();
// `compiler_builtins` are always placed last to ensure that they're linked correctly.
used_crates.extend(compiler_builtins);
let crates = tcx.crates(());
let n_crates = crates.len();
let mut info = CrateInfo {
target_cpu,
crate_types,
exported_symbols,
linked_symbols,
local_crate_name,
compiler_builtins,
profiler_runtime: None,
is_no_builtins: Default::default(),
native_libraries: Default::default(),
used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
crate_name: UnordMap::with_capacity(n_crates),
used_crates,
used_crate_source: UnordMap::with_capacity(n_crates),
dependency_formats: tcx.dependency_formats(()).clone(),
windows_subsystem,
natvis_debugger_visualizers: Default::default(),
};
info.native_libraries.reserve(n_crates);
for &cnum in crates.iter() {
info.native_libraries
.insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
info.crate_name.insert(cnum, tcx.crate_name(cnum));
let used_crate_source = tcx.used_crate_source(cnum);
info.used_crate_source.insert(cnum, used_crate_source.clone());
if tcx.is_profiler_runtime(cnum) {
info.profiler_runtime = Some(cnum);
}
if tcx.is_no_builtins(cnum) {
info.is_no_builtins.insert(cnum);
}
}
// Handle circular dependencies in the standard library.
// See comment before `add_linked_symbol_object` function for the details.
// If global LTO is enabled then almost everything (*) is glued into a single object file,
// so this logic is not necessary and can cause issues on some targets (due to weak lang
// item symbols being "privatized" to that object file), so we disable it.
// (*) Native libs, and `#[compiler_builtins]` and `#[no_builtins]` crates are not glued,
// and we assume that they cannot define weak lang items. This is not currently enforced
// by the compiler, but that's ok because all this stuff is unstable anyway.
let target = &tcx.sess.target;
if !are_upstream_rust_objects_already_included(tcx.sess) {
let missing_weak_lang_items: FxIndexSet<Symbol> = info
.used_crates
.iter()
.flat_map(|&cnum| tcx.missing_lang_items(cnum))
.filter(|l| l.is_weak())
.filter_map(|&l| {
let name = l.link_name()?;
lang_items::required(tcx, l).then_some(name)
})
.collect();
let prefix = match (target.is_like_windows, target.arch.as_ref()) {
(true, "x86") => "_",
(true, "arm64ec") => "#",
_ => "",
};
// This loop only adds new items to values of the hash map, so the order in which we
// iterate over the values is not important.
#[allow(rustc::potential_query_instability)]
info.linked_symbols
.iter_mut()
.filter(|(crate_type, _)| {
!matches!(crate_type, CrateType::Rlib | CrateType::Staticlib)
})
.for_each(|(_, linked_symbols)| {
let mut symbols = missing_weak_lang_items
.iter()
.map(|item| (format!("{prefix}{item}"), SymbolExportKind::Text))
.collect::<Vec<_>>();
symbols.sort_unstable_by(|a, b| a.0.cmp(&b.0));
linked_symbols.extend(symbols);
if tcx.allocator_kind(()).is_some() {
// At least one crate needs a global allocator. This crate may be placed
// after the crate that defines it in the linker order, in which case some
// linkers return an error. By adding the global allocator shim methods to
// the linked_symbols list, linking the generated symbols.o will ensure that
// circular dependencies involving the global allocator don't lead to linker
// errors.
linked_symbols.extend(ALLOCATOR_METHODS.iter().map(|method| {
(
format!("{prefix}{}", global_fn_name(method.name).as_str()),
SymbolExportKind::Text,
)
}));
}
});
}
let embed_visualizers = tcx.crate_types().iter().any(|&crate_type| match crate_type {
CrateType::Executable | CrateType::Dylib | CrateType::Cdylib => {
// These are crate types for which we invoke the linker and can embed
// NatVis visualizers.
true
}
CrateType::ProcMacro => {
// We could embed NatVis for proc macro crates too (to improve the debugging
// experience for them) but it does not seem like a good default, since
// this is a rare use case and we don't want to slow down the common case.
false
}
CrateType::Staticlib | CrateType::Rlib => {
// We don't invoke the linker for these, so we don't need to collect the NatVis for
// them.
false
}
});
if target.is_like_msvc && embed_visualizers {
info.natvis_debugger_visualizers =
collect_debugger_visualizers_transitive(tcx, DebuggerVisualizerType::Natvis);
}
info
}
}
pub(crate) fn provide(providers: &mut Providers) {
providers.backend_optimization_level = |tcx, cratenum| {
let for_speed = match tcx.sess.opts.optimize {
// If globally no optimisation is done, #[optimize] has no effect.
//
// This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
// pass manager and it is likely that some module-wide passes (such as inliner or
// cross-function constant propagation) would ignore the `optnone` annotation we put
// on the functions, thus necessarily involving these functions into optimisations.
config::OptLevel::No => return config::OptLevel::No,
// If globally optimise-speed is already specified, just use that level.
config::OptLevel::Less => return config::OptLevel::Less,
config::OptLevel::Default => return config::OptLevel::Default,
config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
// If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
// are present).
config::OptLevel::Size => config::OptLevel::Default,
config::OptLevel::SizeMin => config::OptLevel::Default,
};
let (defids, _) = tcx.collect_and_partition_mono_items(cratenum);
let any_for_speed = defids.items().any(|id| {
let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
match optimize {
attr::OptimizeAttr::None | attr::OptimizeAttr::Size => false,
attr::OptimizeAttr::Speed => true,
}
});
if any_for_speed {
return for_speed;
}
tcx.sess.opts.optimize
};
}
pub fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
if !tcx.dep_graph.is_fully_enabled() {
return CguReuse::No;
}
let work_product_id = &cgu.work_product_id();
if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
// We don't have anything cached for this CGU. This can happen
// if the CGU did not exist in the previous session.
return CguReuse::No;
}
// Try to mark the CGU as green. If it we can do so, it means that nothing
// affecting the LLVM module has changed and we can re-use a cached version.
// If we compile with any kind of LTO, this means we can re-use the bitcode
// of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
// know that later). If we are not doing LTO, there is only one optimized
// version of each module, so we re-use that.
let dep_node = cgu.codegen_dep_node(tcx);
assert!(
!tcx.dep_graph.dep_node_exists(&dep_node),
"CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
cgu.name()
);
if tcx.try_mark_green(&dep_node) {
// We can re-use either the pre- or the post-thinlto state. If no LTO is
// being performed then we can use post-LTO artifacts, otherwise we must
// reuse pre-LTO artifacts
match compute_per_cgu_lto_type(
&tcx.sess.lto(),
&tcx.sess.opts,
tcx.crate_types(),
ModuleKind::Regular,
) {
ComputedLtoType::No => CguReuse::PostLto,
_ => CguReuse::PreLto,
}
} else {
CguReuse::No
}
}