rustc_codegen_ssa/mir/
rvalue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
use std::assert_matches::assert_matches;

use arrayvec::ArrayVec;
use rustc_middle::ty::adjustment::PointerCoercion;
use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
use rustc_middle::{bug, mir, span_bug};
use rustc_session::config::OptLevel;
use rustc_span::{DUMMY_SP, Span};
use rustc_target::abi::{self, FIRST_VARIANT, FieldIdx};
use tracing::{debug, instrument};

use super::operand::{OperandRef, OperandValue};
use super::place::PlaceRef;
use super::{FunctionCx, LocalRef};
use crate::common::IntPredicate;
use crate::traits::*;
use crate::{MemFlags, base};

impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
    #[instrument(level = "trace", skip(self, bx))]
    pub(crate) fn codegen_rvalue(
        &mut self,
        bx: &mut Bx,
        dest: PlaceRef<'tcx, Bx::Value>,
        rvalue: &mir::Rvalue<'tcx>,
    ) {
        match *rvalue {
            mir::Rvalue::Use(ref operand) => {
                let cg_operand = self.codegen_operand(bx, operand);
                // FIXME: consider not copying constants through stack. (Fixable by codegen'ing
                // constants into `OperandValue::Ref`; why don’t we do that yet if we don’t?)
                cg_operand.val.store(bx, dest);
            }

            mir::Rvalue::Cast(
                mir::CastKind::PointerCoercion(PointerCoercion::Unsize, _),
                ref source,
                _,
            ) => {
                // The destination necessarily contains a wide pointer, so if
                // it's a scalar pair, it's a wide pointer or newtype thereof.
                if bx.cx().is_backend_scalar_pair(dest.layout) {
                    // Into-coerce of a thin pointer to a wide pointer -- just
                    // use the operand path.
                    let temp = self.codegen_rvalue_operand(bx, rvalue);
                    temp.val.store(bx, dest);
                    return;
                }

                // Unsize of a nontrivial struct. I would prefer for
                // this to be eliminated by MIR building, but
                // `CoerceUnsized` can be passed by a where-clause,
                // so the (generic) MIR may not be able to expand it.
                let operand = self.codegen_operand(bx, source);
                match operand.val {
                    OperandValue::Pair(..) | OperandValue::Immediate(_) => {
                        // Unsize from an immediate structure. We don't
                        // really need a temporary alloca here, but
                        // avoiding it would require us to have
                        // `coerce_unsized_into` use `extractvalue` to
                        // index into the struct, and this case isn't
                        // important enough for it.
                        debug!("codegen_rvalue: creating ugly alloca");
                        let scratch = PlaceRef::alloca(bx, operand.layout);
                        scratch.storage_live(bx);
                        operand.val.store(bx, scratch);
                        base::coerce_unsized_into(bx, scratch, dest);
                        scratch.storage_dead(bx);
                    }
                    OperandValue::Ref(val) => {
                        if val.llextra.is_some() {
                            bug!("unsized coercion on an unsized rvalue");
                        }
                        base::coerce_unsized_into(bx, val.with_type(operand.layout), dest);
                    }
                    OperandValue::ZeroSized => {
                        bug!("unsized coercion on a ZST rvalue");
                    }
                }
            }

            mir::Rvalue::Cast(mir::CastKind::Transmute, ref operand, _ty) => {
                let src = self.codegen_operand(bx, operand);
                self.codegen_transmute(bx, src, dest);
            }

            mir::Rvalue::Repeat(ref elem, count) => {
                let cg_elem = self.codegen_operand(bx, elem);

                // Do not generate the loop for zero-sized elements or empty arrays.
                if dest.layout.is_zst() {
                    return;
                }

                if let OperandValue::Immediate(v) = cg_elem.val {
                    let start = dest.val.llval;
                    let size = bx.const_usize(dest.layout.size.bytes());

                    // Use llvm.memset.p0i8.* to initialize all zero arrays
                    if bx.cx().const_to_opt_u128(v, false) == Some(0) {
                        let fill = bx.cx().const_u8(0);
                        bx.memset(start, fill, size, dest.val.align, MemFlags::empty());
                        return;
                    }

                    // Use llvm.memset.p0i8.* to initialize byte arrays
                    let v = bx.from_immediate(v);
                    if bx.cx().val_ty(v) == bx.cx().type_i8() {
                        bx.memset(start, v, size, dest.val.align, MemFlags::empty());
                        return;
                    }
                }

                let count = self
                    .monomorphize(count)
                    .try_to_target_usize(bx.tcx())
                    .expect("expected monomorphic const in codegen");

                bx.write_operand_repeatedly(cg_elem, count, dest);
            }

            // This implementation does field projection, so never use it for `RawPtr`,
            // which will always be fine with the `codegen_rvalue_operand` path below.
            mir::Rvalue::Aggregate(ref kind, ref operands)
                if !matches!(**kind, mir::AggregateKind::RawPtr(..)) =>
            {
                let (variant_index, variant_dest, active_field_index) = match **kind {
                    mir::AggregateKind::Adt(_, variant_index, _, _, active_field_index) => {
                        let variant_dest = dest.project_downcast(bx, variant_index);
                        (variant_index, variant_dest, active_field_index)
                    }
                    _ => (FIRST_VARIANT, dest, None),
                };
                if active_field_index.is_some() {
                    assert_eq!(operands.len(), 1);
                }
                for (i, operand) in operands.iter_enumerated() {
                    let op = self.codegen_operand(bx, operand);
                    // Do not generate stores and GEPis for zero-sized fields.
                    if !op.layout.is_zst() {
                        let field_index = active_field_index.unwrap_or(i);
                        let field = if let mir::AggregateKind::Array(_) = **kind {
                            let llindex = bx.cx().const_usize(field_index.as_u32().into());
                            variant_dest.project_index(bx, llindex)
                        } else {
                            variant_dest.project_field(bx, field_index.as_usize())
                        };
                        op.val.store(bx, field);
                    }
                }
                dest.codegen_set_discr(bx, variant_index);
            }

            _ => {
                assert!(self.rvalue_creates_operand(rvalue, DUMMY_SP));
                let temp = self.codegen_rvalue_operand(bx, rvalue);
                temp.val.store(bx, dest);
            }
        }
    }

    fn codegen_transmute(
        &mut self,
        bx: &mut Bx,
        src: OperandRef<'tcx, Bx::Value>,
        dst: PlaceRef<'tcx, Bx::Value>,
    ) {
        // The MIR validator enforces no unsized transmutes.
        assert!(src.layout.is_sized());
        assert!(dst.layout.is_sized());

        if let Some(val) = self.codegen_transmute_operand(bx, src, dst.layout) {
            val.store(bx, dst);
            return;
        }

        match src.val {
            OperandValue::Ref(..) | OperandValue::ZeroSized => {
                span_bug!(
                    self.mir.span,
                    "Operand path should have handled transmute \
                    from {src:?} to place {dst:?}"
                );
            }
            OperandValue::Immediate(..) | OperandValue::Pair(..) => {
                // When we have immediate(s), the alignment of the source is irrelevant,
                // so we can store them using the destination's alignment.
                src.val.store(bx, dst.val.with_type(src.layout));
            }
        }
    }

    /// Attempts to transmute an `OperandValue` to another `OperandValue`.
    ///
    /// Returns `None` for cases that can't work in that framework, such as for
    /// `Immediate`->`Ref` that needs an `alloc` to get the location.
    fn codegen_transmute_operand(
        &mut self,
        bx: &mut Bx,
        operand: OperandRef<'tcx, Bx::Value>,
        cast: TyAndLayout<'tcx>,
    ) -> Option<OperandValue<Bx::Value>> {
        // Check for transmutes that are always UB.
        if operand.layout.size != cast.size
            || operand.layout.abi.is_uninhabited()
            || cast.abi.is_uninhabited()
        {
            if !operand.layout.abi.is_uninhabited() {
                // Since this is known statically and the input could have existed
                // without already having hit UB, might as well trap for it.
                bx.abort();
            }

            // Because this transmute is UB, return something easy to generate,
            // since it's fine that later uses of the value are probably UB.
            return Some(OperandValue::poison(bx, cast));
        }

        let operand_kind = self.value_kind(operand.layout);
        let cast_kind = self.value_kind(cast);

        match operand.val {
            OperandValue::Ref(source_place_val) => {
                assert_eq!(source_place_val.llextra, None);
                assert_matches!(operand_kind, OperandValueKind::Ref);
                Some(bx.load_operand(source_place_val.with_type(cast)).val)
            }
            OperandValue::ZeroSized => {
                let OperandValueKind::ZeroSized = operand_kind else {
                    bug!("Found {operand_kind:?} for operand {operand:?}");
                };
                if let OperandValueKind::ZeroSized = cast_kind {
                    Some(OperandValue::ZeroSized)
                } else {
                    None
                }
            }
            OperandValue::Immediate(imm) => {
                let OperandValueKind::Immediate(from_scalar) = operand_kind else {
                    bug!("Found {operand_kind:?} for operand {operand:?}");
                };
                if let OperandValueKind::Immediate(to_scalar) = cast_kind
                    && from_scalar.size(self.cx) == to_scalar.size(self.cx)
                {
                    let from_backend_ty = bx.backend_type(operand.layout);
                    let to_backend_ty = bx.backend_type(cast);
                    Some(OperandValue::Immediate(self.transmute_immediate(
                        bx,
                        imm,
                        from_scalar,
                        from_backend_ty,
                        to_scalar,
                        to_backend_ty,
                    )))
                } else {
                    None
                }
            }
            OperandValue::Pair(imm_a, imm_b) => {
                let OperandValueKind::Pair(in_a, in_b) = operand_kind else {
                    bug!("Found {operand_kind:?} for operand {operand:?}");
                };
                if let OperandValueKind::Pair(out_a, out_b) = cast_kind
                    && in_a.size(self.cx) == out_a.size(self.cx)
                    && in_b.size(self.cx) == out_b.size(self.cx)
                {
                    let in_a_ibty = bx.scalar_pair_element_backend_type(operand.layout, 0, false);
                    let in_b_ibty = bx.scalar_pair_element_backend_type(operand.layout, 1, false);
                    let out_a_ibty = bx.scalar_pair_element_backend_type(cast, 0, false);
                    let out_b_ibty = bx.scalar_pair_element_backend_type(cast, 1, false);
                    Some(OperandValue::Pair(
                        self.transmute_immediate(bx, imm_a, in_a, in_a_ibty, out_a, out_a_ibty),
                        self.transmute_immediate(bx, imm_b, in_b, in_b_ibty, out_b, out_b_ibty),
                    ))
                } else {
                    None
                }
            }
        }
    }

    /// Cast one of the immediates from an [`OperandValue::Immediate`]
    /// or an [`OperandValue::Pair`] to an immediate of the target type.
    ///
    /// Returns `None` if the cast is not possible.
    fn cast_immediate(
        &self,
        bx: &mut Bx,
        mut imm: Bx::Value,
        from_scalar: abi::Scalar,
        from_backend_ty: Bx::Type,
        to_scalar: abi::Scalar,
        to_backend_ty: Bx::Type,
    ) -> Option<Bx::Value> {
        use abi::Primitive::*;

        // When scalars are passed by value, there's no metadata recording their
        // valid ranges. For example, `char`s are passed as just `i32`, with no
        // way for LLVM to know that they're 0x10FFFF at most. Thus we assume
        // the range of the input value too, not just the output range.
        self.assume_scalar_range(bx, imm, from_scalar, from_backend_ty);

        imm = match (from_scalar.primitive(), to_scalar.primitive()) {
            (Int(_, is_signed), Int(..)) => bx.intcast(imm, to_backend_ty, is_signed),
            (Float(_), Float(_)) => {
                let srcsz = bx.cx().float_width(from_backend_ty);
                let dstsz = bx.cx().float_width(to_backend_ty);
                if dstsz > srcsz {
                    bx.fpext(imm, to_backend_ty)
                } else if srcsz > dstsz {
                    bx.fptrunc(imm, to_backend_ty)
                } else {
                    imm
                }
            }
            (Int(_, is_signed), Float(_)) => {
                if is_signed {
                    bx.sitofp(imm, to_backend_ty)
                } else {
                    bx.uitofp(imm, to_backend_ty)
                }
            }
            (Pointer(..), Pointer(..)) => bx.pointercast(imm, to_backend_ty),
            (Int(_, is_signed), Pointer(..)) => {
                let usize_imm = bx.intcast(imm, bx.cx().type_isize(), is_signed);
                bx.inttoptr(usize_imm, to_backend_ty)
            }
            (Float(_), Int(_, is_signed)) => bx.cast_float_to_int(is_signed, imm, to_backend_ty),
            _ => return None,
        };
        Some(imm)
    }

    /// Transmutes one of the immediates from an [`OperandValue::Immediate`]
    /// or an [`OperandValue::Pair`] to an immediate of the target type.
    ///
    /// `to_backend_ty` must be the *non*-immediate backend type (so it will be
    /// `i8`, not `i1`, for `bool`-like types.)
    fn transmute_immediate(
        &self,
        bx: &mut Bx,
        mut imm: Bx::Value,
        from_scalar: abi::Scalar,
        from_backend_ty: Bx::Type,
        to_scalar: abi::Scalar,
        to_backend_ty: Bx::Type,
    ) -> Bx::Value {
        assert_eq!(from_scalar.size(self.cx), to_scalar.size(self.cx));

        use abi::Primitive::*;
        imm = bx.from_immediate(imm);

        // When scalars are passed by value, there's no metadata recording their
        // valid ranges. For example, `char`s are passed as just `i32`, with no
        // way for LLVM to know that they're 0x10FFFF at most. Thus we assume
        // the range of the input value too, not just the output range.
        self.assume_scalar_range(bx, imm, from_scalar, from_backend_ty);

        imm = match (from_scalar.primitive(), to_scalar.primitive()) {
            (Int(..) | Float(_), Int(..) | Float(_)) => bx.bitcast(imm, to_backend_ty),
            (Pointer(..), Pointer(..)) => bx.pointercast(imm, to_backend_ty),
            (Int(..), Pointer(..)) => bx.ptradd(bx.const_null(bx.type_ptr()), imm),
            (Pointer(..), Int(..)) => {
                // FIXME: this exposes the provenance, which shouldn't be necessary.
                bx.ptrtoint(imm, to_backend_ty)
            }
            (Float(_), Pointer(..)) => {
                let int_imm = bx.bitcast(imm, bx.cx().type_isize());
                bx.ptradd(bx.const_null(bx.type_ptr()), int_imm)
            }
            (Pointer(..), Float(_)) => {
                // FIXME: this exposes the provenance, which shouldn't be necessary.
                let int_imm = bx.ptrtoint(imm, bx.cx().type_isize());
                bx.bitcast(int_imm, to_backend_ty)
            }
        };
        self.assume_scalar_range(bx, imm, to_scalar, to_backend_ty);
        imm = bx.to_immediate_scalar(imm, to_scalar);
        imm
    }

    fn assume_scalar_range(
        &self,
        bx: &mut Bx,
        imm: Bx::Value,
        scalar: abi::Scalar,
        backend_ty: Bx::Type,
    ) {
        if matches!(self.cx.sess().opts.optimize, OptLevel::No)
            // For now, the critical niches are all over `Int`eger values.
            // Should floating-point values or pointers ever get more complex
            // niches, then this code will probably want to handle them too.
            || !matches!(scalar.primitive(), abi::Primitive::Int(..))
            || scalar.is_always_valid(self.cx)
        {
            return;
        }

        let abi::WrappingRange { start, end } = scalar.valid_range(self.cx);

        if start <= end {
            if start > 0 {
                let low = bx.const_uint_big(backend_ty, start);
                let cmp = bx.icmp(IntPredicate::IntUGE, imm, low);
                bx.assume(cmp);
            }

            let type_max = scalar.size(self.cx).unsigned_int_max();
            if end < type_max {
                let high = bx.const_uint_big(backend_ty, end);
                let cmp = bx.icmp(IntPredicate::IntULE, imm, high);
                bx.assume(cmp);
            }
        } else {
            let low = bx.const_uint_big(backend_ty, start);
            let cmp_low = bx.icmp(IntPredicate::IntUGE, imm, low);

            let high = bx.const_uint_big(backend_ty, end);
            let cmp_high = bx.icmp(IntPredicate::IntULE, imm, high);

            let or = bx.or(cmp_low, cmp_high);
            bx.assume(or);
        }
    }

    pub(crate) fn codegen_rvalue_unsized(
        &mut self,
        bx: &mut Bx,
        indirect_dest: PlaceRef<'tcx, Bx::Value>,
        rvalue: &mir::Rvalue<'tcx>,
    ) {
        debug!(
            "codegen_rvalue_unsized(indirect_dest.llval={:?}, rvalue={:?})",
            indirect_dest.val.llval, rvalue
        );

        match *rvalue {
            mir::Rvalue::Use(ref operand) => {
                let cg_operand = self.codegen_operand(bx, operand);
                cg_operand.val.store_unsized(bx, indirect_dest);
            }

            _ => bug!("unsized assignment other than `Rvalue::Use`"),
        }
    }

    pub(crate) fn codegen_rvalue_operand(
        &mut self,
        bx: &mut Bx,
        rvalue: &mir::Rvalue<'tcx>,
    ) -> OperandRef<'tcx, Bx::Value> {
        assert!(
            self.rvalue_creates_operand(rvalue, DUMMY_SP),
            "cannot codegen {rvalue:?} to operand",
        );

        match *rvalue {
            mir::Rvalue::Cast(ref kind, ref source, mir_cast_ty) => {
                let operand = self.codegen_operand(bx, source);
                debug!("cast operand is {:?}", operand);
                let cast = bx.cx().layout_of(self.monomorphize(mir_cast_ty));

                let val = match *kind {
                    mir::CastKind::PointerExposeProvenance => {
                        assert!(bx.cx().is_backend_immediate(cast));
                        let llptr = operand.immediate();
                        let llcast_ty = bx.cx().immediate_backend_type(cast);
                        let lladdr = bx.ptrtoint(llptr, llcast_ty);
                        OperandValue::Immediate(lladdr)
                    }
                    mir::CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer, _) => {
                        match *operand.layout.ty.kind() {
                            ty::FnDef(def_id, args) => {
                                let instance = ty::Instance::resolve_for_fn_ptr(
                                    bx.tcx(),
                                    ty::ParamEnv::reveal_all(),
                                    def_id,
                                    args,
                                )
                                .unwrap()
                                .polymorphize(bx.cx().tcx());
                                OperandValue::Immediate(bx.get_fn_addr(instance))
                            }
                            _ => bug!("{} cannot be reified to a fn ptr", operand.layout.ty),
                        }
                    }
                    mir::CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(_), _) => {
                        match *operand.layout.ty.kind() {
                            ty::Closure(def_id, args) => {
                                let instance = Instance::resolve_closure(
                                    bx.cx().tcx(),
                                    def_id,
                                    args,
                                    ty::ClosureKind::FnOnce,
                                )
                                .polymorphize(bx.cx().tcx());
                                OperandValue::Immediate(bx.cx().get_fn_addr(instance))
                            }
                            _ => bug!("{} cannot be cast to a fn ptr", operand.layout.ty),
                        }
                    }
                    mir::CastKind::PointerCoercion(PointerCoercion::UnsafeFnPointer, _) => {
                        // This is a no-op at the LLVM level.
                        operand.val
                    }
                    mir::CastKind::PointerCoercion(PointerCoercion::Unsize, _) => {
                        assert!(bx.cx().is_backend_scalar_pair(cast));
                        let (lldata, llextra) = operand.val.pointer_parts();
                        let (lldata, llextra) =
                            base::unsize_ptr(bx, lldata, operand.layout.ty, cast.ty, llextra);
                        OperandValue::Pair(lldata, llextra)
                    }
                    mir::CastKind::PointerCoercion(
                        PointerCoercion::MutToConstPointer | PointerCoercion::ArrayToPointer, _
                    ) => {
                        bug!("{kind:?} is for borrowck, and should never appear in codegen");
                    }
                    mir::CastKind::PtrToPtr
                        if bx.cx().is_backend_scalar_pair(operand.layout) =>
                    {
                        if let OperandValue::Pair(data_ptr, meta) = operand.val {
                            if bx.cx().is_backend_scalar_pair(cast) {
                                OperandValue::Pair(data_ptr, meta)
                            } else {
                                // Cast of wide-ptr to thin-ptr is an extraction of data-ptr.
                                OperandValue::Immediate(data_ptr)
                            }
                        } else {
                            bug!("unexpected non-pair operand");
                        }
                    }
                    mir::CastKind::PointerCoercion(PointerCoercion::DynStar, _) => {
                        let (lldata, llextra) = operand.val.pointer_parts();
                        let (lldata, llextra) =
                            base::cast_to_dyn_star(bx, lldata, operand.layout, cast.ty, llextra);
                        OperandValue::Pair(lldata, llextra)
                    }
                    | mir::CastKind::IntToInt
                    | mir::CastKind::FloatToInt
                    | mir::CastKind::FloatToFloat
                    | mir::CastKind::IntToFloat
                    | mir::CastKind::PtrToPtr
                    | mir::CastKind::FnPtrToPtr
                    // Since int2ptr can have arbitrary integer types as input (so we have to do
                    // sign extension and all that), it is currently best handled in the same code
                    // path as the other integer-to-X casts.
                    | mir::CastKind::PointerWithExposedProvenance => {
                        let imm = operand.immediate();
                        let operand_kind = self.value_kind(operand.layout);
                        let OperandValueKind::Immediate(from_scalar) = operand_kind else {
                            bug!("Found {operand_kind:?} for operand {operand:?}");
                        };
                        let from_backend_ty = bx.cx().immediate_backend_type(operand.layout);

                        assert!(bx.cx().is_backend_immediate(cast));
                        let to_backend_ty = bx.cx().immediate_backend_type(cast);
                        if operand.layout.abi.is_uninhabited() {
                            let val = OperandValue::Immediate(bx.cx().const_poison(to_backend_ty));
                            return OperandRef { val, layout: cast };
                        }
                        let cast_kind = self.value_kind(cast);
                        let OperandValueKind::Immediate(to_scalar) = cast_kind else {
                            bug!("Found {cast_kind:?} for operand {cast:?}");
                        };

                        self.cast_immediate(bx, imm, from_scalar, from_backend_ty, to_scalar, to_backend_ty)
                            .map(OperandValue::Immediate)
                            .unwrap_or_else(|| {
                                bug!("Unsupported cast of {operand:?} to {cast:?}");
                            })
                    }
                    mir::CastKind::Transmute => {
                        self.codegen_transmute_operand(bx, operand, cast).unwrap_or_else(|| {
                            bug!("Unsupported transmute-as-operand of {operand:?} to {cast:?}");
                        })
                    }
                };
                OperandRef { val, layout: cast }
            }

            mir::Rvalue::Ref(_, bk, place) => {
                let mk_ref = move |tcx: TyCtxt<'tcx>, ty: Ty<'tcx>| {
                    Ty::new_ref(tcx, tcx.lifetimes.re_erased, ty, bk.to_mutbl_lossy())
                };
                self.codegen_place_to_pointer(bx, place, mk_ref)
            }

            mir::Rvalue::CopyForDeref(place) => {
                self.codegen_operand(bx, &mir::Operand::Copy(place))
            }
            mir::Rvalue::RawPtr(mutability, place) => {
                let mk_ptr =
                    move |tcx: TyCtxt<'tcx>, ty: Ty<'tcx>| Ty::new_ptr(tcx, ty, mutability);
                self.codegen_place_to_pointer(bx, place, mk_ptr)
            }

            mir::Rvalue::Len(place) => {
                let size = self.evaluate_array_len(bx, place);
                OperandRef {
                    val: OperandValue::Immediate(size),
                    layout: bx.cx().layout_of(bx.tcx().types.usize),
                }
            }

            mir::Rvalue::BinaryOp(op_with_overflow, box (ref lhs, ref rhs))
                if let Some(op) = op_with_overflow.overflowing_to_wrapping() =>
            {
                let lhs = self.codegen_operand(bx, lhs);
                let rhs = self.codegen_operand(bx, rhs);
                let result = self.codegen_scalar_checked_binop(
                    bx,
                    op,
                    lhs.immediate(),
                    rhs.immediate(),
                    lhs.layout.ty,
                );
                let val_ty = op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty);
                let operand_ty = Ty::new_tup(bx.tcx(), &[val_ty, bx.tcx().types.bool]);
                OperandRef { val: result, layout: bx.cx().layout_of(operand_ty) }
            }
            mir::Rvalue::BinaryOp(op, box (ref lhs, ref rhs)) => {
                let lhs = self.codegen_operand(bx, lhs);
                let rhs = self.codegen_operand(bx, rhs);
                let llresult = match (lhs.val, rhs.val) {
                    (
                        OperandValue::Pair(lhs_addr, lhs_extra),
                        OperandValue::Pair(rhs_addr, rhs_extra),
                    ) => self.codegen_wide_ptr_binop(
                        bx,
                        op,
                        lhs_addr,
                        lhs_extra,
                        rhs_addr,
                        rhs_extra,
                        lhs.layout.ty,
                    ),

                    (OperandValue::Immediate(lhs_val), OperandValue::Immediate(rhs_val)) => {
                        self.codegen_scalar_binop(bx, op, lhs_val, rhs_val, lhs.layout.ty)
                    }

                    _ => bug!(),
                };
                OperandRef {
                    val: OperandValue::Immediate(llresult),
                    layout: bx.cx().layout_of(op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty)),
                }
            }

            mir::Rvalue::UnaryOp(op, ref operand) => {
                let operand = self.codegen_operand(bx, operand);
                let is_float = operand.layout.ty.is_floating_point();
                let (val, layout) = match op {
                    mir::UnOp::Not => {
                        let llval = bx.not(operand.immediate());
                        (OperandValue::Immediate(llval), operand.layout)
                    }
                    mir::UnOp::Neg => {
                        let llval = if is_float {
                            bx.fneg(operand.immediate())
                        } else {
                            bx.neg(operand.immediate())
                        };
                        (OperandValue::Immediate(llval), operand.layout)
                    }
                    mir::UnOp::PtrMetadata => {
                        assert!(operand.layout.ty.is_unsafe_ptr() || operand.layout.ty.is_ref(),);
                        let (_, meta) = operand.val.pointer_parts();
                        assert_eq!(operand.layout.fields.count() > 1, meta.is_some());
                        if let Some(meta) = meta {
                            (OperandValue::Immediate(meta), operand.layout.field(self.cx, 1))
                        } else {
                            (OperandValue::ZeroSized, bx.cx().layout_of(bx.tcx().types.unit))
                        }
                    }
                };
                assert!(
                    val.is_expected_variant_for_type(self.cx, layout),
                    "Made wrong variant {val:?} for type {layout:?}",
                );
                OperandRef { val, layout }
            }

            mir::Rvalue::Discriminant(ref place) => {
                let discr_ty = rvalue.ty(self.mir, bx.tcx());
                let discr_ty = self.monomorphize(discr_ty);
                let discr = self.codegen_place(bx, place.as_ref()).codegen_get_discr(bx, discr_ty);
                OperandRef {
                    val: OperandValue::Immediate(discr),
                    layout: self.cx.layout_of(discr_ty),
                }
            }

            mir::Rvalue::NullaryOp(ref null_op, ty) => {
                let ty = self.monomorphize(ty);
                let layout = bx.cx().layout_of(ty);
                let val = match null_op {
                    mir::NullOp::SizeOf => {
                        assert!(bx.cx().type_is_sized(ty));
                        let val = layout.size.bytes();
                        bx.cx().const_usize(val)
                    }
                    mir::NullOp::AlignOf => {
                        assert!(bx.cx().type_is_sized(ty));
                        let val = layout.align.abi.bytes();
                        bx.cx().const_usize(val)
                    }
                    mir::NullOp::OffsetOf(fields) => {
                        let val = bx
                            .tcx()
                            .offset_of_subfield(bx.param_env(), layout, fields.iter())
                            .bytes();
                        bx.cx().const_usize(val)
                    }
                    mir::NullOp::UbChecks => {
                        let val = bx.tcx().sess.ub_checks();
                        bx.cx().const_bool(val)
                    }
                };
                let tcx = self.cx.tcx();
                OperandRef {
                    val: OperandValue::Immediate(val),
                    layout: self.cx.layout_of(tcx.types.usize),
                }
            }

            mir::Rvalue::ThreadLocalRef(def_id) => {
                assert!(bx.cx().tcx().is_static(def_id));
                let layout = bx.layout_of(bx.cx().tcx().static_ptr_ty(def_id));
                let static_ = if !def_id.is_local() && bx.cx().tcx().needs_thread_local_shim(def_id)
                {
                    let instance = ty::Instance {
                        def: ty::InstanceKind::ThreadLocalShim(def_id),
                        args: ty::GenericArgs::empty(),
                    };
                    let fn_ptr = bx.get_fn_addr(instance);
                    let fn_abi = bx.fn_abi_of_instance(instance, ty::List::empty());
                    let fn_ty = bx.fn_decl_backend_type(fn_abi);
                    let fn_attrs = if bx.tcx().def_kind(instance.def_id()).has_codegen_attrs() {
                        Some(bx.tcx().codegen_fn_attrs(instance.def_id()))
                    } else {
                        None
                    };
                    bx.call(fn_ty, fn_attrs, Some(fn_abi), fn_ptr, &[], None, Some(instance))
                } else {
                    bx.get_static(def_id)
                };
                OperandRef { val: OperandValue::Immediate(static_), layout }
            }
            mir::Rvalue::Use(ref operand) => self.codegen_operand(bx, operand),
            mir::Rvalue::Repeat(..) => bug!("{rvalue:?} in codegen_rvalue_operand"),
            mir::Rvalue::Aggregate(_, ref fields) => {
                let ty = rvalue.ty(self.mir, self.cx.tcx());
                let ty = self.monomorphize(ty);
                let layout = self.cx.layout_of(ty);

                // `rvalue_creates_operand` has arranged that we only get here if
                // we can build the aggregate immediate from the field immediates.
                let mut inputs = ArrayVec::<Bx::Value, 2>::new();
                let mut input_scalars = ArrayVec::<abi::Scalar, 2>::new();
                for field_idx in layout.fields.index_by_increasing_offset() {
                    let field_idx = FieldIdx::from_usize(field_idx);
                    let op = self.codegen_operand(bx, &fields[field_idx]);
                    let values = op.val.immediates_or_place().left_or_else(|p| {
                        bug!("Field {field_idx:?} is {p:?} making {layout:?}");
                    });
                    let scalars = self.value_kind(op.layout).scalars().unwrap();
                    assert_eq!(values.len(), scalars.len());
                    inputs.extend(values);
                    input_scalars.extend(scalars);
                }

                let output_scalars = self.value_kind(layout).scalars().unwrap();
                itertools::izip!(&mut inputs, input_scalars, output_scalars).for_each(
                    |(v, in_s, out_s)| {
                        if in_s != out_s {
                            // We have to be really careful about bool here, because
                            // `(bool,)` stays i1 but `Cell<bool>` becomes i8.
                            *v = bx.from_immediate(*v);
                            *v = bx.to_immediate_scalar(*v, out_s);
                        }
                    },
                );

                let val = OperandValue::from_immediates(inputs);
                assert!(
                    val.is_expected_variant_for_type(self.cx, layout),
                    "Made wrong variant {val:?} for type {layout:?}",
                );
                OperandRef { val, layout }
            }
            mir::Rvalue::ShallowInitBox(ref operand, content_ty) => {
                let operand = self.codegen_operand(bx, operand);
                let val = operand.immediate();

                let content_ty = self.monomorphize(content_ty);
                let box_layout = bx.cx().layout_of(Ty::new_box(bx.tcx(), content_ty));

                OperandRef { val: OperandValue::Immediate(val), layout: box_layout }
            }
        }
    }

    fn evaluate_array_len(&mut self, bx: &mut Bx, place: mir::Place<'tcx>) -> Bx::Value {
        // ZST are passed as operands and require special handling
        // because codegen_place() panics if Local is operand.
        if let Some(index) = place.as_local() {
            if let LocalRef::Operand(op) = self.locals[index] {
                if let ty::Array(_, n) = op.layout.ty.kind() {
                    let n = n
                        .try_to_target_usize(bx.tcx())
                        .expect("expected monomorphic const in codegen");
                    return bx.cx().const_usize(n);
                }
            }
        }
        // use common size calculation for non zero-sized types
        let cg_value = self.codegen_place(bx, place.as_ref());
        cg_value.len(bx.cx())
    }

    /// Codegen an `Rvalue::RawPtr` or `Rvalue::Ref`
    fn codegen_place_to_pointer(
        &mut self,
        bx: &mut Bx,
        place: mir::Place<'tcx>,
        mk_ptr_ty: impl FnOnce(TyCtxt<'tcx>, Ty<'tcx>) -> Ty<'tcx>,
    ) -> OperandRef<'tcx, Bx::Value> {
        let cg_place = self.codegen_place(bx, place.as_ref());
        let val = cg_place.val.address();

        let ty = cg_place.layout.ty;
        assert!(
            if bx.cx().type_has_metadata(ty) {
                matches!(val, OperandValue::Pair(..))
            } else {
                matches!(val, OperandValue::Immediate(..))
            },
            "Address of place was unexpectedly {val:?} for pointee type {ty:?}",
        );

        OperandRef { val, layout: self.cx.layout_of(mk_ptr_ty(self.cx.tcx(), ty)) }
    }

    fn codegen_scalar_binop(
        &mut self,
        bx: &mut Bx,
        op: mir::BinOp,
        lhs: Bx::Value,
        rhs: Bx::Value,
        input_ty: Ty<'tcx>,
    ) -> Bx::Value {
        let is_float = input_ty.is_floating_point();
        let is_signed = input_ty.is_signed();
        match op {
            mir::BinOp::Add => {
                if is_float {
                    bx.fadd(lhs, rhs)
                } else {
                    bx.add(lhs, rhs)
                }
            }
            mir::BinOp::AddUnchecked => {
                if is_signed {
                    bx.unchecked_sadd(lhs, rhs)
                } else {
                    bx.unchecked_uadd(lhs, rhs)
                }
            }
            mir::BinOp::Sub => {
                if is_float {
                    bx.fsub(lhs, rhs)
                } else {
                    bx.sub(lhs, rhs)
                }
            }
            mir::BinOp::SubUnchecked => {
                if is_signed {
                    bx.unchecked_ssub(lhs, rhs)
                } else {
                    bx.unchecked_usub(lhs, rhs)
                }
            }
            mir::BinOp::Mul => {
                if is_float {
                    bx.fmul(lhs, rhs)
                } else {
                    bx.mul(lhs, rhs)
                }
            }
            mir::BinOp::MulUnchecked => {
                if is_signed {
                    bx.unchecked_smul(lhs, rhs)
                } else {
                    bx.unchecked_umul(lhs, rhs)
                }
            }
            mir::BinOp::Div => {
                if is_float {
                    bx.fdiv(lhs, rhs)
                } else if is_signed {
                    bx.sdiv(lhs, rhs)
                } else {
                    bx.udiv(lhs, rhs)
                }
            }
            mir::BinOp::Rem => {
                if is_float {
                    bx.frem(lhs, rhs)
                } else if is_signed {
                    bx.srem(lhs, rhs)
                } else {
                    bx.urem(lhs, rhs)
                }
            }
            mir::BinOp::BitOr => bx.or(lhs, rhs),
            mir::BinOp::BitAnd => bx.and(lhs, rhs),
            mir::BinOp::BitXor => bx.xor(lhs, rhs),
            mir::BinOp::Offset => {
                let pointee_type = input_ty
                    .builtin_deref(true)
                    .unwrap_or_else(|| bug!("deref of non-pointer {:?}", input_ty));
                let pointee_layout = bx.cx().layout_of(pointee_type);
                if pointee_layout.is_zst() {
                    // `Offset` works in terms of the size of pointee,
                    // so offsetting a pointer to ZST is a noop.
                    lhs
                } else {
                    let llty = bx.cx().backend_type(pointee_layout);
                    bx.inbounds_gep(llty, lhs, &[rhs])
                }
            }
            mir::BinOp::Shl | mir::BinOp::ShlUnchecked => {
                let rhs = base::build_shift_expr_rhs(bx, lhs, rhs, op == mir::BinOp::ShlUnchecked);
                bx.shl(lhs, rhs)
            }
            mir::BinOp::Shr | mir::BinOp::ShrUnchecked => {
                let rhs = base::build_shift_expr_rhs(bx, lhs, rhs, op == mir::BinOp::ShrUnchecked);
                if is_signed { bx.ashr(lhs, rhs) } else { bx.lshr(lhs, rhs) }
            }
            mir::BinOp::Ne
            | mir::BinOp::Lt
            | mir::BinOp::Gt
            | mir::BinOp::Eq
            | mir::BinOp::Le
            | mir::BinOp::Ge => {
                if is_float {
                    bx.fcmp(base::bin_op_to_fcmp_predicate(op), lhs, rhs)
                } else {
                    bx.icmp(base::bin_op_to_icmp_predicate(op, is_signed), lhs, rhs)
                }
            }
            mir::BinOp::Cmp => {
                use std::cmp::Ordering;
                assert!(!is_float);
                let pred = |op| base::bin_op_to_icmp_predicate(op, is_signed);
                if bx.cx().tcx().sess.opts.optimize == OptLevel::No {
                    // FIXME: This actually generates tighter assembly, and is a classic trick
                    // <https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign>
                    // However, as of 2023-11 it optimizes worse in things like derived
                    // `PartialOrd`, so only use it in debug for now. Once LLVM can handle it
                    // better (see <https://github.com/llvm/llvm-project/issues/73417>), it'll
                    // be worth trying it in optimized builds as well.
                    let is_gt = bx.icmp(pred(mir::BinOp::Gt), lhs, rhs);
                    let gtext = bx.zext(is_gt, bx.type_i8());
                    let is_lt = bx.icmp(pred(mir::BinOp::Lt), lhs, rhs);
                    let ltext = bx.zext(is_lt, bx.type_i8());
                    bx.unchecked_ssub(gtext, ltext)
                } else {
                    // These operations are those expected by `tests/codegen/integer-cmp.rs`,
                    // from <https://github.com/rust-lang/rust/pull/63767>.
                    let is_lt = bx.icmp(pred(mir::BinOp::Lt), lhs, rhs);
                    let is_ne = bx.icmp(pred(mir::BinOp::Ne), lhs, rhs);
                    let ge = bx.select(
                        is_ne,
                        bx.cx().const_i8(Ordering::Greater as i8),
                        bx.cx().const_i8(Ordering::Equal as i8),
                    );
                    bx.select(is_lt, bx.cx().const_i8(Ordering::Less as i8), ge)
                }
            }
            mir::BinOp::AddWithOverflow
            | mir::BinOp::SubWithOverflow
            | mir::BinOp::MulWithOverflow => {
                bug!("{op:?} needs to return a pair, so call codegen_scalar_checked_binop instead")
            }
        }
    }

    fn codegen_wide_ptr_binop(
        &mut self,
        bx: &mut Bx,
        op: mir::BinOp,
        lhs_addr: Bx::Value,
        lhs_extra: Bx::Value,
        rhs_addr: Bx::Value,
        rhs_extra: Bx::Value,
        _input_ty: Ty<'tcx>,
    ) -> Bx::Value {
        match op {
            mir::BinOp::Eq => {
                let lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr);
                let rhs = bx.icmp(IntPredicate::IntEQ, lhs_extra, rhs_extra);
                bx.and(lhs, rhs)
            }
            mir::BinOp::Ne => {
                let lhs = bx.icmp(IntPredicate::IntNE, lhs_addr, rhs_addr);
                let rhs = bx.icmp(IntPredicate::IntNE, lhs_extra, rhs_extra);
                bx.or(lhs, rhs)
            }
            mir::BinOp::Le | mir::BinOp::Lt | mir::BinOp::Ge | mir::BinOp::Gt => {
                // a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1)
                let (op, strict_op) = match op {
                    mir::BinOp::Lt => (IntPredicate::IntULT, IntPredicate::IntULT),
                    mir::BinOp::Le => (IntPredicate::IntULE, IntPredicate::IntULT),
                    mir::BinOp::Gt => (IntPredicate::IntUGT, IntPredicate::IntUGT),
                    mir::BinOp::Ge => (IntPredicate::IntUGE, IntPredicate::IntUGT),
                    _ => bug!(),
                };
                let lhs = bx.icmp(strict_op, lhs_addr, rhs_addr);
                let and_lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr);
                let and_rhs = bx.icmp(op, lhs_extra, rhs_extra);
                let rhs = bx.and(and_lhs, and_rhs);
                bx.or(lhs, rhs)
            }
            _ => {
                bug!("unexpected wide ptr binop");
            }
        }
    }

    fn codegen_scalar_checked_binop(
        &mut self,
        bx: &mut Bx,
        op: mir::BinOp,
        lhs: Bx::Value,
        rhs: Bx::Value,
        input_ty: Ty<'tcx>,
    ) -> OperandValue<Bx::Value> {
        let (val, of) = match op {
            // These are checked using intrinsics
            mir::BinOp::Add | mir::BinOp::Sub | mir::BinOp::Mul => {
                let oop = match op {
                    mir::BinOp::Add => OverflowOp::Add,
                    mir::BinOp::Sub => OverflowOp::Sub,
                    mir::BinOp::Mul => OverflowOp::Mul,
                    _ => unreachable!(),
                };
                bx.checked_binop(oop, input_ty, lhs, rhs)
            }
            _ => bug!("Operator `{:?}` is not a checkable operator", op),
        };

        OperandValue::Pair(val, of)
    }

    pub(crate) fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>, span: Span) -> bool {
        match *rvalue {
            mir::Rvalue::Cast(mir::CastKind::Transmute, ref operand, cast_ty) => {
                let operand_ty = operand.ty(self.mir, self.cx.tcx());
                let cast_layout = self.cx.layout_of(self.monomorphize(cast_ty));
                let operand_layout = self.cx.layout_of(self.monomorphize(operand_ty));

                match (self.value_kind(operand_layout), self.value_kind(cast_layout)) {
                    // Can always load from a pointer as needed
                    (OperandValueKind::Ref, _) => true,

                    // ZST-to-ZST is the easiest thing ever
                    (OperandValueKind::ZeroSized, OperandValueKind::ZeroSized) => true,

                    // But if only one of them is a ZST the sizes can't match
                    (OperandValueKind::ZeroSized, _) | (_, OperandValueKind::ZeroSized) => false,

                    // Need to generate an `alloc` to get a pointer from an immediate
                    (OperandValueKind::Immediate(..) | OperandValueKind::Pair(..), OperandValueKind::Ref) => false,

                    // When we have scalar immediates, we can only convert things
                    // where the sizes match, to avoid endianness questions.
                    (OperandValueKind::Immediate(a), OperandValueKind::Immediate(b)) =>
                        a.size(self.cx) == b.size(self.cx),
                    (OperandValueKind::Pair(a0, a1), OperandValueKind::Pair(b0, b1)) =>
                        a0.size(self.cx) == b0.size(self.cx) && a1.size(self.cx) == b1.size(self.cx),

                    // Send mixings between scalars and pairs through the memory route
                    // FIXME: Maybe this could use insertvalue/extractvalue instead?
                    (OperandValueKind::Immediate(..), OperandValueKind::Pair(..)) |
                    (OperandValueKind::Pair(..), OperandValueKind::Immediate(..)) => false,
                }
            }
            mir::Rvalue::Ref(..) |
            mir::Rvalue::CopyForDeref(..) |
            mir::Rvalue::RawPtr(..) |
            mir::Rvalue::Len(..) |
            mir::Rvalue::Cast(..) | // (*)
            mir::Rvalue::ShallowInitBox(..) | // (*)
            mir::Rvalue::BinaryOp(..) |
            mir::Rvalue::UnaryOp(..) |
            mir::Rvalue::Discriminant(..) |
            mir::Rvalue::NullaryOp(..) |
            mir::Rvalue::ThreadLocalRef(_) |
            mir::Rvalue::Use(..) => // (*)
                true,
            // Arrays are always aggregates, so it's not worth checking anything here.
            // (If it's really `[(); N]` or `[T; 0]` and we use the place path, fine.)
            mir::Rvalue::Repeat(..) => false,
            mir::Rvalue::Aggregate(ref kind, _) => {
                let allowed_kind = match **kind {
                    // This always produces a `ty::RawPtr`, so will be Immediate or Pair
                    mir::AggregateKind::RawPtr(..) => true,
                    mir::AggregateKind::Array(..) => false,
                    mir::AggregateKind::Tuple => true,
                    mir::AggregateKind::Adt(def_id, ..) => {
                        let adt_def = self.cx.tcx().adt_def(def_id);
                        adt_def.is_struct() && !adt_def.repr().simd()
                    }
                    mir::AggregateKind::Closure(..) => true,
                    // FIXME: Can we do this for simple coroutines too?
                    mir::AggregateKind::Coroutine(..) | mir::AggregateKind::CoroutineClosure(..) => false,
                };
                allowed_kind && {
                let ty = rvalue.ty(self.mir, self.cx.tcx());
                let ty = self.monomorphize(ty);
                    let layout = self.cx.spanned_layout_of(ty, span);
                    !self.cx.is_backend_ref(layout)
                }
            }
        }

        // (*) this is only true if the type is suitable
    }

    /// Gets which variant of [`OperandValue`] is expected for a particular type.
    fn value_kind(&self, layout: TyAndLayout<'tcx>) -> OperandValueKind {
        if layout.is_zst() {
            OperandValueKind::ZeroSized
        } else if self.cx.is_backend_immediate(layout) {
            assert!(!self.cx.is_backend_scalar_pair(layout));
            OperandValueKind::Immediate(match layout.abi {
                abi::Abi::Scalar(s) => s,
                abi::Abi::Vector { element, .. } => element,
                x => span_bug!(self.mir.span, "Couldn't translate {x:?} as backend immediate"),
            })
        } else if self.cx.is_backend_scalar_pair(layout) {
            let abi::Abi::ScalarPair(s1, s2) = layout.abi else {
                span_bug!(
                    self.mir.span,
                    "Couldn't translate {:?} as backend scalar pair",
                    layout.abi,
                );
            };
            OperandValueKind::Pair(s1, s2)
        } else {
            OperandValueKind::Ref
        }
    }
}

/// The variants of this match [`OperandValue`], giving details about the
/// backend values that will be held in that other type.
#[derive(Debug, Copy, Clone)]
enum OperandValueKind {
    Ref,
    Immediate(abi::Scalar),
    Pair(abi::Scalar, abi::Scalar),
    ZeroSized,
}

impl OperandValueKind {
    fn scalars(self) -> Option<ArrayVec<abi::Scalar, 2>> {
        Some(match self {
            OperandValueKind::ZeroSized => ArrayVec::new(),
            OperandValueKind::Immediate(a) => ArrayVec::from_iter([a]),
            OperandValueKind::Pair(a, b) => [a, b].into(),
            OperandValueKind::Ref => return None,
        })
    }
}