rustc_const_eval/const_eval/
eval_queries.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
use std::sync::atomic::Ordering::Relaxed;

use either::{Left, Right};
use rustc_hir::def::DefKind;
use rustc_middle::bug;
use rustc_middle::mir::interpret::{AllocId, ErrorHandled, InterpErrorInfo};
use rustc_middle::mir::{self, ConstAlloc, ConstValue};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::traits::Reveal;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::def_id::LocalDefId;
use rustc_span::{DUMMY_SP, Span};
use rustc_target::abi::{self, Abi};
use tracing::{debug, instrument, trace};

use super::{CanAccessMutGlobal, CompileTimeInterpCx, CompileTimeMachine};
use crate::const_eval::CheckAlignment;
use crate::interpret::{
    CtfeValidationMode, GlobalId, Immediate, InternKind, InternResult, InterpCx, InterpErrorKind,
    InterpResult, MPlaceTy, MemoryKind, OpTy, RefTracking, StackPopCleanup, create_static_alloc,
    eval_nullary_intrinsic, intern_const_alloc_recursive, interp_ok, throw_exhaust,
};
use crate::{CTRL_C_RECEIVED, errors};

// Returns a pointer to where the result lives
#[instrument(level = "trace", skip(ecx, body))]
fn eval_body_using_ecx<'tcx, R: InterpretationResult<'tcx>>(
    ecx: &mut CompileTimeInterpCx<'tcx>,
    cid: GlobalId<'tcx>,
    body: &'tcx mir::Body<'tcx>,
) -> InterpResult<'tcx, R> {
    trace!(?ecx.param_env);
    let tcx = *ecx.tcx;
    assert!(
        cid.promoted.is_some()
            || matches!(
                ecx.tcx.def_kind(cid.instance.def_id()),
                DefKind::Const
                    | DefKind::Static { .. }
                    | DefKind::ConstParam
                    | DefKind::AnonConst
                    | DefKind::InlineConst
                    | DefKind::AssocConst
            ),
        "Unexpected DefKind: {:?}",
        ecx.tcx.def_kind(cid.instance.def_id())
    );
    let layout = ecx.layout_of(body.bound_return_ty().instantiate(tcx, cid.instance.args))?;
    assert!(layout.is_sized());

    let intern_kind = if cid.promoted.is_some() {
        InternKind::Promoted
    } else {
        match tcx.static_mutability(cid.instance.def_id()) {
            Some(m) => InternKind::Static(m),
            None => InternKind::Constant,
        }
    };

    let ret = if let InternKind::Static(_) = intern_kind {
        create_static_alloc(ecx, cid.instance.def_id().expect_local(), layout)?
    } else {
        ecx.allocate(layout, MemoryKind::Stack)?
    };

    trace!(
        "eval_body_using_ecx: pushing stack frame for global: {}{}",
        with_no_trimmed_paths!(ecx.tcx.def_path_str(cid.instance.def_id())),
        cid.promoted.map_or_else(String::new, |p| format!("::{p:?}"))
    );

    // This can't use `init_stack_frame` since `body` is not a function,
    // so computing its ABI would fail. It's also not worth it since there are no arguments to pass.
    ecx.push_stack_frame_raw(cid.instance, body, &ret, StackPopCleanup::Root { cleanup: false })?;
    ecx.storage_live_for_always_live_locals()?;

    // The main interpreter loop.
    while ecx.step()? {
        if CTRL_C_RECEIVED.load(Relaxed) {
            throw_exhaust!(Interrupted);
        }
    }

    // Intern the result
    let intern_result = intern_const_alloc_recursive(ecx, intern_kind, &ret);

    // Since evaluation had no errors, validate the resulting constant.
    const_validate_mplace(ecx, &ret, cid)?;

    // Only report this after validation, as validaiton produces much better diagnostics.
    // FIXME: ensure validation always reports this and stop making interning care about it.

    match intern_result {
        Ok(()) => {}
        Err(InternResult::FoundDanglingPointer) => {
            return Err(ecx
                .tcx
                .dcx()
                .emit_err(errors::DanglingPtrInFinal { span: ecx.tcx.span, kind: intern_kind }))
            .into();
        }
        Err(InternResult::FoundBadMutablePointer) => {
            return Err(ecx
                .tcx
                .dcx()
                .emit_err(errors::MutablePtrInFinal { span: ecx.tcx.span, kind: intern_kind }))
            .into();
        }
    }

    interp_ok(R::make_result(ret, ecx))
}

/// The `InterpCx` is only meant to be used to do field and index projections into constants for
/// `simd_shuffle` and const patterns in match arms.
///
/// This should *not* be used to do any actual interpretation. In particular, alignment checks are
/// turned off!
///
/// The function containing the `match` that is currently being analyzed may have generic bounds
/// that inform us about the generic bounds of the constant. E.g., using an associated constant
/// of a function's generic parameter will require knowledge about the bounds on the generic
/// parameter. These bounds are passed to `mk_eval_cx` via the `ParamEnv` argument.
pub(crate) fn mk_eval_cx_to_read_const_val<'tcx>(
    tcx: TyCtxt<'tcx>,
    root_span: Span,
    param_env: ty::ParamEnv<'tcx>,
    can_access_mut_global: CanAccessMutGlobal,
) -> CompileTimeInterpCx<'tcx> {
    debug!("mk_eval_cx: {:?}", param_env);
    InterpCx::new(
        tcx,
        root_span,
        param_env,
        CompileTimeMachine::new(can_access_mut_global, CheckAlignment::No),
    )
}

/// Create an interpreter context to inspect the given `ConstValue`.
/// Returns both the context and an `OpTy` that represents the constant.
pub fn mk_eval_cx_for_const_val<'tcx>(
    tcx: TyCtxtAt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    val: mir::ConstValue<'tcx>,
    ty: Ty<'tcx>,
) -> Option<(CompileTimeInterpCx<'tcx>, OpTy<'tcx>)> {
    let ecx = mk_eval_cx_to_read_const_val(tcx.tcx, tcx.span, param_env, CanAccessMutGlobal::No);
    // FIXME: is it a problem to discard the error here?
    let op = ecx.const_val_to_op(val, ty, None).discard_err()?;
    Some((ecx, op))
}

/// This function converts an interpreter value into a MIR constant.
///
/// The `for_diagnostics` flag turns the usual rules for returning `ConstValue::Scalar` into a
/// best-effort attempt. This is not okay for use in const-eval sine it breaks invariants rustc
/// relies on, but it is okay for diagnostics which will just give up gracefully when they
/// encounter an `Indirect` they cannot handle.
#[instrument(skip(ecx), level = "debug")]
pub(super) fn op_to_const<'tcx>(
    ecx: &CompileTimeInterpCx<'tcx>,
    op: &OpTy<'tcx>,
    for_diagnostics: bool,
) -> ConstValue<'tcx> {
    // Handle ZST consistently and early.
    if op.layout.is_zst() {
        return ConstValue::ZeroSized;
    }

    // All scalar types should be stored as `ConstValue::Scalar`. This is needed to make
    // `ConstValue::try_to_scalar` efficient; we want that to work for *all* constants of scalar
    // type (it's used throughout the compiler and having it work just on literals is not enough)
    // and we want it to be fast (i.e., don't go to an `Allocation` and reconstruct the `Scalar`
    // from its byte-serialized form).
    let force_as_immediate = match op.layout.abi {
        Abi::Scalar(abi::Scalar::Initialized { .. }) => true,
        // We don't *force* `ConstValue::Slice` for `ScalarPair`. This has the advantage that if the
        // input `op` is a place, then turning it into a `ConstValue` and back into a `OpTy` will
        // not have to generate any duplicate allocations (we preserve the original `AllocId` in
        // `ConstValue::Indirect`). It means accessing the contents of a slice can be slow (since
        // they can be stored as `ConstValue::Indirect`), but that's not relevant since we barely
        // ever have to do this. (`try_get_slice_bytes_for_diagnostics` exists to provide this
        // functionality.)
        _ => false,
    };
    let immediate = if force_as_immediate {
        match ecx.read_immediate(op).report_err() {
            Ok(imm) => Right(imm),
            Err(err) => {
                if for_diagnostics {
                    // This discard the error, but for diagnostics that's okay.
                    op.as_mplace_or_imm()
                } else {
                    panic!("normalization works on validated constants: {err:?}")
                }
            }
        }
    } else {
        op.as_mplace_or_imm()
    };

    debug!(?immediate);

    match immediate {
        Left(ref mplace) => {
            // We know `offset` is relative to the allocation, so we can use `into_parts`.
            let (prov, offset) = mplace.ptr().into_parts();
            let alloc_id = prov.expect("cannot have `fake` place for non-ZST type").alloc_id();
            ConstValue::Indirect { alloc_id, offset }
        }
        // see comment on `let force_as_immediate` above
        Right(imm) => match *imm {
            Immediate::Scalar(x) => ConstValue::Scalar(x),
            Immediate::ScalarPair(a, b) => {
                debug!("ScalarPair(a: {:?}, b: {:?})", a, b);
                // This codepath solely exists for `valtree_to_const_value` to not need to generate
                // a `ConstValue::Indirect` for wide references, so it is tightly restricted to just
                // that case.
                let pointee_ty = imm.layout.ty.builtin_deref(false).unwrap(); // `false` = no raw ptrs
                debug_assert!(
                    matches!(
                        ecx.tcx.struct_tail_for_codegen(pointee_ty, ecx.param_env).kind(),
                        ty::Str | ty::Slice(..),
                    ),
                    "`ConstValue::Slice` is for slice-tailed types only, but got {}",
                    imm.layout.ty,
                );
                let msg = "`op_to_const` on an immediate scalar pair must only be used on slice references to the beginning of an actual allocation";
                // We know `offset` is relative to the allocation, so we can use `into_parts`.
                let (prov, offset) = a.to_pointer(ecx).expect(msg).into_parts();
                let alloc_id = prov.expect(msg).alloc_id();
                let data = ecx.tcx.global_alloc(alloc_id).unwrap_memory();
                assert!(offset == abi::Size::ZERO, "{}", msg);
                let meta = b.to_target_usize(ecx).expect(msg);
                ConstValue::Slice { data, meta }
            }
            Immediate::Uninit => bug!("`Uninit` is not a valid value for {}", op.layout.ty),
        },
    }
}

#[instrument(skip(tcx), level = "debug", ret)]
pub(crate) fn turn_into_const_value<'tcx>(
    tcx: TyCtxt<'tcx>,
    constant: ConstAlloc<'tcx>,
    key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ConstValue<'tcx> {
    let cid = key.value;
    let def_id = cid.instance.def.def_id();
    let is_static = tcx.is_static(def_id);
    // This is just accessing an already computed constant, so no need to check alignment here.
    let ecx = mk_eval_cx_to_read_const_val(
        tcx,
        tcx.def_span(key.value.instance.def_id()),
        key.param_env,
        CanAccessMutGlobal::from(is_static),
    );

    let mplace = ecx.raw_const_to_mplace(constant).expect(
        "can only fail if layout computation failed, \
        which should have given a good error before ever invoking this function",
    );
    assert!(
        !is_static || cid.promoted.is_some(),
        "the `eval_to_const_value_raw` query should not be used for statics, use `eval_to_allocation` instead"
    );

    // Turn this into a proper constant.
    op_to_const(&ecx, &mplace.into(), /* for diagnostics */ false)
}

#[instrument(skip(tcx), level = "debug")]
pub fn eval_to_const_value_raw_provider<'tcx>(
    tcx: TyCtxt<'tcx>,
    key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToConstValueResult<'tcx> {
    // Const eval always happens in Reveal::All mode in order to be able to use the hidden types of
    // opaque types. This is needed for trivial things like `size_of`, but also for using associated
    // types that are not specified in the opaque type.
    assert_eq!(key.param_env.reveal(), Reveal::All);

    // We call `const_eval` for zero arg intrinsics, too, in order to cache their value.
    // Catch such calls and evaluate them instead of trying to load a constant's MIR.
    if let ty::InstanceKind::Intrinsic(def_id) = key.value.instance.def {
        let ty = key.value.instance.ty(tcx, key.param_env);
        let ty::FnDef(_, args) = ty.kind() else {
            bug!("intrinsic with type {:?}", ty);
        };
        return eval_nullary_intrinsic(tcx, key.param_env, def_id, args).report_err().map_err(
            |error| {
                let span = tcx.def_span(def_id);

                super::report(
                    tcx,
                    error.into_kind(),
                    span,
                    || (span, vec![]),
                    |span, _| errors::NullaryIntrinsicError { span },
                )
            },
        );
    }

    tcx.eval_to_allocation_raw(key).map(|val| turn_into_const_value(tcx, val, key))
}

#[instrument(skip(tcx), level = "debug")]
pub fn eval_static_initializer_provider<'tcx>(
    tcx: TyCtxt<'tcx>,
    def_id: LocalDefId,
) -> ::rustc_middle::mir::interpret::EvalStaticInitializerRawResult<'tcx> {
    assert!(tcx.is_static(def_id.to_def_id()));

    let instance = ty::Instance::mono(tcx, def_id.to_def_id());
    let cid = rustc_middle::mir::interpret::GlobalId { instance, promoted: None };
    eval_in_interpreter(tcx, cid, ty::ParamEnv::reveal_all())
}

pub trait InterpretationResult<'tcx> {
    /// This function takes the place where the result of the evaluation is stored
    /// and prepares it for returning it in the appropriate format needed by the specific
    /// evaluation query.
    fn make_result(
        mplace: MPlaceTy<'tcx>,
        ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>,
    ) -> Self;
}

impl<'tcx> InterpretationResult<'tcx> for ConstAlloc<'tcx> {
    fn make_result(
        mplace: MPlaceTy<'tcx>,
        _ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>,
    ) -> Self {
        ConstAlloc { alloc_id: mplace.ptr().provenance.unwrap().alloc_id(), ty: mplace.layout.ty }
    }
}

#[instrument(skip(tcx), level = "debug")]
pub fn eval_to_allocation_raw_provider<'tcx>(
    tcx: TyCtxt<'tcx>,
    key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc_middle::mir::interpret::EvalToAllocationRawResult<'tcx> {
    // This shouldn't be used for statics, since statics are conceptually places,
    // not values -- so what we do here could break pointer identity.
    assert!(key.value.promoted.is_some() || !tcx.is_static(key.value.instance.def_id()));
    // Const eval always happens in Reveal::All mode in order to be able to use the hidden types of
    // opaque types. This is needed for trivial things like `size_of`, but also for using associated
    // types that are not specified in the opaque type.

    assert_eq!(key.param_env.reveal(), Reveal::All);
    if cfg!(debug_assertions) {
        // Make sure we format the instance even if we do not print it.
        // This serves as a regression test against an ICE on printing.
        // The next two lines concatenated contain some discussion:
        // https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
        // subject/anon_const_instance_printing/near/135980032
        let instance = with_no_trimmed_paths!(key.value.instance.to_string());
        trace!("const eval: {:?} ({})", key, instance);
    }

    eval_in_interpreter(tcx, key.value, key.param_env)
}

fn eval_in_interpreter<'tcx, R: InterpretationResult<'tcx>>(
    tcx: TyCtxt<'tcx>,
    cid: GlobalId<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
) -> Result<R, ErrorHandled> {
    let def = cid.instance.def.def_id();
    let is_static = tcx.is_static(def);

    let mut ecx = InterpCx::new(
        tcx,
        tcx.def_span(def),
        param_env,
        // Statics (and promoteds inside statics) may access mutable global memory, because unlike consts
        // they do not have to behave "as if" they were evaluated at runtime.
        // For consts however we want to ensure they behave "as if" they were evaluated at runtime,
        // so we have to reject reading mutable global memory.
        CompileTimeMachine::new(CanAccessMutGlobal::from(is_static), CheckAlignment::Error),
    );
    let res = ecx.load_mir(cid.instance.def, cid.promoted);
    res.and_then(|body| eval_body_using_ecx(&mut ecx, cid, body))
        .report_err()
        .map_err(|error| report_eval_error(&ecx, cid, error))
}

#[inline(always)]
fn const_validate_mplace<'tcx>(
    ecx: &mut InterpCx<'tcx, CompileTimeMachine<'tcx>>,
    mplace: &MPlaceTy<'tcx>,
    cid: GlobalId<'tcx>,
) -> Result<(), ErrorHandled> {
    let alloc_id = mplace.ptr().provenance.unwrap().alloc_id();
    let mut ref_tracking = RefTracking::new(mplace.clone());
    let mut inner = false;
    while let Some((mplace, path)) = ref_tracking.next() {
        let mode = match ecx.tcx.static_mutability(cid.instance.def_id()) {
            _ if cid.promoted.is_some() => CtfeValidationMode::Promoted,
            Some(mutbl) => CtfeValidationMode::Static { mutbl }, // a `static`
            None => {
                // This is a normal `const` (not promoted).
                // The outermost allocation is always only copied, so having `UnsafeCell` in there
                // is okay despite them being in immutable memory.
                CtfeValidationMode::Const { allow_immutable_unsafe_cell: !inner }
            }
        };
        ecx.const_validate_operand(&mplace.into(), path, &mut ref_tracking, mode)
            .report_err()
            // Instead of just reporting the `InterpError` via the usual machinery, we give a more targeted
            // error about the validation failure.
            .map_err(|error| report_validation_error(&ecx, cid, error, alloc_id))?;
        inner = true;
    }

    Ok(())
}

#[inline(never)]
fn report_eval_error<'tcx>(
    ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>,
    cid: GlobalId<'tcx>,
    error: InterpErrorInfo<'tcx>,
) -> ErrorHandled {
    let (error, backtrace) = error.into_parts();
    backtrace.print_backtrace();

    let (kind, instance) = if ecx.tcx.is_static(cid.instance.def_id()) {
        ("static", String::new())
    } else {
        // If the current item has generics, we'd like to enrich the message with the
        // instance and its args: to show the actual compile-time values, in addition to
        // the expression, leading to the const eval error.
        let instance = &cid.instance;
        if !instance.args.is_empty() {
            let instance = with_no_trimmed_paths!(instance.to_string());
            ("const_with_path", instance)
        } else {
            ("const", String::new())
        }
    };

    super::report(
        *ecx.tcx,
        error,
        DUMMY_SP,
        || super::get_span_and_frames(ecx.tcx, ecx.stack()),
        |span, frames| errors::ConstEvalError {
            span,
            error_kind: kind,
            instance,
            frame_notes: frames,
        },
    )
}

#[inline(never)]
fn report_validation_error<'tcx>(
    ecx: &InterpCx<'tcx, CompileTimeMachine<'tcx>>,
    cid: GlobalId<'tcx>,
    error: InterpErrorInfo<'tcx>,
    alloc_id: AllocId,
) -> ErrorHandled {
    if !matches!(error.kind(), InterpErrorKind::UndefinedBehavior(_)) {
        // Some other error happened during validation, e.g. an unsupported operation.
        return report_eval_error(ecx, cid, error);
    }

    let (error, backtrace) = error.into_parts();
    backtrace.print_backtrace();

    let bytes = ecx.print_alloc_bytes_for_diagnostics(alloc_id);
    let (size, align, _) = ecx.get_alloc_info(alloc_id);
    let raw_bytes = errors::RawBytesNote { size: size.bytes(), align: align.bytes(), bytes };

    crate::const_eval::report(
        *ecx.tcx,
        error,
        DUMMY_SP,
        || crate::const_eval::get_span_and_frames(ecx.tcx, ecx.stack()),
        move |span, frames| errors::ValidationFailure { span, ub_note: (), frames, raw_bytes },
    )
}