rustc_const_eval/const_eval/
machine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
use std::borrow::{Borrow, Cow};
use std::fmt;
use std::hash::Hash;
use std::ops::ControlFlow;

use rustc_ast::Mutability;
use rustc_data_structures::fx::{FxHashMap, FxIndexMap, IndexEntry};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::{self as hir, CRATE_HIR_ID, LangItem};
use rustc_middle::mir::AssertMessage;
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::layout::{FnAbiOf, TyAndLayout};
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_middle::{bug, mir};
use rustc_span::Span;
use rustc_span::symbol::{Symbol, sym};
use rustc_target::abi::{Align, Size};
use rustc_target::spec::abi::Abi as CallAbi;
use tracing::debug;

use super::error::*;
use crate::errors::{LongRunning, LongRunningWarn};
use crate::fluent_generated as fluent;
use crate::interpret::{
    self, AllocId, AllocRange, ConstAllocation, CtfeProvenance, FnArg, Frame, GlobalAlloc, ImmTy,
    InterpCx, InterpResult, MPlaceTy, OpTy, Pointer, PointerArithmetic, RangeSet, Scalar,
    StackPopCleanup, compile_time_machine, interp_ok, throw_exhaust, throw_inval, throw_ub,
    throw_ub_custom, throw_unsup, throw_unsup_format,
};

/// When hitting this many interpreted terminators we emit a deny by default lint
/// that notfies the user that their constant takes a long time to evaluate. If that's
/// what they intended, they can just allow the lint.
const LINT_TERMINATOR_LIMIT: usize = 2_000_000;
/// The limit used by `-Z tiny-const-eval-limit`. This smaller limit is useful for internal
/// tests not needing to run 30s or more to show some behaviour.
const TINY_LINT_TERMINATOR_LIMIT: usize = 20;
/// After this many interpreted terminators, we start emitting progress indicators at every
/// power of two of interpreted terminators.
const PROGRESS_INDICATOR_START: usize = 4_000_000;

/// Extra machine state for CTFE, and the Machine instance.
//
// Should be public because out-of-tree rustc consumers need this
// if they want to interact with constant values.
pub struct CompileTimeMachine<'tcx> {
    /// The number of terminators that have been evaluated.
    ///
    /// This is used to produce lints informing the user that the compiler is not stuck.
    /// Set to `usize::MAX` to never report anything.
    pub(super) num_evaluated_steps: usize,

    /// The virtual call stack.
    pub(super) stack: Vec<Frame<'tcx>>,

    /// Pattern matching on consts with references would be unsound if those references
    /// could point to anything mutable. Therefore, when evaluating consts and when constructing valtrees,
    /// we ensure that only immutable global memory can be accessed.
    pub(super) can_access_mut_global: CanAccessMutGlobal,

    /// Whether to check alignment during evaluation.
    pub(super) check_alignment: CheckAlignment,

    /// If `Some`, we are evaluating the initializer of the static with the given `LocalDefId`,
    /// storing the result in the given `AllocId`.
    /// Used to prevent reads from a static's base allocation, as that may allow for self-initialization loops.
    pub(crate) static_root_ids: Option<(AllocId, LocalDefId)>,

    /// A cache of "data range" computations for unions (i.e., the offsets of non-padding bytes).
    union_data_ranges: FxHashMap<Ty<'tcx>, RangeSet>,
}

#[derive(Copy, Clone)]
pub enum CheckAlignment {
    /// Ignore all alignment requirements.
    /// This is mainly used in interning.
    No,
    /// Hard error when dereferencing a misaligned pointer.
    Error,
}

#[derive(Copy, Clone, PartialEq)]
pub(crate) enum CanAccessMutGlobal {
    No,
    Yes,
}

impl From<bool> for CanAccessMutGlobal {
    fn from(value: bool) -> Self {
        if value { Self::Yes } else { Self::No }
    }
}

impl<'tcx> CompileTimeMachine<'tcx> {
    pub(crate) fn new(
        can_access_mut_global: CanAccessMutGlobal,
        check_alignment: CheckAlignment,
    ) -> Self {
        CompileTimeMachine {
            num_evaluated_steps: 0,
            stack: Vec::new(),
            can_access_mut_global,
            check_alignment,
            static_root_ids: None,
            union_data_ranges: FxHashMap::default(),
        }
    }
}

impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxIndexMap<K, V> {
    #[inline(always)]
    fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
    where
        K: Borrow<Q>,
    {
        FxIndexMap::contains_key(self, k)
    }

    #[inline(always)]
    fn contains_key_ref<Q: ?Sized + Hash + Eq>(&self, k: &Q) -> bool
    where
        K: Borrow<Q>,
    {
        FxIndexMap::contains_key(self, k)
    }

    #[inline(always)]
    fn insert(&mut self, k: K, v: V) -> Option<V> {
        FxIndexMap::insert(self, k, v)
    }

    #[inline(always)]
    fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
    where
        K: Borrow<Q>,
    {
        // FIXME(#120456) - is `swap_remove` correct?
        FxIndexMap::swap_remove(self, k)
    }

    #[inline(always)]
    fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
        self.iter().filter_map(move |(k, v)| f(k, v)).collect()
    }

    #[inline(always)]
    fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E> {
        match self.get(&k) {
            Some(v) => Ok(v),
            None => {
                vacant()?;
                bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
            }
        }
    }

    #[inline(always)]
    fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E> {
        match self.entry(k) {
            IndexEntry::Occupied(e) => Ok(e.into_mut()),
            IndexEntry::Vacant(e) => {
                let v = vacant()?;
                Ok(e.insert(v))
            }
        }
    }
}

pub type CompileTimeInterpCx<'tcx> = InterpCx<'tcx, CompileTimeMachine<'tcx>>;

#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub enum MemoryKind {
    Heap,
}

impl fmt::Display for MemoryKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            MemoryKind::Heap => write!(f, "heap allocation"),
        }
    }
}

impl interpret::MayLeak for MemoryKind {
    #[inline(always)]
    fn may_leak(self) -> bool {
        match self {
            MemoryKind::Heap => false,
        }
    }
}

impl interpret::MayLeak for ! {
    #[inline(always)]
    fn may_leak(self) -> bool {
        // `self` is uninhabited
        self
    }
}

impl<'tcx> CompileTimeInterpCx<'tcx> {
    fn location_triple_for_span(&self, span: Span) -> (Symbol, u32, u32) {
        let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
        let caller = self.tcx.sess.source_map().lookup_char_pos(topmost.lo());

        use rustc_session::RemapFileNameExt;
        use rustc_session::config::RemapPathScopeComponents;
        (
            Symbol::intern(
                &caller
                    .file
                    .name
                    .for_scope(self.tcx.sess, RemapPathScopeComponents::DIAGNOSTICS)
                    .to_string_lossy(),
            ),
            u32::try_from(caller.line).unwrap(),
            u32::try_from(caller.col_display).unwrap().checked_add(1).unwrap(),
        )
    }

    /// "Intercept" a function call, because we have something special to do for it.
    /// All `#[rustc_do_not_const_check]` functions should be hooked here.
    /// If this returns `Some` function, which may be `instance` or a different function with
    /// compatible arguments, then evaluation should continue with that function.
    /// If this returns `None`, the function call has been handled and the function has returned.
    fn hook_special_const_fn(
        &mut self,
        instance: ty::Instance<'tcx>,
        args: &[FnArg<'tcx>],
        dest: &MPlaceTy<'tcx>,
        ret: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
        let def_id = instance.def_id();

        if self.tcx.has_attr(def_id, sym::rustc_const_panic_str)
            || self.tcx.is_lang_item(def_id, LangItem::BeginPanic)
        {
            let args = self.copy_fn_args(args);
            // &str or &&str
            assert!(args.len() == 1);

            let mut msg_place = self.deref_pointer(&args[0])?;
            while msg_place.layout.ty.is_ref() {
                msg_place = self.deref_pointer(&msg_place)?;
            }

            let msg = Symbol::intern(self.read_str(&msg_place)?);
            let span = self.find_closest_untracked_caller_location();
            let (file, line, col) = self.location_triple_for_span(span);
            return Err(ConstEvalErrKind::Panic { msg, file, line, col }).into();
        } else if self.tcx.is_lang_item(def_id, LangItem::PanicFmt) {
            // For panic_fmt, call const_panic_fmt instead.
            let const_def_id = self.tcx.require_lang_item(LangItem::ConstPanicFmt, None);
            let new_instance = ty::Instance::expect_resolve(
                *self.tcx,
                ty::ParamEnv::reveal_all(),
                const_def_id,
                instance.args,
                self.cur_span(),
            );

            return interp_ok(Some(new_instance));
        } else if self.tcx.is_lang_item(def_id, LangItem::AlignOffset) {
            let args = self.copy_fn_args(args);
            // For align_offset, we replace the function call if the pointer has no address.
            match self.align_offset(instance, &args, dest, ret)? {
                ControlFlow::Continue(()) => return interp_ok(Some(instance)),
                ControlFlow::Break(()) => return interp_ok(None),
            }
        }
        interp_ok(Some(instance))
    }

    /// `align_offset(ptr, target_align)` needs special handling in const eval, because the pointer
    /// may not have an address.
    ///
    /// If `ptr` does have a known address, then we return `Continue(())` and the function call should
    /// proceed as normal.
    ///
    /// If `ptr` doesn't have an address, but its underlying allocation's alignment is at most
    /// `target_align`, then we call the function again with an dummy address relative to the
    /// allocation.
    ///
    /// If `ptr` doesn't have an address and `target_align` is stricter than the underlying
    /// allocation's alignment, then we return `usize::MAX` immediately.
    fn align_offset(
        &mut self,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx>],
        dest: &MPlaceTy<'tcx>,
        ret: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx, ControlFlow<()>> {
        assert_eq!(args.len(), 2);

        let ptr = self.read_pointer(&args[0])?;
        let target_align = self.read_scalar(&args[1])?.to_target_usize(self)?;

        if !target_align.is_power_of_two() {
            throw_ub_custom!(
                fluent::const_eval_align_offset_invalid_align,
                target_align = target_align,
            );
        }

        match self.ptr_try_get_alloc_id(ptr, 0) {
            Ok((alloc_id, offset, _extra)) => {
                let (_size, alloc_align, _kind) = self.get_alloc_info(alloc_id);

                if target_align <= alloc_align.bytes() {
                    // Extract the address relative to the allocation base that is definitely
                    // sufficiently aligned and call `align_offset` again.
                    let addr = ImmTy::from_uint(offset.bytes(), args[0].layout).into();
                    let align = ImmTy::from_uint(target_align, args[1].layout).into();
                    let fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;

                    // Push the stack frame with our own adjusted arguments.
                    self.init_stack_frame(
                        instance,
                        self.load_mir(instance.def, None)?,
                        fn_abi,
                        &[FnArg::Copy(addr), FnArg::Copy(align)],
                        /* with_caller_location = */ false,
                        dest,
                        StackPopCleanup::Goto { ret, unwind: mir::UnwindAction::Unreachable },
                    )?;
                    interp_ok(ControlFlow::Break(()))
                } else {
                    // Not alignable in const, return `usize::MAX`.
                    let usize_max = Scalar::from_target_usize(self.target_usize_max(), self);
                    self.write_scalar(usize_max, dest)?;
                    self.return_to_block(ret)?;
                    interp_ok(ControlFlow::Break(()))
                }
            }
            Err(_addr) => {
                // The pointer has an address, continue with function call.
                interp_ok(ControlFlow::Continue(()))
            }
        }
    }

    /// See documentation on the `ptr_guaranteed_cmp` intrinsic.
    fn guaranteed_cmp(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, u8> {
        interp_ok(match (a, b) {
            // Comparisons between integers are always known.
            (Scalar::Int { .. }, Scalar::Int { .. }) => {
                if a == b {
                    1
                } else {
                    0
                }
            }
            // Comparisons of abstract pointers with null pointers are known if the pointer
            // is in bounds, because if they are in bounds, the pointer can't be null.
            // Inequality with integers other than null can never be known for sure.
            (Scalar::Int(int), ptr @ Scalar::Ptr(..))
            | (ptr @ Scalar::Ptr(..), Scalar::Int(int))
                if int.is_null() && !self.scalar_may_be_null(ptr)? =>
            {
                0
            }
            // Equality with integers can never be known for sure.
            (Scalar::Int { .. }, Scalar::Ptr(..)) | (Scalar::Ptr(..), Scalar::Int { .. }) => 2,
            // FIXME: return a `1` for when both sides are the same pointer, *except* that
            // some things (like functions and vtables) do not have stable addresses
            // so we need to be careful around them (see e.g. #73722).
            // FIXME: return `0` for at least some comparisons where we can reliably
            // determine the result of runtime inequality tests at compile-time.
            // Examples include comparison of addresses in different static items.
            (Scalar::Ptr(..), Scalar::Ptr(..)) => 2,
        })
    }
}

impl<'tcx> CompileTimeMachine<'tcx> {
    #[inline(always)]
    /// Find the first stack frame that is within the current crate, if any.
    /// Otherwise, return the crate's HirId
    pub fn best_lint_scope(&self, tcx: TyCtxt<'tcx>) -> hir::HirId {
        self.stack.iter().find_map(|frame| frame.lint_root(tcx)).unwrap_or(CRATE_HIR_ID)
    }
}

impl<'tcx> interpret::Machine<'tcx> for CompileTimeMachine<'tcx> {
    compile_time_machine!(<'tcx>);

    type MemoryKind = MemoryKind;

    const PANIC_ON_ALLOC_FAIL: bool = false; // will be raised as a proper error

    #[inline(always)]
    fn enforce_alignment(ecx: &InterpCx<'tcx, Self>) -> bool {
        matches!(ecx.machine.check_alignment, CheckAlignment::Error)
    }

    #[inline(always)]
    fn enforce_validity(ecx: &InterpCx<'tcx, Self>, layout: TyAndLayout<'tcx>) -> bool {
        ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks || layout.abi.is_uninhabited()
    }

    fn load_mir(
        ecx: &InterpCx<'tcx, Self>,
        instance: ty::InstanceKind<'tcx>,
    ) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
        match instance {
            ty::InstanceKind::Item(def) => interp_ok(ecx.tcx.mir_for_ctfe(def)),
            _ => interp_ok(ecx.tcx.instance_mir(instance)),
        }
    }

    fn find_mir_or_eval_fn(
        ecx: &mut InterpCx<'tcx, Self>,
        orig_instance: ty::Instance<'tcx>,
        _abi: CallAbi,
        args: &[FnArg<'tcx>],
        dest: &MPlaceTy<'tcx>,
        ret: Option<mir::BasicBlock>,
        _unwind: mir::UnwindAction, // unwinding is not supported in consts
    ) -> InterpResult<'tcx, Option<(&'tcx mir::Body<'tcx>, ty::Instance<'tcx>)>> {
        debug!("find_mir_or_eval_fn: {:?}", orig_instance);

        // Replace some functions.
        let Some(instance) = ecx.hook_special_const_fn(orig_instance, args, dest, ret)? else {
            // Call has already been handled.
            return interp_ok(None);
        };

        // Only check non-glue functions
        if let ty::InstanceKind::Item(def) = instance.def {
            // Execution might have wandered off into other crates, so we cannot do a stability-
            // sensitive check here. But we can at least rule out functions that are not const at
            // all. That said, we have to allow calling functions inside a trait marked with
            // #[const_trait]. These *are* const-checked!
            // FIXME: why does `is_const_fn_raw` not classify them as const?
            if (!ecx.tcx.is_const_fn_raw(def) && !ecx.tcx.is_const_default_method(def))
                || ecx.tcx.has_attr(def, sym::rustc_do_not_const_check)
            {
                // We certainly do *not* want to actually call the fn
                // though, so be sure we return here.
                throw_unsup_format!("calling non-const function `{}`", instance)
            }
        }

        // This is a const fn. Call it.
        // In case of replacement, we return the *original* instance to make backtraces work out
        // (and we hope this does not confuse the FnAbi checks too much).
        interp_ok(Some((ecx.load_mir(instance.def, None)?, orig_instance)))
    }

    fn panic_nounwind(ecx: &mut InterpCx<'tcx, Self>, msg: &str) -> InterpResult<'tcx> {
        let msg = Symbol::intern(msg);
        let span = ecx.find_closest_untracked_caller_location();
        let (file, line, col) = ecx.location_triple_for_span(span);
        Err(ConstEvalErrKind::Panic { msg, file, line, col }).into()
    }

    fn call_intrinsic(
        ecx: &mut InterpCx<'tcx, Self>,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx>],
        dest: &MPlaceTy<'tcx, Self::Provenance>,
        target: Option<mir::BasicBlock>,
        _unwind: mir::UnwindAction,
    ) -> InterpResult<'tcx, Option<ty::Instance<'tcx>>> {
        // Shared intrinsics.
        if ecx.eval_intrinsic(instance, args, dest, target)? {
            return interp_ok(None);
        }
        let intrinsic_name = ecx.tcx.item_name(instance.def_id());

        // CTFE-specific intrinsics.
        match intrinsic_name {
            sym::ptr_guaranteed_cmp => {
                let a = ecx.read_scalar(&args[0])?;
                let b = ecx.read_scalar(&args[1])?;
                let cmp = ecx.guaranteed_cmp(a, b)?;
                ecx.write_scalar(Scalar::from_u8(cmp), dest)?;
            }
            sym::const_allocate => {
                let size = ecx.read_scalar(&args[0])?.to_target_usize(ecx)?;
                let align = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;

                let align = match Align::from_bytes(align) {
                    Ok(a) => a,
                    Err(err) => throw_ub_custom!(
                        fluent::const_eval_invalid_align_details,
                        name = "const_allocate",
                        err_kind = err.diag_ident(),
                        align = err.align()
                    ),
                };

                let ptr = ecx.allocate_ptr(
                    Size::from_bytes(size),
                    align,
                    interpret::MemoryKind::Machine(MemoryKind::Heap),
                )?;
                ecx.write_pointer(ptr, dest)?;
            }
            sym::const_deallocate => {
                let ptr = ecx.read_pointer(&args[0])?;
                let size = ecx.read_scalar(&args[1])?.to_target_usize(ecx)?;
                let align = ecx.read_scalar(&args[2])?.to_target_usize(ecx)?;

                let size = Size::from_bytes(size);
                let align = match Align::from_bytes(align) {
                    Ok(a) => a,
                    Err(err) => throw_ub_custom!(
                        fluent::const_eval_invalid_align_details,
                        name = "const_deallocate",
                        err_kind = err.diag_ident(),
                        align = err.align()
                    ),
                };

                // If an allocation is created in an another const,
                // we don't deallocate it.
                let (alloc_id, _, _) = ecx.ptr_get_alloc_id(ptr, 0)?;
                let is_allocated_in_another_const = matches!(
                    ecx.tcx.try_get_global_alloc(alloc_id),
                    Some(interpret::GlobalAlloc::Memory(_))
                );

                if !is_allocated_in_another_const {
                    ecx.deallocate_ptr(
                        ptr,
                        Some((size, align)),
                        interpret::MemoryKind::Machine(MemoryKind::Heap),
                    )?;
                }
            }
            // The intrinsic represents whether the value is known to the optimizer (LLVM).
            // We're not doing any optimizations here, so there is no optimizer that could know the value.
            // (We know the value here in the machine of course, but this is the runtime of that code,
            // not the optimization stage.)
            sym::is_val_statically_known => ecx.write_scalar(Scalar::from_bool(false), dest)?,
            _ => {
                // We haven't handled the intrinsic, let's see if we can use a fallback body.
                if ecx.tcx.intrinsic(instance.def_id()).unwrap().must_be_overridden {
                    throw_unsup_format!(
                        "intrinsic `{intrinsic_name}` is not supported at compile-time"
                    );
                }
                return interp_ok(Some(ty::Instance {
                    def: ty::InstanceKind::Item(instance.def_id()),
                    args: instance.args,
                }));
            }
        }

        // Intrinsic is done, jump to next block.
        ecx.return_to_block(target)?;
        interp_ok(None)
    }

    fn assert_panic(
        ecx: &mut InterpCx<'tcx, Self>,
        msg: &AssertMessage<'tcx>,
        _unwind: mir::UnwindAction,
    ) -> InterpResult<'tcx> {
        use rustc_middle::mir::AssertKind::*;
        // Convert `AssertKind<Operand>` to `AssertKind<Scalar>`.
        let eval_to_int =
            |op| ecx.read_immediate(&ecx.eval_operand(op, None)?).map(|x| x.to_const_int());
        let err = match msg {
            BoundsCheck { len, index } => {
                let len = eval_to_int(len)?;
                let index = eval_to_int(index)?;
                BoundsCheck { len, index }
            }
            Overflow(op, l, r) => Overflow(*op, eval_to_int(l)?, eval_to_int(r)?),
            OverflowNeg(op) => OverflowNeg(eval_to_int(op)?),
            DivisionByZero(op) => DivisionByZero(eval_to_int(op)?),
            RemainderByZero(op) => RemainderByZero(eval_to_int(op)?),
            ResumedAfterReturn(coroutine_kind) => ResumedAfterReturn(*coroutine_kind),
            ResumedAfterPanic(coroutine_kind) => ResumedAfterPanic(*coroutine_kind),
            MisalignedPointerDereference { ref required, ref found } => {
                MisalignedPointerDereference {
                    required: eval_to_int(required)?,
                    found: eval_to_int(found)?,
                }
            }
        };
        Err(ConstEvalErrKind::AssertFailure(err)).into()
    }

    fn binary_ptr_op(
        _ecx: &InterpCx<'tcx, Self>,
        _bin_op: mir::BinOp,
        _left: &ImmTy<'tcx>,
        _right: &ImmTy<'tcx>,
    ) -> InterpResult<'tcx, ImmTy<'tcx>> {
        throw_unsup_format!("pointer arithmetic or comparison is not supported at compile-time");
    }

    fn increment_const_eval_counter(ecx: &mut InterpCx<'tcx, Self>) -> InterpResult<'tcx> {
        // The step limit has already been hit in a previous call to `increment_const_eval_counter`.

        if let Some(new_steps) = ecx.machine.num_evaluated_steps.checked_add(1) {
            let (limit, start) = if ecx.tcx.sess.opts.unstable_opts.tiny_const_eval_limit {
                (TINY_LINT_TERMINATOR_LIMIT, TINY_LINT_TERMINATOR_LIMIT)
            } else {
                (LINT_TERMINATOR_LIMIT, PROGRESS_INDICATOR_START)
            };

            ecx.machine.num_evaluated_steps = new_steps;
            // By default, we have a *deny* lint kicking in after some time
            // to ensure `loop {}` doesn't just go forever.
            // In case that lint got reduced, in particular for `--cap-lint` situations, we also
            // have a hard warning shown every now and then for really long executions.
            if new_steps == limit {
                // By default, we stop after a million steps, but the user can disable this lint
                // to be able to run until the heat death of the universe or power loss, whichever
                // comes first.
                let hir_id = ecx.machine.best_lint_scope(*ecx.tcx);
                let is_error = ecx
                    .tcx
                    .lint_level_at_node(
                        rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
                        hir_id,
                    )
                    .0
                    .is_error();
                let span = ecx.cur_span();
                ecx.tcx.emit_node_span_lint(
                    rustc_session::lint::builtin::LONG_RUNNING_CONST_EVAL,
                    hir_id,
                    span,
                    LongRunning { item_span: ecx.tcx.span },
                );
                // If this was a hard error, don't bother continuing evaluation.
                if is_error {
                    let guard = ecx
                        .tcx
                        .dcx()
                        .span_delayed_bug(span, "The deny lint should have already errored");
                    throw_inval!(AlreadyReported(guard.into()));
                }
            } else if new_steps > start && new_steps.is_power_of_two() {
                // Only report after a certain number of terminators have been evaluated and the
                // current number of evaluated terminators is a power of 2. The latter gives us a cheap
                // way to implement exponential backoff.
                let span = ecx.cur_span();
                // We store a unique number in `force_duplicate` to evade `-Z deduplicate-diagnostics`.
                // `new_steps` is guaranteed to be unique because `ecx.machine.num_evaluated_steps` is
                // always increasing.
                ecx.tcx.dcx().emit_warn(LongRunningWarn {
                    span,
                    item_span: ecx.tcx.span,
                    force_duplicate: new_steps,
                });
            }
        }

        interp_ok(())
    }

    #[inline(always)]
    fn expose_ptr(_ecx: &mut InterpCx<'tcx, Self>, _ptr: Pointer) -> InterpResult<'tcx> {
        // This is only reachable with -Zunleash-the-miri-inside-of-you.
        throw_unsup_format!("exposing pointers is not possible at compile-time")
    }

    #[inline(always)]
    fn init_frame(
        ecx: &mut InterpCx<'tcx, Self>,
        frame: Frame<'tcx>,
    ) -> InterpResult<'tcx, Frame<'tcx>> {
        // Enforce stack size limit. Add 1 because this is run before the new frame is pushed.
        if !ecx.recursion_limit.value_within_limit(ecx.stack().len() + 1) {
            throw_exhaust!(StackFrameLimitReached)
        } else {
            interp_ok(frame)
        }
    }

    #[inline(always)]
    fn stack<'a>(
        ecx: &'a InterpCx<'tcx, Self>,
    ) -> &'a [Frame<'tcx, Self::Provenance, Self::FrameExtra>] {
        &ecx.machine.stack
    }

    #[inline(always)]
    fn stack_mut<'a>(
        ecx: &'a mut InterpCx<'tcx, Self>,
    ) -> &'a mut Vec<Frame<'tcx, Self::Provenance, Self::FrameExtra>> {
        &mut ecx.machine.stack
    }

    fn before_access_global(
        _tcx: TyCtxtAt<'tcx>,
        machine: &Self,
        alloc_id: AllocId,
        alloc: ConstAllocation<'tcx>,
        _static_def_id: Option<DefId>,
        is_write: bool,
    ) -> InterpResult<'tcx> {
        let alloc = alloc.inner();
        if is_write {
            // Write access. These are never allowed, but we give a targeted error message.
            match alloc.mutability {
                Mutability::Not => throw_ub!(WriteToReadOnly(alloc_id)),
                Mutability::Mut => Err(ConstEvalErrKind::ModifiedGlobal).into(),
            }
        } else {
            // Read access. These are usually allowed, with some exceptions.
            if machine.can_access_mut_global == CanAccessMutGlobal::Yes {
                // Machine configuration allows us read from anything (e.g., `static` initializer).
                interp_ok(())
            } else if alloc.mutability == Mutability::Mut {
                // Machine configuration does not allow us to read statics (e.g., `const`
                // initializer).
                Err(ConstEvalErrKind::ConstAccessesMutGlobal).into()
            } else {
                // Immutable global, this read is fine.
                assert_eq!(alloc.mutability, Mutability::Not);
                interp_ok(())
            }
        }
    }

    fn retag_ptr_value(
        ecx: &mut InterpCx<'tcx, Self>,
        _kind: mir::RetagKind,
        val: &ImmTy<'tcx, CtfeProvenance>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, CtfeProvenance>> {
        // If it's a frozen shared reference that's not already immutable, potentially make it immutable.
        // (Do nothing on `None` provenance, that cannot store immutability anyway.)
        if let ty::Ref(_, ty, mutbl) = val.layout.ty.kind()
            && *mutbl == Mutability::Not
            && val
                .to_scalar_and_meta()
                .0
                .to_pointer(ecx)?
                .provenance
                .is_some_and(|p| !p.immutable())
        {
            // That next check is expensive, that's why we have all the guards above.
            let is_immutable = ty.is_freeze(*ecx.tcx, ecx.param_env);
            let place = ecx.ref_to_mplace(val)?;
            let new_place = if is_immutable {
                place.map_provenance(CtfeProvenance::as_immutable)
            } else {
                // Even if it is not immutable, remember that it is a shared reference.
                // This allows it to become part of the final value of the constant.
                // (See <https://github.com/rust-lang/rust/pull/128543> for why we allow this
                // even when there is interior mutability.)
                place.map_provenance(CtfeProvenance::as_shared_ref)
            };
            interp_ok(ImmTy::from_immediate(new_place.to_ref(ecx), val.layout))
        } else {
            interp_ok(val.clone())
        }
    }

    fn before_memory_write(
        _tcx: TyCtxtAt<'tcx>,
        _machine: &mut Self,
        _alloc_extra: &mut Self::AllocExtra,
        (_alloc_id, immutable): (AllocId, bool),
        range: AllocRange,
    ) -> InterpResult<'tcx> {
        if range.size == Size::ZERO {
            // Nothing to check.
            return interp_ok(());
        }
        // Reject writes through immutable pointers.
        if immutable {
            return Err(ConstEvalErrKind::WriteThroughImmutablePointer).into();
        }
        // Everything else is fine.
        interp_ok(())
    }

    fn before_alloc_read(ecx: &InterpCx<'tcx, Self>, alloc_id: AllocId) -> InterpResult<'tcx> {
        // Check if this is the currently evaluated static.
        if Some(alloc_id) == ecx.machine.static_root_ids.map(|(id, _)| id) {
            return Err(ConstEvalErrKind::RecursiveStatic).into();
        }
        // If this is another static, make sure we fire off the query to detect cycles.
        // But only do that when checks for static recursion are enabled.
        if ecx.machine.static_root_ids.is_some() {
            if let Some(GlobalAlloc::Static(def_id)) = ecx.tcx.try_get_global_alloc(alloc_id) {
                if ecx.tcx.is_foreign_item(def_id) {
                    throw_unsup!(ExternStatic(def_id));
                }
                ecx.ctfe_query(|tcx| tcx.eval_static_initializer(def_id))?;
            }
        }
        interp_ok(())
    }

    fn cached_union_data_range<'e>(
        ecx: &'e mut InterpCx<'tcx, Self>,
        ty: Ty<'tcx>,
        compute_range: impl FnOnce() -> RangeSet,
    ) -> Cow<'e, RangeSet> {
        if ecx.tcx.sess.opts.unstable_opts.extra_const_ub_checks {
            Cow::Borrowed(ecx.machine.union_data_ranges.entry(ty).or_insert_with(compute_range))
        } else {
            // Don't bother caching, we're only doing one validation at the end anyway.
            Cow::Owned(compute_range())
        }
    }
}

// Please do not add any code below the above `Machine` trait impl. I (oli-obk) plan more cleanups
// so we can end up having a file with just that impl, but for now, let's keep the impl discoverable
// at the bottom of this file.