rustc_const_eval/interpret/call.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
//! Manages calling a concrete function (with known MIR body) with argument passing,
//! and returning the return value to the caller.
use std::assert_matches::assert_matches;
use std::borrow::Cow;
use either::{Left, Right};
use rustc_middle::ty::layout::{FnAbiOf, IntegerExt, LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, AdtDef, Instance, Ty};
use rustc_middle::{bug, mir, span_bug};
use rustc_span::sym;
use rustc_target::abi::call::{ArgAbi, FnAbi, PassMode};
use rustc_target::abi::{self, FieldIdx, Integer};
use rustc_target::spec::abi::Abi;
use tracing::{info, instrument, trace};
use super::{
CtfeProvenance, FnVal, ImmTy, InterpCx, InterpResult, MPlaceTy, Machine, OpTy, PlaceTy,
Projectable, Provenance, ReturnAction, Scalar, StackPopCleanup, StackPopInfo, interp_ok,
throw_ub, throw_ub_custom, throw_unsup_format,
};
use crate::fluent_generated as fluent;
/// An argument passed to a function.
#[derive(Clone, Debug)]
pub enum FnArg<'tcx, Prov: Provenance = CtfeProvenance> {
/// Pass a copy of the given operand.
Copy(OpTy<'tcx, Prov>),
/// Allow for the argument to be passed in-place: destroy the value originally stored at that place and
/// make the place inaccessible for the duration of the function call.
InPlace(MPlaceTy<'tcx, Prov>),
}
impl<'tcx, Prov: Provenance> FnArg<'tcx, Prov> {
pub fn layout(&self) -> &TyAndLayout<'tcx> {
match self {
FnArg::Copy(op) => &op.layout,
FnArg::InPlace(mplace) => &mplace.layout,
}
}
}
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
/// Make a copy of the given fn_arg. Any `InPlace` are degenerated to copies, no protection of the
/// original memory occurs.
pub fn copy_fn_arg(&self, arg: &FnArg<'tcx, M::Provenance>) -> OpTy<'tcx, M::Provenance> {
match arg {
FnArg::Copy(op) => op.clone(),
FnArg::InPlace(mplace) => mplace.clone().into(),
}
}
/// Make a copy of the given fn_args. Any `InPlace` are degenerated to copies, no protection of the
/// original memory occurs.
pub fn copy_fn_args(
&self,
args: &[FnArg<'tcx, M::Provenance>],
) -> Vec<OpTy<'tcx, M::Provenance>> {
args.iter().map(|fn_arg| self.copy_fn_arg(fn_arg)).collect()
}
/// Helper function for argument untupling.
pub(super) fn fn_arg_field(
&self,
arg: &FnArg<'tcx, M::Provenance>,
field: usize,
) -> InterpResult<'tcx, FnArg<'tcx, M::Provenance>> {
interp_ok(match arg {
FnArg::Copy(op) => FnArg::Copy(self.project_field(op, field)?),
FnArg::InPlace(mplace) => FnArg::InPlace(self.project_field(mplace, field)?),
})
}
/// Find the wrapped inner type of a transparent wrapper.
/// Must not be called on 1-ZST (as they don't have a uniquely defined "wrapped field").
///
/// We work with `TyAndLayout` here since that makes it much easier to iterate over all fields.
fn unfold_transparent(
&self,
layout: TyAndLayout<'tcx>,
may_unfold: impl Fn(AdtDef<'tcx>) -> bool,
) -> TyAndLayout<'tcx> {
match layout.ty.kind() {
ty::Adt(adt_def, _) if adt_def.repr().transparent() && may_unfold(*adt_def) => {
assert!(!adt_def.is_enum());
// Find the non-1-ZST field, and recurse.
let (_, field) = layout.non_1zst_field(self).unwrap();
self.unfold_transparent(field, may_unfold)
}
// Not a transparent type, no further unfolding.
_ => layout,
}
}
/// Unwrap types that are guaranteed a null-pointer-optimization
fn unfold_npo(&self, layout: TyAndLayout<'tcx>) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
// Check if this is `Option` wrapping some type or if this is `Result` wrapping a 1-ZST and
// another type.
let ty::Adt(def, args) = layout.ty.kind() else {
// Not an ADT, so definitely no NPO.
return interp_ok(layout);
};
let inner = if self.tcx.is_diagnostic_item(sym::Option, def.did()) {
// The wrapped type is the only arg.
self.layout_of(args[0].as_type().unwrap())?
} else if self.tcx.is_diagnostic_item(sym::Result, def.did()) {
// We want to extract which (if any) of the args is not a 1-ZST.
let lhs = self.layout_of(args[0].as_type().unwrap())?;
let rhs = self.layout_of(args[1].as_type().unwrap())?;
if lhs.is_1zst() {
rhs
} else if rhs.is_1zst() {
lhs
} else {
return interp_ok(layout); // no NPO
}
} else {
return interp_ok(layout); // no NPO
};
// Check if the inner type is one of the NPO-guaranteed ones.
// For that we first unpeel transparent *structs* (but not unions).
let is_npo = |def: AdtDef<'tcx>| {
self.tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
};
let inner = self.unfold_transparent(inner, /* may_unfold */ |def| {
// Stop at NPO types so that we don't miss that attribute in the check below!
def.is_struct() && !is_npo(def)
});
interp_ok(match inner.ty.kind() {
ty::Ref(..) | ty::FnPtr(..) => {
// Option<&T> behaves like &T, and same for fn()
inner
}
ty::Adt(def, _) if is_npo(*def) => {
// Once we found a `nonnull_optimization_guaranteed` type, further strip off
// newtype structs from it to find the underlying ABI type.
self.unfold_transparent(inner, /* may_unfold */ |def| def.is_struct())
}
_ => {
// Everything else we do not unfold.
layout
}
})
}
/// Check if these two layouts look like they are fn-ABI-compatible.
/// (We also compare the `PassMode`, so this doesn't have to check everything. But it turns out
/// that only checking the `PassMode` is insufficient.)
fn layout_compat(
&self,
caller: TyAndLayout<'tcx>,
callee: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, bool> {
// Fast path: equal types are definitely compatible.
if caller.ty == callee.ty {
return interp_ok(true);
}
// 1-ZST are compatible with all 1-ZST (and with nothing else).
if caller.is_1zst() || callee.is_1zst() {
return interp_ok(caller.is_1zst() && callee.is_1zst());
}
// Unfold newtypes and NPO optimizations.
let unfold = |layout: TyAndLayout<'tcx>| {
self.unfold_npo(self.unfold_transparent(layout, /* may_unfold */ |_def| true))
};
let caller = unfold(caller)?;
let callee = unfold(callee)?;
// Now see if these inner types are compatible.
// Compatible pointer types. For thin pointers, we have to accept even non-`repr(transparent)`
// things as compatible due to `DispatchFromDyn`. For instance, `Rc<i32>` and `*mut i32`
// must be compatible. So we just accept everything with Pointer ABI as compatible,
// even if this will accept some code that is not stably guaranteed to work.
// This also handles function pointers.
let thin_pointer = |layout: TyAndLayout<'tcx>| match layout.abi {
abi::Abi::Scalar(s) => match s.primitive() {
abi::Primitive::Pointer(addr_space) => Some(addr_space),
_ => None,
},
_ => None,
};
if let (Some(caller), Some(callee)) = (thin_pointer(caller), thin_pointer(callee)) {
return interp_ok(caller == callee);
}
// For wide pointers we have to get the pointee type.
let pointee_ty = |ty: Ty<'tcx>| -> InterpResult<'tcx, Option<Ty<'tcx>>> {
// We cannot use `builtin_deref` here since we need to reject `Box<T, MyAlloc>`.
interp_ok(Some(match ty.kind() {
ty::Ref(_, ty, _) => *ty,
ty::RawPtr(ty, _) => *ty,
// We only accept `Box` with the default allocator.
_ if ty.is_box_global(*self.tcx) => ty.expect_boxed_ty(),
_ => return interp_ok(None),
}))
};
if let (Some(caller), Some(callee)) = (pointee_ty(caller.ty)?, pointee_ty(callee.ty)?) {
// This is okay if they have the same metadata type.
let meta_ty = |ty: Ty<'tcx>| {
// Even if `ty` is normalized, the search for the unsized tail will project
// to fields, which can yield non-normalized types. So we need to provide a
// normalization function.
let normalize = |ty| self.tcx.normalize_erasing_regions(self.param_env, ty);
ty.ptr_metadata_ty(*self.tcx, normalize)
};
return interp_ok(meta_ty(caller) == meta_ty(callee));
}
// Compatible integer types (in particular, usize vs ptr-sized-u32/u64).
// `char` counts as `u32.`
let int_ty = |ty: Ty<'tcx>| {
Some(match ty.kind() {
ty::Int(ity) => (Integer::from_int_ty(&self.tcx, *ity), /* signed */ true),
ty::Uint(uty) => (Integer::from_uint_ty(&self.tcx, *uty), /* signed */ false),
ty::Char => (Integer::I32, /* signed */ false),
_ => return None,
})
};
if let (Some(caller), Some(callee)) = (int_ty(caller.ty), int_ty(callee.ty)) {
// This is okay if they are the same integer type.
return interp_ok(caller == callee);
}
// Fall back to exact equality.
interp_ok(caller == callee)
}
fn check_argument_compat(
&self,
caller_abi: &ArgAbi<'tcx, Ty<'tcx>>,
callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
) -> InterpResult<'tcx, bool> {
// We do not want to accept things as ABI-compatible that just "happen to be" compatible on the current target,
// so we implement a type-based check that reflects the guaranteed rules for ABI compatibility.
if self.layout_compat(caller_abi.layout, callee_abi.layout)? {
// Ensure that our checks imply actual ABI compatibility for this concrete call.
// (This can fail e.g. if `#[rustc_nonnull_optimization_guaranteed]` is used incorrectly.)
assert!(caller_abi.eq_abi(callee_abi));
interp_ok(true)
} else {
trace!(
"check_argument_compat: incompatible ABIs:\ncaller: {:?}\ncallee: {:?}",
caller_abi, callee_abi
);
interp_ok(false)
}
}
/// Initialize a single callee argument, checking the types for compatibility.
fn pass_argument<'x, 'y>(
&mut self,
caller_args: &mut impl Iterator<
Item = (&'x FnArg<'tcx, M::Provenance>, &'y ArgAbi<'tcx, Ty<'tcx>>),
>,
callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
callee_arg: &mir::Place<'tcx>,
callee_ty: Ty<'tcx>,
already_live: bool,
) -> InterpResult<'tcx>
where
'tcx: 'x,
'tcx: 'y,
{
assert_eq!(callee_ty, callee_abi.layout.ty);
if matches!(callee_abi.mode, PassMode::Ignore) {
// This one is skipped. Still must be made live though!
if !already_live {
self.storage_live(callee_arg.as_local().unwrap())?;
}
return interp_ok(());
}
// Find next caller arg.
let Some((caller_arg, caller_abi)) = caller_args.next() else {
throw_ub_custom!(fluent::const_eval_not_enough_caller_args);
};
assert_eq!(caller_arg.layout().layout, caller_abi.layout.layout);
// Sadly we cannot assert that `caller_arg.layout().ty` and `caller_abi.layout.ty` are
// equal; in closures the types sometimes differ. We just hope that `caller_abi` is the
// right type to print to the user.
// Check compatibility
if !self.check_argument_compat(caller_abi, callee_abi)? {
throw_ub!(AbiMismatchArgument {
caller_ty: caller_abi.layout.ty,
callee_ty: callee_abi.layout.ty
});
}
// We work with a copy of the argument for now; if this is in-place argument passing, we
// will later protect the source it comes from. This means the callee cannot observe if we
// did in-place of by-copy argument passing, except for pointer equality tests.
let caller_arg_copy = self.copy_fn_arg(caller_arg);
if !already_live {
let local = callee_arg.as_local().unwrap();
let meta = caller_arg_copy.meta();
// `check_argument_compat` ensures that if metadata is needed, both have the same type,
// so we know they will use the metadata the same way.
assert!(!meta.has_meta() || caller_arg_copy.layout.ty == callee_ty);
self.storage_live_dyn(local, meta)?;
}
// Now we can finally actually evaluate the callee place.
let callee_arg = self.eval_place(*callee_arg)?;
// We allow some transmutes here.
// FIXME: Depending on the PassMode, this should reset some padding to uninitialized. (This
// is true for all `copy_op`, but there are a lot of special cases for argument passing
// specifically.)
self.copy_op_allow_transmute(&caller_arg_copy, &callee_arg)?;
// If this was an in-place pass, protect the place it comes from for the duration of the call.
if let FnArg::InPlace(mplace) = caller_arg {
M::protect_in_place_function_argument(self, mplace)?;
}
interp_ok(())
}
/// The main entry point for creating a new stack frame: performs ABI checks and initializes
/// arguments.
#[instrument(skip(self), level = "trace")]
pub fn init_stack_frame(
&mut self,
instance: Instance<'tcx>,
body: &'tcx mir::Body<'tcx>,
caller_fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
args: &[FnArg<'tcx, M::Provenance>],
with_caller_location: bool,
destination: &MPlaceTy<'tcx, M::Provenance>,
mut stack_pop: StackPopCleanup,
) -> InterpResult<'tcx> {
// Compute callee information.
// FIXME: for variadic support, do we have to somehow determine callee's extra_args?
let callee_fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
if callee_fn_abi.c_variadic || caller_fn_abi.c_variadic {
throw_unsup_format!("calling a c-variadic function is not supported");
}
if caller_fn_abi.conv != callee_fn_abi.conv {
throw_ub_custom!(
fluent::const_eval_incompatible_calling_conventions,
callee_conv = format!("{:?}", callee_fn_abi.conv),
caller_conv = format!("{:?}", caller_fn_abi.conv),
)
}
// Check that all target features required by the callee (i.e., from
// the attribute `#[target_feature(enable = ...)]`) are enabled at
// compile time.
M::check_fn_target_features(self, instance)?;
if !callee_fn_abi.can_unwind {
// The callee cannot unwind, so force the `Unreachable` unwind handling.
match &mut stack_pop {
StackPopCleanup::Root { .. } => {}
StackPopCleanup::Goto { unwind, .. } => {
*unwind = mir::UnwindAction::Unreachable;
}
}
}
self.push_stack_frame_raw(instance, body, destination, stack_pop)?;
// If an error is raised here, pop the frame again to get an accurate backtrace.
// To this end, we wrap it all in a `try` block.
let res: InterpResult<'tcx> = try {
trace!(
"caller ABI: {:#?}, args: {:#?}",
caller_fn_abi,
args.iter()
.map(|arg| (arg.layout().ty, match arg {
FnArg::Copy(op) => format!("copy({op:?})"),
FnArg::InPlace(mplace) => format!("in-place({mplace:?})"),
}))
.collect::<Vec<_>>()
);
trace!(
"spread_arg: {:?}, locals: {:#?}",
body.spread_arg,
body.args_iter()
.map(|local| (
local,
self.layout_of_local(self.frame(), local, None).unwrap().ty,
))
.collect::<Vec<_>>()
);
// In principle, we have two iterators: Where the arguments come from, and where
// they go to.
// The "where they come from" part is easy, we expect the caller to do any special handling
// that might be required here (e.g. for untupling).
// If `with_caller_location` is set we pretend there is an extra argument (that
// we will not pass; our `caller_location` intrinsic implementation walks the stack instead).
assert_eq!(
args.len() + if with_caller_location { 1 } else { 0 },
caller_fn_abi.args.len(),
"mismatch between caller ABI and caller arguments",
);
let mut caller_args = args
.iter()
.zip(caller_fn_abi.args.iter())
.filter(|arg_and_abi| !matches!(arg_and_abi.1.mode, PassMode::Ignore));
// Now we have to spread them out across the callee's locals,
// taking into account the `spread_arg`. If we could write
// this is a single iterator (that handles `spread_arg`), then
// `pass_argument` would be the loop body. It takes care to
// not advance `caller_iter` for ignored arguments.
let mut callee_args_abis = callee_fn_abi.args.iter();
for local in body.args_iter() {
// Construct the destination place for this argument. At this point all
// locals are still dead, so we cannot construct a `PlaceTy`.
let dest = mir::Place::from(local);
// `layout_of_local` does more than just the instantiation we need to get the
// type, but the result gets cached so this avoids calling the instantiation
// query *again* the next time this local is accessed.
let ty = self.layout_of_local(self.frame(), local, None)?.ty;
if Some(local) == body.spread_arg {
// Make the local live once, then fill in the value field by field.
self.storage_live(local)?;
// Must be a tuple
let ty::Tuple(fields) = ty.kind() else {
span_bug!(self.cur_span(), "non-tuple type for `spread_arg`: {ty}")
};
for (i, field_ty) in fields.iter().enumerate() {
let dest = dest.project_deeper(
&[mir::ProjectionElem::Field(FieldIdx::from_usize(i), field_ty)],
*self.tcx,
);
let callee_abi = callee_args_abis.next().unwrap();
self.pass_argument(
&mut caller_args,
callee_abi,
&dest,
field_ty,
/* already_live */ true,
)?;
}
} else {
// Normal argument. Cannot mark it as live yet, it might be unsized!
let callee_abi = callee_args_abis.next().unwrap();
self.pass_argument(
&mut caller_args,
callee_abi,
&dest,
ty,
/* already_live */ false,
)?;
}
}
// If the callee needs a caller location, pretend we consume one more argument from the ABI.
if instance.def.requires_caller_location(*self.tcx) {
callee_args_abis.next().unwrap();
}
// Now we should have no more caller args or callee arg ABIs
assert!(
callee_args_abis.next().is_none(),
"mismatch between callee ABI and callee body arguments"
);
if caller_args.next().is_some() {
throw_ub_custom!(fluent::const_eval_too_many_caller_args);
}
// Don't forget to check the return type!
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret)? {
throw_ub!(AbiMismatchReturn {
caller_ty: caller_fn_abi.ret.layout.ty,
callee_ty: callee_fn_abi.ret.layout.ty
});
}
// Protect return place for in-place return value passing.
M::protect_in_place_function_argument(self, &destination)?;
// Don't forget to mark "initially live" locals as live.
self.storage_live_for_always_live_locals()?;
};
res.inspect_err_kind(|_| {
// Don't show the incomplete stack frame in the error stacktrace.
self.stack_mut().pop();
})
}
/// Initiate a call to this function -- pushing the stack frame and initializing the arguments.
///
/// `caller_fn_abi` is used to determine if all the arguments are passed the proper way.
/// However, we also need `caller_abi` to determine if we need to do untupling of arguments.
///
/// `with_caller_location` indicates whether the caller passed a caller location. Miri
/// implements caller locations without argument passing, but to match `FnAbi` we need to know
/// when those arguments are present.
pub(super) fn init_fn_call(
&mut self,
fn_val: FnVal<'tcx, M::ExtraFnVal>,
(caller_abi, caller_fn_abi): (Abi, &FnAbi<'tcx, Ty<'tcx>>),
args: &[FnArg<'tcx, M::Provenance>],
with_caller_location: bool,
destination: &MPlaceTy<'tcx, M::Provenance>,
target: Option<mir::BasicBlock>,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx> {
trace!("init_fn_call: {:#?}", fn_val);
let instance = match fn_val {
FnVal::Instance(instance) => instance,
FnVal::Other(extra) => {
return M::call_extra_fn(
self,
extra,
caller_abi,
args,
destination,
target,
unwind,
);
}
};
match instance.def {
ty::InstanceKind::Intrinsic(def_id) => {
assert!(self.tcx.intrinsic(def_id).is_some());
// FIXME: Should `InPlace` arguments be reset to uninit?
if let Some(fallback) = M::call_intrinsic(
self,
instance,
&self.copy_fn_args(args),
destination,
target,
unwind,
)? {
assert!(!self.tcx.intrinsic(fallback.def_id()).unwrap().must_be_overridden);
assert_matches!(fallback.def, ty::InstanceKind::Item(_));
return self.init_fn_call(
FnVal::Instance(fallback),
(caller_abi, caller_fn_abi),
args,
with_caller_location,
destination,
target,
unwind,
);
} else {
interp_ok(())
}
}
ty::InstanceKind::VTableShim(..)
| ty::InstanceKind::ReifyShim(..)
| ty::InstanceKind::ClosureOnceShim { .. }
| ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
| ty::InstanceKind::FnPtrShim(..)
| ty::InstanceKind::DropGlue(..)
| ty::InstanceKind::CloneShim(..)
| ty::InstanceKind::FnPtrAddrShim(..)
| ty::InstanceKind::ThreadLocalShim(..)
| ty::InstanceKind::AsyncDropGlueCtorShim(..)
| ty::InstanceKind::Item(_) => {
// We need MIR for this fn
let Some((body, instance)) = M::find_mir_or_eval_fn(
self,
instance,
caller_abi,
args,
destination,
target,
unwind,
)?
else {
return interp_ok(());
};
// Special handling for the closure ABI: untuple the last argument.
let args: Cow<'_, [FnArg<'tcx, M::Provenance>]> =
if caller_abi == Abi::RustCall && !args.is_empty() {
// Untuple
let (untuple_arg, args) = args.split_last().unwrap();
trace!("init_fn_call: Will pass last argument by untupling");
Cow::from(
args.iter()
.map(|a| interp_ok(a.clone()))
.chain(
(0..untuple_arg.layout().fields.count())
.map(|i| self.fn_arg_field(untuple_arg, i)),
)
.collect::<InterpResult<'_, Vec<_>>>()?,
)
} else {
// Plain arg passing
Cow::from(args)
};
self.init_stack_frame(
instance,
body,
caller_fn_abi,
&args,
with_caller_location,
destination,
StackPopCleanup::Goto { ret: target, unwind },
)
}
// `InstanceKind::Virtual` does not have callable MIR. Calls to `Virtual` instances must be
// codegen'd / interpreted as virtual calls through the vtable.
ty::InstanceKind::Virtual(def_id, idx) => {
let mut args = args.to_vec();
// We have to implement all "dyn-compatible receivers". So we have to go search for a
// pointer or `dyn Trait` type, but it could be wrapped in newtypes. So recursively
// unwrap those newtypes until we are there.
// An `InPlace` does nothing here, we keep the original receiver intact. We can't
// really pass the argument in-place anyway, and we are constructing a new
// `Immediate` receiver.
let mut receiver = self.copy_fn_arg(&args[0]);
let receiver_place = loop {
match receiver.layout.ty.kind() {
ty::Ref(..) | ty::RawPtr(..) => {
// We do *not* use `deref_pointer` here: we don't want to conceptually
// create a place that must be dereferenceable, since the receiver might
// be a raw pointer and (for `*const dyn Trait`) we don't need to
// actually access memory to resolve this method.
// Also see <https://github.com/rust-lang/miri/issues/2786>.
let val = self.read_immediate(&receiver)?;
break self.ref_to_mplace(&val)?;
}
ty::Dynamic(.., ty::Dyn) => break receiver.assert_mem_place(), // no immediate unsized values
ty::Dynamic(.., ty::DynStar) => {
// Not clear how to handle this, so far we assume the receiver is always a pointer.
span_bug!(
self.cur_span(),
"by-value calls on a `dyn*`... are those a thing?"
);
}
_ => {
// Not there yet, search for the only non-ZST field.
// (The rules for `DispatchFromDyn` ensure there's exactly one such field.)
let (idx, _) = receiver.layout.non_1zst_field(self).expect(
"not exactly one non-1-ZST field in a `DispatchFromDyn` type",
);
receiver = self.project_field(&receiver, idx)?;
}
}
};
// Obtain the underlying trait we are working on, and the adjusted receiver argument.
let (trait_, dyn_ty, adjusted_recv) = if let ty::Dynamic(data, _, ty::DynStar) =
receiver_place.layout.ty.kind()
{
let recv = self.unpack_dyn_star(&receiver_place, data)?;
(data.principal(), recv.layout.ty, recv.ptr())
} else {
// Doesn't have to be a `dyn Trait`, but the unsized tail must be `dyn Trait`.
// (For that reason we also cannot use `unpack_dyn_trait`.)
let receiver_tail =
self.tcx.struct_tail_for_codegen(receiver_place.layout.ty, self.param_env);
let ty::Dynamic(receiver_trait, _, ty::Dyn) = receiver_tail.kind() else {
span_bug!(
self.cur_span(),
"dynamic call on non-`dyn` type {}",
receiver_tail
)
};
assert!(receiver_place.layout.is_unsized());
// Get the required information from the vtable.
let vptr = receiver_place.meta().unwrap_meta().to_pointer(self)?;
let dyn_ty = self.get_ptr_vtable_ty(vptr, Some(receiver_trait))?;
// It might be surprising that we use a pointer as the receiver even if this
// is a by-val case; this works because by-val passing of an unsized `dyn
// Trait` to a function is actually desugared to a pointer.
(receiver_trait.principal(), dyn_ty, receiver_place.ptr())
};
// Now determine the actual method to call. Usually we use the easy way of just
// looking up the method at index `idx`.
let vtable_entries = self.vtable_entries(trait_, dyn_ty);
let Some(ty::VtblEntry::Method(fn_inst)) = vtable_entries.get(idx).copied() else {
// FIXME(fee1-dead) these could be variants of the UB info enum instead of this
throw_ub_custom!(fluent::const_eval_dyn_call_not_a_method);
};
trace!("Virtual call dispatches to {fn_inst:#?}");
// We can also do the lookup based on `def_id` and `dyn_ty`, and check that that
// produces the same result.
if cfg!(debug_assertions) {
let tcx = *self.tcx;
let trait_def_id = tcx.trait_of_item(def_id).unwrap();
let virtual_trait_ref =
ty::TraitRef::from_method(tcx, trait_def_id, instance.args);
let existential_trait_ref =
ty::ExistentialTraitRef::erase_self_ty(tcx, virtual_trait_ref);
let concrete_trait_ref = existential_trait_ref.with_self_ty(tcx, dyn_ty);
let concrete_method = Instance::expect_resolve_for_vtable(
tcx,
self.param_env,
def_id,
instance.args.rebase_onto(tcx, trait_def_id, concrete_trait_ref.args),
self.cur_span(),
);
assert_eq!(fn_inst, concrete_method);
}
// Adjust receiver argument. Layout can be any (thin) ptr.
let receiver_ty = Ty::new_mut_ptr(self.tcx.tcx, dyn_ty);
args[0] = FnArg::Copy(
ImmTy::from_immediate(
Scalar::from_maybe_pointer(adjusted_recv, self).into(),
self.layout_of(receiver_ty)?,
)
.into(),
);
trace!("Patched receiver operand to {:#?}", args[0]);
// Need to also adjust the type in the ABI. Strangely, the layout there is actually
// already fine! Just the type is bogus. This is due to what `force_thin_self_ptr`
// does in `fn_abi_new_uncached`; supposedly, codegen relies on having the bogus
// type, so we just patch this up locally.
let mut caller_fn_abi = caller_fn_abi.clone();
caller_fn_abi.args[0].layout.ty = receiver_ty;
// recurse with concrete function
self.init_fn_call(
FnVal::Instance(fn_inst),
(caller_abi, &caller_fn_abi),
&args,
with_caller_location,
destination,
target,
unwind,
)
}
}
}
/// Initiate a tail call to this function -- popping the current stack frame, pushing the new
/// stack frame and initializing the arguments.
pub(super) fn init_fn_tail_call(
&mut self,
fn_val: FnVal<'tcx, M::ExtraFnVal>,
(caller_abi, caller_fn_abi): (Abi, &FnAbi<'tcx, Ty<'tcx>>),
args: &[FnArg<'tcx, M::Provenance>],
with_caller_location: bool,
) -> InterpResult<'tcx> {
trace!("init_fn_tail_call: {:#?}", fn_val);
// This is the "canonical" implementation of tails calls,
// a pop of the current stack frame, followed by a normal call
// which pushes a new stack frame, with the return address from
// the popped stack frame.
//
// Note that we are using `pop_stack_frame_raw` and not `return_from_current_stack_frame`,
// as the latter "executes" the goto to the return block, but we don't want to,
// only the tail called function should return to the current return block.
M::before_stack_pop(self, self.frame())?;
let StackPopInfo { return_action, return_to_block, return_place } =
self.pop_stack_frame_raw(false)?;
assert_eq!(return_action, ReturnAction::Normal);
// Take the "stack pop cleanup" info, and use that to initiate the next call.
let StackPopCleanup::Goto { ret, unwind } = return_to_block else {
bug!("can't tailcall as root");
};
// FIXME(explicit_tail_calls):
// we should check if both caller&callee can/n't unwind,
// see <https://github.com/rust-lang/rust/pull/113128#issuecomment-1614979803>
self.init_fn_call(
fn_val,
(caller_abi, caller_fn_abi),
args,
with_caller_location,
&return_place,
ret,
unwind,
)
}
pub(super) fn init_drop_in_place_call(
&mut self,
place: &PlaceTy<'tcx, M::Provenance>,
instance: ty::Instance<'tcx>,
target: mir::BasicBlock,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx> {
trace!("init_drop_in_place_call: {:?},\n instance={:?}", place, instance);
// We take the address of the object. This may well be unaligned, which is fine
// for us here. However, unaligned accesses will probably make the actual drop
// implementation fail -- a problem shared by rustc.
let place = self.force_allocation(place)?;
// We behave a bit different from codegen here.
// Codegen creates an `InstanceKind::Virtual` with index 0 (the slot of the drop method) and
// then dispatches that to the normal call machinery. However, our call machinery currently
// only supports calling `VtblEntry::Method`; it would choke on a `MetadataDropInPlace`. So
// instead we do the virtual call stuff ourselves. It's easier here than in `eval_fn_call`
// since we can just get a place of the underlying type and use `mplace_to_ref`.
let place = match place.layout.ty.kind() {
ty::Dynamic(data, _, ty::Dyn) => {
// Dropping a trait object. Need to find actual drop fn.
self.unpack_dyn_trait(&place, data)?
}
ty::Dynamic(data, _, ty::DynStar) => {
// Dropping a `dyn*`. Need to find actual drop fn.
self.unpack_dyn_star(&place, data)?
}
_ => {
debug_assert_eq!(
instance,
ty::Instance::resolve_drop_in_place(*self.tcx, place.layout.ty)
);
place
}
};
let instance = ty::Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
let fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
let arg = self.mplace_to_ref(&place)?;
let ret = MPlaceTy::fake_alloc_zst(self.layout_of(self.tcx.types.unit)?);
self.init_fn_call(
FnVal::Instance(instance),
(Abi::Rust, fn_abi),
&[FnArg::Copy(arg.into())],
false,
&ret,
Some(target),
unwind,
)
}
/// Pops the current frame from the stack, copies the return value to the caller, deallocates
/// the memory for allocated locals, and jumps to an appropriate place.
///
/// If `unwinding` is `false`, then we are performing a normal return
/// from a function. In this case, we jump back into the frame of the caller,
/// and continue execution as normal.
///
/// If `unwinding` is `true`, then we are in the middle of a panic,
/// and need to unwind this frame. In this case, we jump to the
/// `cleanup` block for the function, which is responsible for running
/// `Drop` impls for any locals that have been initialized at this point.
/// The cleanup block ends with a special `Resume` terminator, which will
/// cause us to continue unwinding.
#[instrument(skip(self), level = "trace")]
pub(super) fn return_from_current_stack_frame(
&mut self,
unwinding: bool,
) -> InterpResult<'tcx> {
info!(
"popping stack frame ({})",
if unwinding { "during unwinding" } else { "returning from function" }
);
// Check `unwinding`.
assert_eq!(unwinding, match self.frame().loc {
Left(loc) => self.body().basic_blocks[loc.block].is_cleanup,
Right(_) => true,
});
if unwinding && self.frame_idx() == 0 {
throw_ub_custom!(fluent::const_eval_unwind_past_top);
}
M::before_stack_pop(self, self.frame())?;
// Copy return value. Must of course happen *before* we deallocate the locals.
// Must be *after* `before_stack_pop` as otherwise the return place might still be protected.
let copy_ret_result = if !unwinding {
let op = self
.local_to_op(mir::RETURN_PLACE, None)
.expect("return place should always be live");
let dest = self.frame().return_place.clone();
let res = if self.stack().len() == 1 {
// The initializer of constants and statics will get validated separately
// after the constant has been fully evaluated. While we could fall back to the default
// code path, that will cause -Zenforce-validity to cycle on static initializers.
// Reading from a static's memory is not allowed during its evaluation, and will always
// trigger a cycle error. Validation must read from the memory of the current item.
// For Miri this means we do not validate the root frame return value,
// but Miri anyway calls `read_target_isize` on that so separate validation
// is not needed.
self.copy_op_no_dest_validation(&op, &dest)
} else {
self.copy_op_allow_transmute(&op, &dest)
};
trace!("return value: {:?}", self.dump_place(&dest.into()));
// We delay actually short-circuiting on this error until *after* the stack frame is
// popped, since we want this error to be attributed to the caller, whose type defines
// this transmute.
res
} else {
interp_ok(())
};
// All right, now it is time to actually pop the frame.
// An error here takes precedence over the copy error.
let (stack_pop_info, ()) = self.pop_stack_frame_raw(unwinding).and(copy_ret_result)?;
match stack_pop_info.return_action {
ReturnAction::Normal => {}
ReturnAction::NoJump => {
// The hook already did everything.
return interp_ok(());
}
ReturnAction::NoCleanup => {
// If we are not doing cleanup, also skip everything else.
assert!(self.stack().is_empty(), "only the topmost frame should ever be leaked");
assert!(!unwinding, "tried to skip cleanup during unwinding");
// Skip machine hook.
return interp_ok(());
}
}
// Normal return, figure out where to jump.
if unwinding {
// Follow the unwind edge.
match stack_pop_info.return_to_block {
StackPopCleanup::Goto { unwind, .. } => {
// This must be the very last thing that happens, since it can in fact push a new stack frame.
self.unwind_to_block(unwind)
}
StackPopCleanup::Root { .. } => {
panic!("encountered StackPopCleanup::Root when unwinding!")
}
}
} else {
// Follow the normal return edge.
match stack_pop_info.return_to_block {
StackPopCleanup::Goto { ret, .. } => self.return_to_block(ret),
StackPopCleanup::Root { .. } => {
assert!(
self.stack().is_empty(),
"only the bottommost frame can have StackPopCleanup::Root"
);
interp_ok(())
}
}
}
}
}