use std::assert_matches::assert_matches;
use rustc_apfloat::ieee::{Double, Half, Quad, Single};
use rustc_hir::def_id::DefId;
use rustc_middle::mir::{self, BinOp, ConstValue, NonDivergingIntrinsic};
use rustc_middle::ty::layout::{LayoutOf as _, TyAndLayout, ValidityRequirement};
use rustc_middle::ty::{GenericArgsRef, Ty, TyCtxt};
use rustc_middle::{bug, ty};
use rustc_span::symbol::{Symbol, sym};
use rustc_target::abi::Size;
use tracing::trace;
use super::memory::MemoryKind;
use super::util::ensure_monomorphic_enough;
use super::{
Allocation, CheckInAllocMsg, ConstAllocation, GlobalId, ImmTy, InterpCx, InterpResult,
MPlaceTy, Machine, OpTy, Pointer, PointerArithmetic, Provenance, Scalar, err_inval,
err_ub_custom, err_unsup_format, interp_ok, throw_inval, throw_ub_custom, throw_ub_format,
};
use crate::fluent_generated as fluent;
pub(crate) fn alloc_type_name<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ConstAllocation<'tcx> {
let path = crate::util::type_name(tcx, ty);
let alloc = Allocation::from_bytes_byte_aligned_immutable(path.into_bytes());
tcx.mk_const_alloc(alloc)
}
pub(crate) fn eval_nullary_intrinsic<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
def_id: DefId,
args: GenericArgsRef<'tcx>,
) -> InterpResult<'tcx, ConstValue<'tcx>> {
let tp_ty = args.type_at(0);
let name = tcx.item_name(def_id);
interp_ok(match name {
sym::type_name => {
ensure_monomorphic_enough(tcx, tp_ty)?;
let alloc = alloc_type_name(tcx, tp_ty);
ConstValue::Slice { data: alloc, meta: alloc.inner().size().bytes() }
}
sym::needs_drop => {
ensure_monomorphic_enough(tcx, tp_ty)?;
ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env))
}
sym::pref_align_of => {
let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(*e)))?;
ConstValue::from_target_usize(layout.align.pref.bytes(), &tcx)
}
sym::type_id => {
ensure_monomorphic_enough(tcx, tp_ty)?;
ConstValue::from_u128(tcx.type_id_hash(tp_ty).as_u128())
}
sym::variant_count => match tp_ty.kind() {
ty::Adt(adt, _) => ConstValue::from_target_usize(adt.variants().len() as u64, &tcx),
ty::Alias(..) | ty::Param(_) | ty::Placeholder(_) | ty::Infer(_) => {
throw_inval!(TooGeneric)
}
ty::Pat(_, pat) => match **pat {
ty::PatternKind::Range { .. } => ConstValue::from_target_usize(0u64, &tcx),
},
ty::Bound(_, _) => bug!("bound ty during ctfe"),
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Foreign(_)
| ty::Str
| ty::Array(_, _)
| ty::Slice(_)
| ty::RawPtr(_, _)
| ty::Ref(_, _, _)
| ty::FnDef(_, _)
| ty::FnPtr(..)
| ty::Dynamic(_, _, _)
| ty::Closure(_, _)
| ty::CoroutineClosure(_, _)
| ty::Coroutine(_, _)
| ty::CoroutineWitness(..)
| ty::Never
| ty::Tuple(_)
| ty::Error(_) => ConstValue::from_target_usize(0u64, &tcx),
},
other => bug!("`{}` is not a zero arg intrinsic", other),
})
}
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
pub fn eval_intrinsic(
&mut self,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, M::Provenance>],
dest: &MPlaceTy<'tcx, M::Provenance>,
ret: Option<mir::BasicBlock>,
) -> InterpResult<'tcx, bool> {
let instance_args = instance.args;
let intrinsic_name = self.tcx.item_name(instance.def_id());
match intrinsic_name {
sym::caller_location => {
let span = self.find_closest_untracked_caller_location();
let val = self.tcx.span_as_caller_location(span);
let val =
self.const_val_to_op(val, self.tcx.caller_location_ty(), Some(dest.layout))?;
self.copy_op(&val, dest)?;
}
sym::min_align_of_val | sym::size_of_val => {
let place = self.ref_to_mplace(&self.read_immediate(&args[0])?)?;
let (size, align) = self
.size_and_align_of_mplace(&place)?
.ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?;
let result = match intrinsic_name {
sym::min_align_of_val => align.bytes(),
sym::size_of_val => size.bytes(),
_ => bug!(),
};
self.write_scalar(Scalar::from_target_usize(result, self), dest)?;
}
sym::pref_align_of
| sym::needs_drop
| sym::type_id
| sym::type_name
| sym::variant_count => {
let gid = GlobalId { instance, promoted: None };
let ty = match intrinsic_name {
sym::pref_align_of | sym::variant_count => self.tcx.types.usize,
sym::needs_drop => self.tcx.types.bool,
sym::type_id => self.tcx.types.u128,
sym::type_name => Ty::new_static_str(self.tcx.tcx),
_ => bug!(),
};
let val =
self.ctfe_query(|tcx| tcx.const_eval_global_id(self.param_env, gid, tcx.span))?;
let val = self.const_val_to_op(val, ty, Some(dest.layout))?;
self.copy_op(&val, dest)?;
}
sym::ctpop
| sym::cttz
| sym::cttz_nonzero
| sym::ctlz
| sym::ctlz_nonzero
| sym::bswap
| sym::bitreverse => {
let ty = instance_args.type_at(0);
let layout = self.layout_of(ty)?;
let val = self.read_scalar(&args[0])?;
let out_val = self.numeric_intrinsic(intrinsic_name, val, layout, dest.layout)?;
self.write_scalar(out_val, dest)?;
}
sym::saturating_add | sym::saturating_sub => {
let l = self.read_immediate(&args[0])?;
let r = self.read_immediate(&args[1])?;
let val = self.saturating_arith(
if intrinsic_name == sym::saturating_add { BinOp::Add } else { BinOp::Sub },
&l,
&r,
)?;
self.write_scalar(val, dest)?;
}
sym::discriminant_value => {
let place = self.deref_pointer(&args[0])?;
let variant = self.read_discriminant(&place)?;
let discr = self.discriminant_for_variant(place.layout.ty, variant)?;
self.write_immediate(*discr, dest)?;
}
sym::exact_div => {
let l = self.read_immediate(&args[0])?;
let r = self.read_immediate(&args[1])?;
self.exact_div(&l, &r, dest)?;
}
sym::rotate_left | sym::rotate_right => {
let layout_val = self.layout_of(instance_args.type_at(0))?;
let val = self.read_scalar(&args[0])?;
let val_bits = val.to_bits(layout_val.size)?; let layout_raw_shift = self.layout_of(self.tcx.types.u32)?;
let raw_shift = self.read_scalar(&args[1])?;
let raw_shift_bits = raw_shift.to_bits(layout_raw_shift.size)?;
let width_bits = u128::from(layout_val.size.bits());
let shift_bits = raw_shift_bits % width_bits;
let inv_shift_bits = (width_bits - shift_bits) % width_bits;
let result_bits = if intrinsic_name == sym::rotate_left {
(val_bits << shift_bits) | (val_bits >> inv_shift_bits)
} else {
(val_bits >> shift_bits) | (val_bits << inv_shift_bits)
};
let truncated_bits = layout_val.size.truncate(result_bits);
let result = Scalar::from_uint(truncated_bits, layout_val.size);
self.write_scalar(result, dest)?;
}
sym::copy => {
self.copy_intrinsic(&args[0], &args[1], &args[2], false)?;
}
sym::write_bytes => {
self.write_bytes_intrinsic(&args[0], &args[1], &args[2], "write_bytes")?;
}
sym::compare_bytes => {
let result = self.compare_bytes_intrinsic(&args[0], &args[1], &args[2])?;
self.write_scalar(result, dest)?;
}
sym::arith_offset => {
let ptr = self.read_pointer(&args[0])?;
let offset_count = self.read_target_isize(&args[1])?;
let pointee_ty = instance_args.type_at(0);
let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
let offset_bytes = offset_count.wrapping_mul(pointee_size);
let offset_ptr = ptr.wrapping_signed_offset(offset_bytes, self);
self.write_pointer(offset_ptr, dest)?;
}
sym::ptr_offset_from | sym::ptr_offset_from_unsigned => {
let a = self.read_pointer(&args[0])?;
let b = self.read_pointer(&args[1])?;
let usize_layout = self.layout_of(self.tcx.types.usize)?;
let isize_layout = self.layout_of(self.tcx.types.isize)?;
let (a_offset, b_offset, is_addr) = if M::Provenance::OFFSET_IS_ADDR {
(a.addr().bytes(), b.addr().bytes(), true)
} else {
match (self.ptr_try_get_alloc_id(a, 0), self.ptr_try_get_alloc_id(b, 0)) {
(Err(a), Err(b)) => {
(a, b, true)
}
(Ok((a_alloc_id, a_offset, _)), Ok((b_alloc_id, b_offset, _)))
if a_alloc_id == b_alloc_id =>
{
(a_offset.bytes(), b_offset.bytes(), false)
}
_ => {
throw_ub_custom!(
fluent::const_eval_offset_from_different_allocations,
name = intrinsic_name,
);
}
}
};
let dist = {
let (val, overflowed) = {
let a_offset = ImmTy::from_uint(a_offset, usize_layout);
let b_offset = ImmTy::from_uint(b_offset, usize_layout);
self.binary_op(BinOp::SubWithOverflow, &a_offset, &b_offset)?
.to_scalar_pair()
};
if overflowed.to_bool()? {
if intrinsic_name == sym::ptr_offset_from_unsigned {
throw_ub_custom!(
fluent::const_eval_offset_from_unsigned_overflow,
a_offset = a_offset,
b_offset = b_offset,
is_addr = is_addr,
);
}
let dist = val.to_target_isize(self)?;
if dist >= 0 || i128::from(dist) == self.pointer_size().signed_int_min() {
throw_ub_custom!(
fluent::const_eval_offset_from_underflow,
name = intrinsic_name,
);
}
dist
} else {
let dist = val.to_target_isize(self)?;
if dist < 0 {
throw_ub_custom!(
fluent::const_eval_offset_from_overflow,
name = intrinsic_name,
);
}
dist
}
};
self.check_ptr_access_signed(b, dist, CheckInAllocMsg::OffsetFromTest)?;
self.check_ptr_access_signed(
a,
dist.checked_neg().unwrap(), CheckInAllocMsg::OffsetFromTest,
)
.map_err_kind(|_| {
err_ub_custom!(
fluent::const_eval_offset_from_different_allocations,
name = intrinsic_name,
)
})?;
let ret_layout = if intrinsic_name == sym::ptr_offset_from_unsigned {
assert!(0 <= dist && dist <= self.target_isize_max());
usize_layout
} else {
assert!(self.target_isize_min() <= dist && dist <= self.target_isize_max());
isize_layout
};
let pointee_layout = self.layout_of(instance_args.type_at(0))?;
let val = ImmTy::from_int(dist, ret_layout);
let size = ImmTy::from_int(pointee_layout.size.bytes(), ret_layout);
self.exact_div(&val, &size, dest)?;
}
sym::assert_inhabited
| sym::assert_zero_valid
| sym::assert_mem_uninitialized_valid => {
let ty = instance.args.type_at(0);
let requirement = ValidityRequirement::from_intrinsic(intrinsic_name).unwrap();
let should_panic = !self
.tcx
.check_validity_requirement((requirement, self.param_env.and(ty)))
.map_err(|_| err_inval!(TooGeneric))?;
if should_panic {
let layout = self.layout_of(ty)?;
let msg = match requirement {
_ if layout.abi.is_uninhabited() => format!(
"aborted execution: attempted to instantiate uninhabited type `{ty}`"
),
ValidityRequirement::Inhabited => bug!("handled earlier"),
ValidityRequirement::Zero => format!(
"aborted execution: attempted to zero-initialize type `{ty}`, which is invalid"
),
ValidityRequirement::UninitMitigated0x01Fill => format!(
"aborted execution: attempted to leave type `{ty}` uninitialized, which is invalid"
),
ValidityRequirement::Uninit => bug!("assert_uninit_valid doesn't exist"),
};
M::panic_nounwind(self, &msg)?;
return interp_ok(true);
}
}
sym::simd_insert => {
let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
let elem = &args[2];
let (input, input_len) = self.project_to_simd(&args[0])?;
let (dest, dest_len) = self.project_to_simd(dest)?;
assert_eq!(input_len, dest_len, "Return vector length must match input length");
if index >= input_len {
throw_ub_format!(
"`simd_insert` index {index} is out-of-bounds of vector with length {input_len}"
);
}
for i in 0..dest_len {
let place = self.project_index(&dest, i)?;
let value =
if i == index { elem.clone() } else { self.project_index(&input, i)? };
self.copy_op(&value, &place)?;
}
}
sym::simd_extract => {
let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
let (input, input_len) = self.project_to_simd(&args[0])?;
if index >= input_len {
throw_ub_format!(
"`simd_extract` index {index} is out-of-bounds of vector with length {input_len}"
);
}
self.copy_op(&self.project_index(&input, index)?, dest)?;
}
sym::black_box => {
self.copy_op(&args[0], dest)?;
}
sym::raw_eq => {
let result = self.raw_eq_intrinsic(&args[0], &args[1])?;
self.write_scalar(result, dest)?;
}
sym::typed_swap => {
self.typed_swap_intrinsic(&args[0], &args[1])?;
}
sym::vtable_size => {
let ptr = self.read_pointer(&args[0])?;
let (size, _align) = self.get_vtable_size_and_align(ptr, None)?;
self.write_scalar(Scalar::from_target_usize(size.bytes(), self), dest)?;
}
sym::vtable_align => {
let ptr = self.read_pointer(&args[0])?;
let (_size, align) = self.get_vtable_size_and_align(ptr, None)?;
self.write_scalar(Scalar::from_target_usize(align.bytes(), self), dest)?;
}
sym::minnumf16 => self.float_min_intrinsic::<Half>(args, dest)?,
sym::minnumf32 => self.float_min_intrinsic::<Single>(args, dest)?,
sym::minnumf64 => self.float_min_intrinsic::<Double>(args, dest)?,
sym::minnumf128 => self.float_min_intrinsic::<Quad>(args, dest)?,
sym::maxnumf16 => self.float_max_intrinsic::<Half>(args, dest)?,
sym::maxnumf32 => self.float_max_intrinsic::<Single>(args, dest)?,
sym::maxnumf64 => self.float_max_intrinsic::<Double>(args, dest)?,
sym::maxnumf128 => self.float_max_intrinsic::<Quad>(args, dest)?,
sym::copysignf16 => self.float_copysign_intrinsic::<Half>(args, dest)?,
sym::copysignf32 => self.float_copysign_intrinsic::<Single>(args, dest)?,
sym::copysignf64 => self.float_copysign_intrinsic::<Double>(args, dest)?,
sym::copysignf128 => self.float_copysign_intrinsic::<Quad>(args, dest)?,
sym::fabsf16 => self.float_abs_intrinsic::<Half>(args, dest)?,
sym::fabsf32 => self.float_abs_intrinsic::<Single>(args, dest)?,
sym::fabsf64 => self.float_abs_intrinsic::<Double>(args, dest)?,
sym::fabsf128 => self.float_abs_intrinsic::<Quad>(args, dest)?,
_ => return interp_ok(false),
}
trace!("{:?}", self.dump_place(&dest.clone().into()));
self.return_to_block(ret)?;
interp_ok(true)
}
pub(super) fn eval_nondiverging_intrinsic(
&mut self,
intrinsic: &NonDivergingIntrinsic<'tcx>,
) -> InterpResult<'tcx> {
match intrinsic {
NonDivergingIntrinsic::Assume(op) => {
let op = self.eval_operand(op, None)?;
let cond = self.read_scalar(&op)?.to_bool()?;
if !cond {
throw_ub_custom!(fluent::const_eval_assume_false);
}
interp_ok(())
}
NonDivergingIntrinsic::CopyNonOverlapping(mir::CopyNonOverlapping {
count,
src,
dst,
}) => {
let src = self.eval_operand(src, None)?;
let dst = self.eval_operand(dst, None)?;
let count = self.eval_operand(count, None)?;
self.copy_intrinsic(&src, &dst, &count, true)
}
}
}
pub fn numeric_intrinsic(
&self,
name: Symbol,
val: Scalar<M::Provenance>,
layout: TyAndLayout<'tcx>,
ret_layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
assert!(layout.ty.is_integral(), "invalid type for numeric intrinsic: {}", layout.ty);
let bits = val.to_bits(layout.size)?; let extra = 128 - u128::from(layout.size.bits());
let bits_out = match name {
sym::ctpop => u128::from(bits.count_ones()),
sym::ctlz_nonzero | sym::cttz_nonzero if bits == 0 => {
throw_ub_custom!(fluent::const_eval_call_nonzero_intrinsic, name = name,);
}
sym::ctlz | sym::ctlz_nonzero => u128::from(bits.leading_zeros()) - extra,
sym::cttz | sym::cttz_nonzero => u128::from((bits << extra).trailing_zeros()) - extra,
sym::bswap => {
assert_eq!(layout, ret_layout);
(bits << extra).swap_bytes()
}
sym::bitreverse => {
assert_eq!(layout, ret_layout);
(bits << extra).reverse_bits()
}
_ => bug!("not a numeric intrinsic: {}", name),
};
interp_ok(Scalar::from_uint(bits_out, ret_layout.size))
}
pub fn exact_div(
&mut self,
a: &ImmTy<'tcx, M::Provenance>,
b: &ImmTy<'tcx, M::Provenance>,
dest: &MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx> {
assert_eq!(a.layout.ty, b.layout.ty);
assert_matches!(a.layout.ty.kind(), ty::Int(..) | ty::Uint(..));
let rem = self.binary_op(BinOp::Rem, a, b)?;
if rem.to_scalar().to_bits(a.layout.size)? != 0 {
throw_ub_custom!(
fluent::const_eval_exact_div_has_remainder,
a = format!("{a}"),
b = format!("{b}")
)
}
let res = self.binary_op(BinOp::Div, a, b)?;
self.write_immediate(*res, dest)
}
pub fn saturating_arith(
&self,
mir_op: BinOp,
l: &ImmTy<'tcx, M::Provenance>,
r: &ImmTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
assert_eq!(l.layout.ty, r.layout.ty);
assert_matches!(l.layout.ty.kind(), ty::Int(..) | ty::Uint(..));
assert_matches!(mir_op, BinOp::Add | BinOp::Sub);
let (val, overflowed) =
self.binary_op(mir_op.wrapping_to_overflowing().unwrap(), l, r)?.to_scalar_pair();
interp_ok(if overflowed.to_bool()? {
let size = l.layout.size;
if l.layout.abi.is_signed() {
let first_term: i128 = l.to_scalar().to_int(l.layout.size)?;
if first_term >= 0 {
Scalar::from_int(size.signed_int_max(), size)
} else {
Scalar::from_int(size.signed_int_min(), size)
}
} else {
if matches!(mir_op, BinOp::Add) {
Scalar::from_uint(size.unsigned_int_max(), size)
} else {
Scalar::from_uint(0u128, size)
}
}
} else {
val
})
}
pub fn ptr_offset_inbounds(
&self,
ptr: Pointer<Option<M::Provenance>>,
offset_bytes: i64,
) -> InterpResult<'tcx, Pointer<Option<M::Provenance>>> {
self.check_ptr_access_signed(ptr, offset_bytes, CheckInAllocMsg::PointerArithmeticTest)?;
interp_ok(ptr.wrapping_signed_offset(offset_bytes, self))
}
pub(crate) fn copy_intrinsic(
&mut self,
src: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
dst: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
nonoverlapping: bool,
) -> InterpResult<'tcx> {
let count = self.read_target_usize(count)?;
let layout = self.layout_of(src.layout.ty.builtin_deref(true).unwrap())?;
let (size, align) = (layout.size, layout.align.abi);
let size = self.compute_size_in_bytes(size, count).ok_or_else(|| {
err_ub_custom!(
fluent::const_eval_size_overflow,
name = if nonoverlapping { "copy_nonoverlapping" } else { "copy" }
)
})?;
let src = self.read_pointer(src)?;
let dst = self.read_pointer(dst)?;
self.check_ptr_align(src, align)?;
self.check_ptr_align(dst, align)?;
self.mem_copy(src, dst, size, nonoverlapping)
}
fn typed_swap_intrinsic(
&mut self,
left: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
right: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
) -> InterpResult<'tcx> {
let left = self.deref_pointer(left)?;
let right = self.deref_pointer(right)?;
debug_assert_eq!(left.layout, right.layout);
let kind = MemoryKind::Stack;
let temp = self.allocate(left.layout, kind)?;
self.copy_op(&left, &temp)?;
self.copy_op(&right, &left)?;
self.copy_op(&temp, &right)?;
self.deallocate_ptr(temp.ptr(), None, kind)?;
interp_ok(())
}
pub fn write_bytes_intrinsic(
&mut self,
dst: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
byte: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
name: &'static str,
) -> InterpResult<'tcx> {
let layout = self.layout_of(dst.layout.ty.builtin_deref(true).unwrap())?;
let dst = self.read_pointer(dst)?;
let byte = self.read_scalar(byte)?.to_u8()?;
let count = self.read_target_usize(count)?;
let len = self
.compute_size_in_bytes(layout.size, count)
.ok_or_else(|| err_ub_custom!(fluent::const_eval_size_overflow, name = name))?;
let bytes = std::iter::repeat(byte).take(len.bytes_usize());
self.write_bytes_ptr(dst, bytes)
}
pub(crate) fn compare_bytes_intrinsic(
&mut self,
left: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
right: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
byte_count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
let left = self.read_pointer(left)?;
let right = self.read_pointer(right)?;
let n = Size::from_bytes(self.read_target_usize(byte_count)?);
let left_bytes = self.read_bytes_ptr_strip_provenance(left, n)?;
let right_bytes = self.read_bytes_ptr_strip_provenance(right, n)?;
let result = Ord::cmp(left_bytes, right_bytes) as i32;
interp_ok(Scalar::from_i32(result))
}
pub(crate) fn raw_eq_intrinsic(
&mut self,
lhs: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
rhs: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
let layout = self.layout_of(lhs.layout.ty.builtin_deref(true).unwrap())?;
assert!(layout.is_sized());
let get_bytes = |this: &InterpCx<'tcx, M>,
op: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>|
-> InterpResult<'tcx, &[u8]> {
let ptr = this.read_pointer(op)?;
this.check_ptr_align(ptr, layout.align.abi)?;
let Some(alloc_ref) = self.get_ptr_alloc(ptr, layout.size)? else {
return interp_ok(&[]);
};
alloc_ref.get_bytes_strip_provenance()
};
let lhs_bytes = get_bytes(self, lhs)?;
let rhs_bytes = get_bytes(self, rhs)?;
interp_ok(Scalar::from_bool(lhs_bytes == rhs_bytes))
}
fn float_min_intrinsic<F>(
&mut self,
args: &[OpTy<'tcx, M::Provenance>],
dest: &MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, ()>
where
F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>,
{
let a: F = self.read_scalar(&args[0])?.to_float()?;
let b: F = self.read_scalar(&args[1])?.to_float()?;
let res = self.adjust_nan(a.min(b), &[a, b]);
self.write_scalar(res, dest)?;
interp_ok(())
}
fn float_max_intrinsic<F>(
&mut self,
args: &[OpTy<'tcx, M::Provenance>],
dest: &MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, ()>
where
F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>,
{
let a: F = self.read_scalar(&args[0])?.to_float()?;
let b: F = self.read_scalar(&args[1])?.to_float()?;
let res = self.adjust_nan(a.max(b), &[a, b]);
self.write_scalar(res, dest)?;
interp_ok(())
}
fn float_copysign_intrinsic<F>(
&mut self,
args: &[OpTy<'tcx, M::Provenance>],
dest: &MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, ()>
where
F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>,
{
let a: F = self.read_scalar(&args[0])?.to_float()?;
let b: F = self.read_scalar(&args[1])?.to_float()?;
self.write_scalar(a.copy_sign(b), dest)?;
interp_ok(())
}
fn float_abs_intrinsic<F>(
&mut self,
args: &[OpTy<'tcx, M::Provenance>],
dest: &MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, ()>
where
F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>,
{
let x: F = self.read_scalar(&args[0])?.to_float()?;
self.write_scalar(x.abs(), dest)?;
interp_ok(())
}
}