rustc_const_eval/interpret/
operator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
use either::Either;
use rustc_apfloat::{Float, FloatConvert};
use rustc_middle::mir::NullOp;
use rustc_middle::mir::interpret::{InterpResult, PointerArithmetic, Scalar};
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::ty::{self, FloatTy, ScalarInt, Ty};
use rustc_middle::{bug, mir, span_bug};
use rustc_span::symbol::sym;
use rustc_target::abi::Size;
use tracing::trace;

use super::{ImmTy, InterpCx, Machine, MemPlaceMeta, interp_ok, throw_ub};

impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
    fn three_way_compare<T: Ord>(&self, lhs: T, rhs: T) -> ImmTy<'tcx, M::Provenance> {
        let res = Ord::cmp(&lhs, &rhs);
        return ImmTy::from_ordering(res, *self.tcx);
    }

    fn binary_char_op(&self, bin_op: mir::BinOp, l: char, r: char) -> ImmTy<'tcx, M::Provenance> {
        use rustc_middle::mir::BinOp::*;

        if bin_op == Cmp {
            return self.three_way_compare(l, r);
        }

        let res = match bin_op {
            Eq => l == r,
            Ne => l != r,
            Lt => l < r,
            Le => l <= r,
            Gt => l > r,
            Ge => l >= r,
            _ => span_bug!(self.cur_span(), "Invalid operation on char: {:?}", bin_op),
        };
        ImmTy::from_bool(res, *self.tcx)
    }

    fn binary_bool_op(&self, bin_op: mir::BinOp, l: bool, r: bool) -> ImmTy<'tcx, M::Provenance> {
        use rustc_middle::mir::BinOp::*;

        let res = match bin_op {
            Eq => l == r,
            Ne => l != r,
            Lt => l < r,
            Le => l <= r,
            Gt => l > r,
            Ge => l >= r,
            BitAnd => l & r,
            BitOr => l | r,
            BitXor => l ^ r,
            _ => span_bug!(self.cur_span(), "Invalid operation on bool: {:?}", bin_op),
        };
        ImmTy::from_bool(res, *self.tcx)
    }

    fn binary_float_op<F: Float + FloatConvert<F> + Into<Scalar<M::Provenance>>>(
        &self,
        bin_op: mir::BinOp,
        layout: TyAndLayout<'tcx>,
        l: F,
        r: F,
    ) -> ImmTy<'tcx, M::Provenance> {
        use rustc_middle::mir::BinOp::*;

        // Performs appropriate non-deterministic adjustments of NaN results.
        let adjust_nan = |f: F| -> F { self.adjust_nan(f, &[l, r]) };

        match bin_op {
            Eq => ImmTy::from_bool(l == r, *self.tcx),
            Ne => ImmTy::from_bool(l != r, *self.tcx),
            Lt => ImmTy::from_bool(l < r, *self.tcx),
            Le => ImmTy::from_bool(l <= r, *self.tcx),
            Gt => ImmTy::from_bool(l > r, *self.tcx),
            Ge => ImmTy::from_bool(l >= r, *self.tcx),
            Add => ImmTy::from_scalar(adjust_nan((l + r).value).into(), layout),
            Sub => ImmTy::from_scalar(adjust_nan((l - r).value).into(), layout),
            Mul => ImmTy::from_scalar(adjust_nan((l * r).value).into(), layout),
            Div => ImmTy::from_scalar(adjust_nan((l / r).value).into(), layout),
            Rem => ImmTy::from_scalar(adjust_nan((l % r).value).into(), layout),
            _ => span_bug!(self.cur_span(), "invalid float op: `{:?}`", bin_op),
        }
    }

    fn binary_int_op(
        &self,
        bin_op: mir::BinOp,
        left: &ImmTy<'tcx, M::Provenance>,
        right: &ImmTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
        use rustc_middle::mir::BinOp::*;

        // This checks the size, so that we can just assert it below.
        let l = left.to_scalar_int()?;
        let r = right.to_scalar_int()?;
        // Prepare to convert the values to signed or unsigned form.
        let l_signed = || l.to_int(left.layout.size);
        let l_unsigned = || l.to_uint(left.layout.size);
        let r_signed = || r.to_int(right.layout.size);
        let r_unsigned = || r.to_uint(right.layout.size);

        let throw_ub_on_overflow = match bin_op {
            AddUnchecked => Some(sym::unchecked_add),
            SubUnchecked => Some(sym::unchecked_sub),
            MulUnchecked => Some(sym::unchecked_mul),
            ShlUnchecked => Some(sym::unchecked_shl),
            ShrUnchecked => Some(sym::unchecked_shr),
            _ => None,
        };
        let with_overflow = bin_op.is_overflowing();

        // Shift ops can have an RHS with a different numeric type.
        if matches!(bin_op, Shl | ShlUnchecked | Shr | ShrUnchecked) {
            let l_bits = left.layout.size.bits();
            // Compute the equivalent shift modulo `size` that is in the range `0..size`. (This is
            // the one MIR operator that does *not* directly map to a single LLVM operation.)
            let (shift_amount, overflow) = if right.layout.abi.is_signed() {
                let shift_amount = r_signed();
                let rem = shift_amount.rem_euclid(l_bits.into());
                // `rem` is guaranteed positive, so the `unwrap` cannot fail
                (u128::try_from(rem).unwrap(), rem != shift_amount)
            } else {
                let shift_amount = r_unsigned();
                let rem = shift_amount.rem_euclid(l_bits.into());
                (rem, rem != shift_amount)
            };
            let shift_amount = u32::try_from(shift_amount).unwrap(); // we brought this in the range `0..size` so this will always fit
            // Compute the shifted result.
            let result = if left.layout.abi.is_signed() {
                let l = l_signed();
                let result = match bin_op {
                    Shl | ShlUnchecked => l.checked_shl(shift_amount).unwrap(),
                    Shr | ShrUnchecked => l.checked_shr(shift_amount).unwrap(),
                    _ => bug!(),
                };
                ScalarInt::truncate_from_int(result, left.layout.size).0
            } else {
                let l = l_unsigned();
                let result = match bin_op {
                    Shl | ShlUnchecked => l.checked_shl(shift_amount).unwrap(),
                    Shr | ShrUnchecked => l.checked_shr(shift_amount).unwrap(),
                    _ => bug!(),
                };
                ScalarInt::truncate_from_uint(result, left.layout.size).0
            };

            if overflow && let Some(intrinsic) = throw_ub_on_overflow {
                throw_ub!(ShiftOverflow {
                    intrinsic,
                    shift_amount: if right.layout.abi.is_signed() {
                        Either::Right(r_signed())
                    } else {
                        Either::Left(r_unsigned())
                    }
                });
            }

            return interp_ok(ImmTy::from_scalar_int(result, left.layout));
        }

        // For the remaining ops, the types must be the same on both sides
        if left.layout.ty != right.layout.ty {
            span_bug!(
                self.cur_span(),
                "invalid asymmetric binary op {bin_op:?}: {l:?} ({l_ty}), {r:?} ({r_ty})",
                l_ty = left.layout.ty,
                r_ty = right.layout.ty,
            )
        }

        let size = left.layout.size;

        // Operations that need special treatment for signed integers
        if left.layout.abi.is_signed() {
            let op: Option<fn(&i128, &i128) -> bool> = match bin_op {
                Lt => Some(i128::lt),
                Le => Some(i128::le),
                Gt => Some(i128::gt),
                Ge => Some(i128::ge),
                _ => None,
            };
            if let Some(op) = op {
                return interp_ok(ImmTy::from_bool(op(&l_signed(), &r_signed()), *self.tcx));
            }
            if bin_op == Cmp {
                return interp_ok(self.three_way_compare(l_signed(), r_signed()));
            }
            let op: Option<fn(i128, i128) -> (i128, bool)> = match bin_op {
                Div if r.is_null() => throw_ub!(DivisionByZero),
                Rem if r.is_null() => throw_ub!(RemainderByZero),
                Div => Some(i128::overflowing_div),
                Rem => Some(i128::overflowing_rem),
                Add | AddUnchecked | AddWithOverflow => Some(i128::overflowing_add),
                Sub | SubUnchecked | SubWithOverflow => Some(i128::overflowing_sub),
                Mul | MulUnchecked | MulWithOverflow => Some(i128::overflowing_mul),
                _ => None,
            };
            if let Some(op) = op {
                let l = l_signed();
                let r = r_signed();

                // We need a special check for overflowing Rem and Div since they are *UB*
                // on overflow, which can happen with "int_min $OP -1".
                if matches!(bin_op, Rem | Div) {
                    if l == size.signed_int_min() && r == -1 {
                        if bin_op == Rem {
                            throw_ub!(RemainderOverflow)
                        } else {
                            throw_ub!(DivisionOverflow)
                        }
                    }
                }

                let (result, oflo) = op(l, r);
                // This may be out-of-bounds for the result type, so we have to truncate.
                // If that truncation loses any information, we have an overflow.
                let (result, lossy) = ScalarInt::truncate_from_int(result, left.layout.size);
                let overflow = oflo || lossy;
                if overflow && let Some(intrinsic) = throw_ub_on_overflow {
                    throw_ub!(ArithOverflow { intrinsic });
                }
                let res = ImmTy::from_scalar_int(result, left.layout);
                return interp_ok(if with_overflow {
                    let overflow = ImmTy::from_bool(overflow, *self.tcx);
                    ImmTy::from_pair(res, overflow, *self.tcx)
                } else {
                    res
                });
            }
        }
        // From here on it's okay to treat everything as unsigned.
        let l = l_unsigned();
        let r = r_unsigned();

        if bin_op == Cmp {
            return interp_ok(self.three_way_compare(l, r));
        }

        interp_ok(match bin_op {
            Eq => ImmTy::from_bool(l == r, *self.tcx),
            Ne => ImmTy::from_bool(l != r, *self.tcx),

            Lt => ImmTy::from_bool(l < r, *self.tcx),
            Le => ImmTy::from_bool(l <= r, *self.tcx),
            Gt => ImmTy::from_bool(l > r, *self.tcx),
            Ge => ImmTy::from_bool(l >= r, *self.tcx),

            BitOr => ImmTy::from_uint(l | r, left.layout),
            BitAnd => ImmTy::from_uint(l & r, left.layout),
            BitXor => ImmTy::from_uint(l ^ r, left.layout),

            _ => {
                assert!(!left.layout.abi.is_signed());
                let op: fn(u128, u128) -> (u128, bool) = match bin_op {
                    Add | AddUnchecked | AddWithOverflow => u128::overflowing_add,
                    Sub | SubUnchecked | SubWithOverflow => u128::overflowing_sub,
                    Mul | MulUnchecked | MulWithOverflow => u128::overflowing_mul,
                    Div if r == 0 => throw_ub!(DivisionByZero),
                    Rem if r == 0 => throw_ub!(RemainderByZero),
                    Div => u128::overflowing_div,
                    Rem => u128::overflowing_rem,
                    _ => span_bug!(
                        self.cur_span(),
                        "invalid binary op {:?}: {:?}, {:?} (both {})",
                        bin_op,
                        left,
                        right,
                        right.layout.ty,
                    ),
                };
                let (result, oflo) = op(l, r);
                // Truncate to target type.
                // If that truncation loses any information, we have an overflow.
                let (result, lossy) = ScalarInt::truncate_from_uint(result, left.layout.size);
                let overflow = oflo || lossy;
                if overflow && let Some(intrinsic) = throw_ub_on_overflow {
                    throw_ub!(ArithOverflow { intrinsic });
                }
                let res = ImmTy::from_scalar_int(result, left.layout);
                if with_overflow {
                    let overflow = ImmTy::from_bool(overflow, *self.tcx);
                    ImmTy::from_pair(res, overflow, *self.tcx)
                } else {
                    res
                }
            }
        })
    }

    /// Computes the total size of this access, `count * elem_size`,
    /// checking for overflow beyond isize::MAX.
    pub fn compute_size_in_bytes(&self, elem_size: Size, count: u64) -> Option<Size> {
        // `checked_mul` applies `u64` limits independent of the target pointer size... but the
        // subsequent check for `max_size_of_val` means we also handle 32bit targets correctly.
        // (We cannot use `Size::checked_mul` as that enforces `obj_size_bound` as the limit, which
        // would be wrong here.)
        elem_size
            .bytes()
            .checked_mul(count)
            .map(Size::from_bytes)
            .filter(|&total| total <= self.max_size_of_val())
    }

    fn binary_ptr_op(
        &self,
        bin_op: mir::BinOp,
        left: &ImmTy<'tcx, M::Provenance>,
        right: &ImmTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
        use rustc_middle::mir::BinOp::*;

        match bin_op {
            // Pointer ops that are always supported.
            Offset => {
                let ptr = left.to_scalar().to_pointer(self)?;
                let pointee_ty = left.layout.ty.builtin_deref(true).unwrap();
                let pointee_layout = self.layout_of(pointee_ty)?;
                assert!(pointee_layout.abi.is_sized());

                // The size always fits in `i64` as it can be at most `isize::MAX`.
                let pointee_size = i64::try_from(pointee_layout.size.bytes()).unwrap();
                // This uses the same type as `right`, which can be `isize` or `usize`.
                // `pointee_size` is guaranteed to fit into both types.
                let pointee_size = ImmTy::from_int(pointee_size, right.layout);
                // Multiply element size and element count.
                let (val, overflowed) = self
                    .binary_op(mir::BinOp::MulWithOverflow, right, &pointee_size)?
                    .to_scalar_pair();
                // This must not overflow.
                if overflowed.to_bool()? {
                    throw_ub!(PointerArithOverflow)
                }

                let offset_bytes = val.to_target_isize(self)?;
                if !right.layout.abi.is_signed() && offset_bytes < 0 {
                    // We were supposed to do an unsigned offset but the result is negative -- this
                    // can only mean that the cast wrapped around.
                    throw_ub!(PointerArithOverflow)
                }
                let offset_ptr = self.ptr_offset_inbounds(ptr, offset_bytes)?;
                interp_ok(ImmTy::from_scalar(
                    Scalar::from_maybe_pointer(offset_ptr, self),
                    left.layout,
                ))
            }

            // Fall back to machine hook so Miri can support more pointer ops.
            _ => M::binary_ptr_op(self, bin_op, left, right),
        }
    }

    /// Returns the result of the specified operation.
    ///
    /// Whether this produces a scalar or a pair depends on the specific `bin_op`.
    pub fn binary_op(
        &self,
        bin_op: mir::BinOp,
        left: &ImmTy<'tcx, M::Provenance>,
        right: &ImmTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
        trace!(
            "Running binary op {:?}: {:?} ({}), {:?} ({})",
            bin_op, *left, left.layout.ty, *right, right.layout.ty
        );

        match left.layout.ty.kind() {
            ty::Char => {
                assert_eq!(left.layout.ty, right.layout.ty);
                let left = left.to_scalar();
                let right = right.to_scalar();
                interp_ok(self.binary_char_op(bin_op, left.to_char()?, right.to_char()?))
            }
            ty::Bool => {
                assert_eq!(left.layout.ty, right.layout.ty);
                let left = left.to_scalar();
                let right = right.to_scalar();
                interp_ok(self.binary_bool_op(bin_op, left.to_bool()?, right.to_bool()?))
            }
            ty::Float(fty) => {
                assert_eq!(left.layout.ty, right.layout.ty);
                let layout = left.layout;
                let left = left.to_scalar();
                let right = right.to_scalar();
                interp_ok(match fty {
                    FloatTy::F16 => {
                        self.binary_float_op(bin_op, layout, left.to_f16()?, right.to_f16()?)
                    }
                    FloatTy::F32 => {
                        self.binary_float_op(bin_op, layout, left.to_f32()?, right.to_f32()?)
                    }
                    FloatTy::F64 => {
                        self.binary_float_op(bin_op, layout, left.to_f64()?, right.to_f64()?)
                    }
                    FloatTy::F128 => {
                        self.binary_float_op(bin_op, layout, left.to_f128()?, right.to_f128()?)
                    }
                })
            }
            _ if left.layout.ty.is_integral() => {
                // the RHS type can be different, e.g. for shifts -- but it has to be integral, too
                assert!(
                    right.layout.ty.is_integral(),
                    "Unexpected types for BinOp: {} {:?} {}",
                    left.layout.ty,
                    bin_op,
                    right.layout.ty
                );

                self.binary_int_op(bin_op, left, right)
            }
            _ if left.layout.ty.is_any_ptr() => {
                // The RHS type must be a `pointer` *or an integer type* (for `Offset`).
                // (Even when both sides are pointers, their type might differ, see issue #91636)
                assert!(
                    right.layout.ty.is_any_ptr() || right.layout.ty.is_integral(),
                    "Unexpected types for BinOp: {} {:?} {}",
                    left.layout.ty,
                    bin_op,
                    right.layout.ty
                );

                self.binary_ptr_op(bin_op, left, right)
            }
            _ => span_bug!(
                self.cur_span(),
                "Invalid MIR: bad LHS type for binop: {}",
                left.layout.ty
            ),
        }
    }

    /// Returns the result of the specified operation, whether it overflowed, and
    /// the result type.
    pub fn unary_op(
        &self,
        un_op: mir::UnOp,
        val: &ImmTy<'tcx, M::Provenance>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
        use rustc_middle::mir::UnOp::*;

        let layout = val.layout;
        trace!("Running unary op {:?}: {:?} ({})", un_op, val, layout.ty);

        match layout.ty.kind() {
            ty::Bool => {
                let val = val.to_scalar();
                let val = val.to_bool()?;
                let res = match un_op {
                    Not => !val,
                    _ => span_bug!(self.cur_span(), "Invalid bool op {:?}", un_op),
                };
                interp_ok(ImmTy::from_bool(res, *self.tcx))
            }
            ty::Float(fty) => {
                let val = val.to_scalar();
                if un_op != Neg {
                    span_bug!(self.cur_span(), "Invalid float op {:?}", un_op);
                }

                // No NaN adjustment here, `-` is a bitwise operation!
                let res = match fty {
                    FloatTy::F16 => Scalar::from_f16(-val.to_f16()?),
                    FloatTy::F32 => Scalar::from_f32(-val.to_f32()?),
                    FloatTy::F64 => Scalar::from_f64(-val.to_f64()?),
                    FloatTy::F128 => Scalar::from_f128(-val.to_f128()?),
                };
                interp_ok(ImmTy::from_scalar(res, layout))
            }
            ty::Int(..) => {
                let val = val.to_scalar().to_int(layout.size)?;
                let res = match un_op {
                    Not => !val,
                    Neg => val.wrapping_neg(),
                    _ => span_bug!(self.cur_span(), "Invalid integer op {:?}", un_op),
                };
                let res = ScalarInt::truncate_from_int(res, layout.size).0;
                interp_ok(ImmTy::from_scalar(res.into(), layout))
            }
            ty::Uint(..) => {
                let val = val.to_scalar().to_uint(layout.size)?;
                let res = match un_op {
                    Not => !val,
                    _ => span_bug!(self.cur_span(), "Invalid unsigned integer op {:?}", un_op),
                };
                let res = ScalarInt::truncate_from_uint(res, layout.size).0;
                interp_ok(ImmTy::from_scalar(res.into(), layout))
            }
            ty::RawPtr(..) | ty::Ref(..) => {
                assert_eq!(un_op, PtrMetadata);
                let (_, meta) = val.to_scalar_and_meta();
                interp_ok(match meta {
                    MemPlaceMeta::Meta(scalar) => {
                        let ty = un_op.ty(*self.tcx, val.layout.ty);
                        let layout = self.layout_of(ty)?;
                        ImmTy::from_scalar(scalar, layout)
                    }
                    MemPlaceMeta::None => {
                        let unit_layout = self.layout_of(self.tcx.types.unit)?;
                        ImmTy::uninit(unit_layout)
                    }
                })
            }
            _ => {
                bug!("Unexpected unary op argument {val:?}")
            }
        }
    }

    pub fn nullary_op(
        &self,
        null_op: NullOp<'tcx>,
        arg_ty: Ty<'tcx>,
    ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
        use rustc_middle::mir::NullOp::*;

        let layout = self.layout_of(arg_ty)?;
        let usize_layout = || self.layout_of(self.tcx.types.usize).unwrap();

        interp_ok(match null_op {
            SizeOf => {
                if !layout.abi.is_sized() {
                    span_bug!(self.cur_span(), "unsized type for `NullaryOp::SizeOf`");
                }
                let val = layout.size.bytes();
                ImmTy::from_uint(val, usize_layout())
            }
            AlignOf => {
                if !layout.abi.is_sized() {
                    span_bug!(self.cur_span(), "unsized type for `NullaryOp::AlignOf`");
                }
                let val = layout.align.abi.bytes();
                ImmTy::from_uint(val, usize_layout())
            }
            OffsetOf(fields) => {
                let val =
                    self.tcx.offset_of_subfield(self.param_env, layout, fields.iter()).bytes();
                ImmTy::from_uint(val, usize_layout())
            }
            UbChecks => ImmTy::from_bool(M::ub_checks(self)?, *self.tcx),
        })
    }
}