rustc_hir_analysis/hir_ty_lowering/
errors.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_data_structures::sorted_map::SortedMap;
use rustc_data_structures::unord::UnordMap;
use rustc_errors::codes::*;
use rustc_errors::{
    Applicability, Diag, ErrorGuaranteed, MultiSpan, pluralize, struct_span_code_err,
};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_middle::bug;
use rustc_middle::query::Key;
use rustc_middle::ty::print::{PrintPolyTraitRefExt as _, PrintTraitRefExt as _};
use rustc_middle::ty::{
    self, AdtDef, Binder, GenericParamDefKind, TraitRef, Ty, TyCtxt, TypeVisitableExt,
    suggest_constraining_type_param,
};
use rustc_session::parse::feature_err;
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::symbol::{Ident, kw, sym};
use rustc_span::{BytePos, DUMMY_SP, Span, Symbol};
use rustc_trait_selection::error_reporting::traits::report_dyn_incompatibility;
use rustc_trait_selection::traits::{
    FulfillmentError, TraitAliasExpansionInfo, dyn_compatibility_violations_for_assoc_item,
};

use crate::errors::{
    self, AssocItemConstraintsNotAllowedHere, ManualImplementation, MissingTypeParams,
    ParenthesizedFnTraitExpansion, TraitObjectDeclaredWithNoTraits,
};
use crate::fluent_generated as fluent;
use crate::hir_ty_lowering::{AssocItemQSelf, HirTyLowerer};

impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
    /// On missing type parameters, emit an E0393 error and provide a structured suggestion using
    /// the type parameter's name as a placeholder.
    pub(crate) fn complain_about_missing_type_params(
        &self,
        missing_type_params: Vec<Symbol>,
        def_id: DefId,
        span: Span,
        empty_generic_args: bool,
    ) {
        if missing_type_params.is_empty() {
            return;
        }

        self.dcx().emit_err(MissingTypeParams {
            span,
            def_span: self.tcx().def_span(def_id),
            span_snippet: self.tcx().sess.source_map().span_to_snippet(span).ok(),
            missing_type_params,
            empty_generic_args,
        });
    }

    /// When the code is using the `Fn` traits directly, instead of the `Fn(A) -> B` syntax, emit
    /// an error and attempt to build a reasonable structured suggestion.
    pub(crate) fn complain_about_internal_fn_trait(
        &self,
        span: Span,
        trait_def_id: DefId,
        trait_segment: &'_ hir::PathSegment<'_>,
        is_impl: bool,
    ) {
        if self.tcx().features().unboxed_closures {
            return;
        }

        let trait_def = self.tcx().trait_def(trait_def_id);
        if !trait_def.paren_sugar {
            if trait_segment.args().parenthesized == hir::GenericArgsParentheses::ParenSugar {
                // For now, require that parenthetical notation be used only with `Fn()` etc.
                feature_err(
                    &self.tcx().sess,
                    sym::unboxed_closures,
                    span,
                    "parenthetical notation is only stable when used with `Fn`-family traits",
                )
                .emit();
            }

            return;
        }

        let sess = self.tcx().sess;

        if trait_segment.args().parenthesized != hir::GenericArgsParentheses::ParenSugar {
            // For now, require that parenthetical notation be used only with `Fn()` etc.
            let mut err = feature_err(
                sess,
                sym::unboxed_closures,
                span,
                "the precise format of `Fn`-family traits' type parameters is subject to change",
            );
            // Do not suggest the other syntax if we are in trait impl:
            // the desugaring would contain an associated type constraint.
            if !is_impl {
                err.span_suggestion(
                    span,
                    "use parenthetical notation instead",
                    fn_trait_to_string(self.tcx(), trait_segment, true),
                    Applicability::MaybeIncorrect,
                );
            }
            err.emit();
        }

        if is_impl {
            let trait_name = self.tcx().def_path_str(trait_def_id);
            self.dcx().emit_err(ManualImplementation { span, trait_name });
        }
    }

    pub(super) fn complain_about_assoc_item_not_found<I>(
        &self,
        all_candidates: impl Fn() -> I,
        qself: AssocItemQSelf,
        assoc_kind: ty::AssocKind,
        assoc_name: Ident,
        span: Span,
        constraint: Option<&hir::AssocItemConstraint<'tcx>>,
    ) -> ErrorGuaranteed
    where
        I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
    {
        let tcx = self.tcx();

        // First and foremost, provide a more user-friendly & “intuitive” error on kind mismatches.
        if let Some(assoc_item) = all_candidates().find_map(|r| {
            tcx.associated_items(r.def_id())
                .filter_by_name_unhygienic(assoc_name.name)
                .find(|item| tcx.hygienic_eq(assoc_name, item.ident(tcx), r.def_id()))
        }) {
            return self.complain_about_assoc_kind_mismatch(
                assoc_item, assoc_kind, assoc_name, span, constraint,
            );
        }

        let assoc_kind_str = assoc_kind_str(assoc_kind);
        let qself_str = qself.to_string(tcx);

        // The fallback span is needed because `assoc_name` might be an `Fn()`'s `Output` without a
        // valid span, so we point at the whole path segment instead.
        let is_dummy = assoc_name.span == DUMMY_SP;

        let mut err = errors::AssocItemNotFound {
            span: if is_dummy { span } else { assoc_name.span },
            assoc_name,
            assoc_kind: assoc_kind_str,
            qself: &qself_str,
            label: None,
            sugg: None,
        };

        if is_dummy {
            err.label = Some(errors::AssocItemNotFoundLabel::NotFound { span });
            return self.dcx().emit_err(err);
        }

        let all_candidate_names: Vec<_> = all_candidates()
            .flat_map(|r| tcx.associated_items(r.def_id()).in_definition_order())
            .filter_map(|item| {
                (!item.is_impl_trait_in_trait() && item.kind == assoc_kind).then_some(item.name)
            })
            .collect();

        if let Some(suggested_name) =
            find_best_match_for_name(&all_candidate_names, assoc_name.name, None)
        {
            err.sugg = Some(errors::AssocItemNotFoundSugg::Similar {
                span: assoc_name.span,
                assoc_kind: assoc_kind_str,
                suggested_name,
            });
            return self.dcx().emit_err(err);
        }

        // If we didn't find a good item in the supertraits (or couldn't get
        // the supertraits), like in ItemCtxt, then look more generally from
        // all visible traits. If there's one clear winner, just suggest that.

        let visible_traits: Vec<_> = tcx
            .all_traits()
            .filter(|trait_def_id| {
                let viz = tcx.visibility(*trait_def_id);
                let def_id = self.item_def_id();
                viz.is_accessible_from(def_id, tcx)
            })
            .collect();

        let wider_candidate_names: Vec<_> = visible_traits
            .iter()
            .flat_map(|trait_def_id| tcx.associated_items(*trait_def_id).in_definition_order())
            .filter_map(|item| {
                (!item.is_impl_trait_in_trait() && item.kind == assoc_kind).then_some(item.name)
            })
            .collect();

        if let Some(suggested_name) =
            find_best_match_for_name(&wider_candidate_names, assoc_name.name, None)
        {
            if let [best_trait] = visible_traits
                .iter()
                .copied()
                .filter(|trait_def_id| {
                    tcx.associated_items(trait_def_id)
                        .filter_by_name_unhygienic(suggested_name)
                        .any(|item| item.kind == assoc_kind)
                })
                .collect::<Vec<_>>()[..]
            {
                let trait_name = tcx.def_path_str(best_trait);
                err.label = Some(errors::AssocItemNotFoundLabel::FoundInOtherTrait {
                    span: assoc_name.span,
                    assoc_kind: assoc_kind_str,
                    trait_name: &trait_name,
                    suggested_name,
                    identically_named: suggested_name == assoc_name.name,
                });
                if let AssocItemQSelf::TyParam(ty_param_def_id, ty_param_span) = qself
                    // Not using `self.item_def_id()` here as that would yield the opaque type itself if we're
                    // inside an opaque type while we're interested in the overarching type alias (TAIT).
                    // FIXME: However, for trait aliases, this incorrectly returns the enclosing module...
                    && let item_def_id =
                        tcx.hir().get_parent_item(tcx.local_def_id_to_hir_id(ty_param_def_id))
                    // FIXME: ...which obviously won't have any generics.
                    && let Some(generics) = tcx.hir().get_generics(item_def_id.def_id)
                {
                    // FIXME: Suggest adding supertrait bounds if we have a `Self` type param.
                    // FIXME(trait_alias): Suggest adding `Self: Trait` to
                    // `trait Alias = where Self::Proj:;` with `trait Trait { type Proj; }`.
                    if generics
                        .bounds_for_param(ty_param_def_id)
                        .flat_map(|pred| pred.bounds.iter())
                        .any(|b| match b {
                            hir::GenericBound::Trait(t, ..) => {
                                t.trait_ref.trait_def_id() == Some(best_trait)
                            }
                            _ => false,
                        })
                    {
                        // The type param already has a bound for `trait_name`, we just need to
                        // change the associated item.
                        err.sugg = Some(errors::AssocItemNotFoundSugg::SimilarInOtherTrait {
                            span: assoc_name.span,
                            assoc_kind: assoc_kind_str,
                            suggested_name,
                        });
                        return self.dcx().emit_err(err);
                    }

                    let trait_args = &ty::GenericArgs::identity_for_item(tcx, best_trait)[1..];
                    let mut trait_ref = trait_name.clone();
                    let applicability = if let [arg, args @ ..] = trait_args {
                        use std::fmt::Write;
                        write!(trait_ref, "</* {arg}").unwrap();
                        args.iter().try_for_each(|arg| write!(trait_ref, ", {arg}")).unwrap();
                        trait_ref += " */>";
                        Applicability::HasPlaceholders
                    } else {
                        Applicability::MaybeIncorrect
                    };

                    let identically_named = suggested_name == assoc_name.name;

                    if let DefKind::TyAlias = tcx.def_kind(item_def_id)
                        && !tcx.type_alias_is_lazy(item_def_id)
                    {
                        err.sugg = Some(errors::AssocItemNotFoundSugg::SimilarInOtherTraitQPath {
                            lo: ty_param_span.shrink_to_lo(),
                            mi: ty_param_span.shrink_to_hi(),
                            hi: (!identically_named).then_some(assoc_name.span),
                            trait_ref,
                            identically_named,
                            suggested_name,
                            applicability,
                        });
                    } else {
                        let mut err = self.dcx().create_err(err);
                        if suggest_constraining_type_param(
                            tcx, generics, &mut err, &qself_str, &trait_ref, None, None,
                        ) && !identically_named
                        {
                            // We suggested constraining a type parameter, but the associated item on it
                            // was also not an exact match, so we also suggest changing it.
                            err.span_suggestion_verbose(
                                assoc_name.span,
                                fluent::hir_analysis_assoc_item_not_found_similar_in_other_trait_with_bound_sugg,
                                suggested_name,
                                Applicability::MaybeIncorrect,
                            );
                        }
                        return err.emit();
                    }
                }
                return self.dcx().emit_err(err);
            }
        }

        // If we still couldn't find any associated item, and only one associated item exists,
        // suggest using it.
        if let [candidate_name] = all_candidate_names.as_slice() {
            err.sugg = Some(errors::AssocItemNotFoundSugg::Other {
                span: assoc_name.span,
                qself: &qself_str,
                assoc_kind: assoc_kind_str,
                suggested_name: *candidate_name,
            });
        } else {
            err.label = Some(errors::AssocItemNotFoundLabel::NotFound { span: assoc_name.span });
        }

        self.dcx().emit_err(err)
    }

    fn complain_about_assoc_kind_mismatch(
        &self,
        assoc_item: &ty::AssocItem,
        assoc_kind: ty::AssocKind,
        ident: Ident,
        span: Span,
        constraint: Option<&hir::AssocItemConstraint<'tcx>>,
    ) -> ErrorGuaranteed {
        let tcx = self.tcx();

        let bound_on_assoc_const_label = if let ty::AssocKind::Const = assoc_item.kind
            && let Some(constraint) = constraint
            && let hir::AssocItemConstraintKind::Bound { .. } = constraint.kind
        {
            let lo = if constraint.gen_args.span_ext.is_dummy() {
                ident.span
            } else {
                constraint.gen_args.span_ext
            };
            Some(lo.between(span.shrink_to_hi()))
        } else {
            None
        };

        // FIXME(associated_const_equality): This has quite a few false positives and negatives.
        let wrap_in_braces_sugg = if let Some(constraint) = constraint
            && let Some(hir_ty) = constraint.ty()
            && let ty = self.lower_ty(hir_ty)
            && (ty.is_enum() || ty.references_error())
            && tcx.features().associated_const_equality
        {
            Some(errors::AssocKindMismatchWrapInBracesSugg {
                lo: hir_ty.span.shrink_to_lo(),
                hi: hir_ty.span.shrink_to_hi(),
            })
        } else {
            None
        };

        // For equality constraints, we want to blame the term (RHS) instead of the item (LHS) since
        // one can argue that that's more “intuitive” to the user.
        let (span, expected_because_label, expected, got) = if let Some(constraint) = constraint
            && let hir::AssocItemConstraintKind::Equality { term } = constraint.kind
        {
            let span = match term {
                hir::Term::Ty(ty) => ty.span,
                hir::Term::Const(ct) => ct.span(),
            };
            (span, Some(ident.span), assoc_item.kind, assoc_kind)
        } else {
            (ident.span, None, assoc_kind, assoc_item.kind)
        };

        self.dcx().emit_err(errors::AssocKindMismatch {
            span,
            expected: assoc_kind_str(expected),
            got: assoc_kind_str(got),
            expected_because_label,
            assoc_kind: assoc_kind_str(assoc_item.kind),
            def_span: tcx.def_span(assoc_item.def_id),
            bound_on_assoc_const_label,
            wrap_in_braces_sugg,
        })
    }

    pub(super) fn report_ambiguous_assoc_ty(
        &self,
        span: Span,
        types: &[String],
        traits: &[String],
        name: Symbol,
    ) -> ErrorGuaranteed {
        let mut err = struct_span_code_err!(self.dcx(), span, E0223, "ambiguous associated type");
        if self
            .tcx()
            .resolutions(())
            .confused_type_with_std_module
            .keys()
            .any(|full_span| full_span.contains(span))
        {
            err.span_suggestion_verbose(
                span.shrink_to_lo(),
                "you are looking for the module in `std`, not the primitive type",
                "std::",
                Applicability::MachineApplicable,
            );
        } else {
            let mut types = types.to_vec();
            types.sort();
            let mut traits = traits.to_vec();
            traits.sort();
            match (&types[..], &traits[..]) {
                ([], []) => {
                    err.span_suggestion_verbose(
                        span,
                        format!(
                            "if there were a type named `Type` that implements a trait named \
                             `Trait` with associated type `{name}`, you could use the \
                             fully-qualified path",
                        ),
                        format!("<Type as Trait>::{name}"),
                        Applicability::HasPlaceholders,
                    );
                }
                ([], [trait_str]) => {
                    err.span_suggestion_verbose(
                        span,
                        format!(
                            "if there were a type named `Example` that implemented `{trait_str}`, \
                             you could use the fully-qualified path",
                        ),
                        format!("<Example as {trait_str}>::{name}"),
                        Applicability::HasPlaceholders,
                    );
                }
                ([], traits) => {
                    err.span_suggestions(
                        span,
                        format!(
                            "if there were a type named `Example` that implemented one of the \
                             traits with associated type `{name}`, you could use the \
                             fully-qualified path",
                        ),
                        traits.iter().map(|trait_str| format!("<Example as {trait_str}>::{name}")),
                        Applicability::HasPlaceholders,
                    );
                }
                ([type_str], []) => {
                    err.span_suggestion_verbose(
                        span,
                        format!(
                            "if there were a trait named `Example` with associated type `{name}` \
                             implemented for `{type_str}`, you could use the fully-qualified path",
                        ),
                        format!("<{type_str} as Example>::{name}"),
                        Applicability::HasPlaceholders,
                    );
                }
                (types, []) => {
                    err.span_suggestions(
                        span,
                        format!(
                            "if there were a trait named `Example` with associated type `{name}` \
                             implemented for one of the types, you could use the fully-qualified \
                             path",
                        ),
                        types
                            .into_iter()
                            .map(|type_str| format!("<{type_str} as Example>::{name}")),
                        Applicability::HasPlaceholders,
                    );
                }
                (types, traits) => {
                    let mut suggestions = vec![];
                    for type_str in types {
                        for trait_str in traits {
                            suggestions.push(format!("<{type_str} as {trait_str}>::{name}"));
                        }
                    }
                    err.span_suggestions(
                        span,
                        "use fully-qualified syntax",
                        suggestions,
                        Applicability::MachineApplicable,
                    );
                }
            }
        }
        err.emit()
    }

    pub(crate) fn complain_about_ambiguous_inherent_assoc_ty(
        &self,
        name: Ident,
        candidates: Vec<DefId>,
        span: Span,
    ) -> ErrorGuaranteed {
        let mut err = struct_span_code_err!(
            self.dcx(),
            name.span,
            E0034,
            "multiple applicable items in scope"
        );
        err.span_label(name.span, format!("multiple `{name}` found"));
        self.note_ambiguous_inherent_assoc_ty(&mut err, candidates, span);
        err.emit()
    }

    // FIXME(fmease): Heavily adapted from `rustc_hir_typeck::method::suggest`. Deduplicate.
    fn note_ambiguous_inherent_assoc_ty(
        &self,
        err: &mut Diag<'_>,
        candidates: Vec<DefId>,
        span: Span,
    ) {
        let tcx = self.tcx();

        // Dynamic limit to avoid hiding just one candidate, which is silly.
        let limit = if candidates.len() == 5 { 5 } else { 4 };

        for (index, &item) in candidates.iter().take(limit).enumerate() {
            let impl_ = tcx.impl_of_method(item).unwrap();

            let note_span = if item.is_local() {
                Some(tcx.def_span(item))
            } else if impl_.is_local() {
                Some(tcx.def_span(impl_))
            } else {
                None
            };

            let title = if candidates.len() > 1 {
                format!("candidate #{}", index + 1)
            } else {
                "the candidate".into()
            };

            let impl_ty = tcx.at(span).type_of(impl_).instantiate_identity();
            let note = format!("{title} is defined in an impl for the type `{impl_ty}`");

            if let Some(span) = note_span {
                err.span_note(span, note);
            } else {
                err.note(note);
            }
        }
        if candidates.len() > limit {
            err.note(format!("and {} others", candidates.len() - limit));
        }
    }

    // FIXME(inherent_associated_types): Find similarly named associated types and suggest them.
    pub(crate) fn complain_about_inherent_assoc_ty_not_found(
        &self,
        name: Ident,
        self_ty: Ty<'tcx>,
        candidates: Vec<(DefId, (DefId, DefId))>,
        fulfillment_errors: Vec<FulfillmentError<'tcx>>,
        span: Span,
    ) -> ErrorGuaranteed {
        // FIXME(fmease): This was copied in parts from an old version of `rustc_hir_typeck::method::suggest`.
        // Either
        // * update this code by applying changes similar to #106702 or by taking a
        //   Vec<(DefId, (DefId, DefId), Option<Vec<FulfillmentError<'tcx>>>)> or
        // * deduplicate this code across the two crates.

        let tcx = self.tcx();

        let adt_did = self_ty.ty_adt_def().map(|def| def.did());
        let add_def_label = |err: &mut Diag<'_>| {
            if let Some(did) = adt_did {
                err.span_label(
                    tcx.def_span(did),
                    format!("associated item `{name}` not found for this {}", tcx.def_descr(did)),
                );
            }
        };

        if fulfillment_errors.is_empty() {
            // FIXME(fmease): Copied from `rustc_hir_typeck::method::probe`. Deduplicate.

            let limit = if candidates.len() == 5 { 5 } else { 4 };
            let type_candidates = candidates
                .iter()
                .take(limit)
                .map(|&(impl_, _)| {
                    format!("- `{}`", tcx.at(span).type_of(impl_).instantiate_identity())
                })
                .collect::<Vec<_>>()
                .join("\n");
            let additional_types = if candidates.len() > limit {
                format!("\nand {} more types", candidates.len() - limit)
            } else {
                String::new()
            };

            let mut err = struct_span_code_err!(
                self.dcx(),
                name.span,
                E0220,
                "associated type `{name}` not found for `{self_ty}` in the current scope"
            );
            err.span_label(name.span, format!("associated item not found in `{self_ty}`"));
            err.note(format!(
                "the associated type was found for\n{type_candidates}{additional_types}",
            ));
            add_def_label(&mut err);
            return err.emit();
        }

        let mut bound_spans: SortedMap<Span, Vec<String>> = Default::default();

        let mut bound_span_label = |self_ty: Ty<'_>, obligation: &str, quiet: &str| {
            let msg = format!("`{}`", if obligation.len() > 50 { quiet } else { obligation });
            match self_ty.kind() {
                // Point at the type that couldn't satisfy the bound.
                ty::Adt(def, _) => {
                    bound_spans.get_mut_or_insert_default(tcx.def_span(def.did())).push(msg)
                }
                // Point at the trait object that couldn't satisfy the bound.
                ty::Dynamic(preds, _, _) => {
                    for pred in preds.iter() {
                        match pred.skip_binder() {
                            ty::ExistentialPredicate::Trait(tr) => {
                                bound_spans
                                    .get_mut_or_insert_default(tcx.def_span(tr.def_id))
                                    .push(msg.clone());
                            }
                            ty::ExistentialPredicate::Projection(_)
                            | ty::ExistentialPredicate::AutoTrait(_) => {}
                        }
                    }
                }
                // Point at the closure that couldn't satisfy the bound.
                ty::Closure(def_id, _) => {
                    bound_spans
                        .get_mut_or_insert_default(tcx.def_span(*def_id))
                        .push(format!("`{quiet}`"));
                }
                _ => {}
            }
        };

        let format_pred = |pred: ty::Predicate<'tcx>| {
            let bound_predicate = pred.kind();
            match bound_predicate.skip_binder() {
                ty::PredicateKind::Clause(ty::ClauseKind::Projection(pred)) => {
                    // `<Foo as Iterator>::Item = String`.
                    let projection_term = pred.projection_term;
                    let quiet_projection_term =
                        projection_term.with_self_ty(tcx, Ty::new_var(tcx, ty::TyVid::ZERO));

                    let term = pred.term;
                    let obligation = format!("{projection_term} = {term}");
                    let quiet = format!("{quiet_projection_term} = {term}");

                    bound_span_label(projection_term.self_ty(), &obligation, &quiet);
                    Some((obligation, projection_term.self_ty()))
                }
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(poly_trait_ref)) => {
                    let p = poly_trait_ref.trait_ref;
                    let self_ty = p.self_ty();
                    let path = p.print_only_trait_path();
                    let obligation = format!("{self_ty}: {path}");
                    let quiet = format!("_: {path}");
                    bound_span_label(self_ty, &obligation, &quiet);
                    Some((obligation, self_ty))
                }
                _ => None,
            }
        };

        // FIXME(fmease): `rustc_hir_typeck::method::suggest` uses a `skip_list` to filter out some bounds.
        // I would do the same here if it didn't mean more code duplication.
        let mut bounds: Vec<_> = fulfillment_errors
            .into_iter()
            .map(|error| error.root_obligation.predicate)
            .filter_map(format_pred)
            .map(|(p, _)| format!("`{p}`"))
            .collect();
        bounds.sort();
        bounds.dedup();

        let mut err = self.dcx().struct_span_err(
            name.span,
            format!("the associated type `{name}` exists for `{self_ty}`, but its trait bounds were not satisfied")
        );
        if !bounds.is_empty() {
            err.note(format!(
                "the following trait bounds were not satisfied:\n{}",
                bounds.join("\n")
            ));
        }
        err.span_label(
            name.span,
            format!("associated type cannot be referenced on `{self_ty}` due to unsatisfied trait bounds")
        );

        for (span, mut bounds) in bound_spans {
            if !tcx.sess.source_map().is_span_accessible(span) {
                continue;
            }
            bounds.sort();
            bounds.dedup();
            let msg = match &bounds[..] {
                [bound] => format!("doesn't satisfy {bound}"),
                bounds if bounds.len() > 4 => format!("doesn't satisfy {} bounds", bounds.len()),
                [bounds @ .., last] => format!("doesn't satisfy {} or {last}", bounds.join(", ")),
                [] => unreachable!(),
            };
            err.span_label(span, msg);
        }
        add_def_label(&mut err);
        err.emit()
    }

    /// When there are any missing associated types, emit an E0191 error and attempt to supply a
    /// reasonable suggestion on how to write it. For the case of multiple associated types in the
    /// same trait bound have the same name (as they come from different supertraits), we instead
    /// emit a generic note suggesting using a `where` clause to constraint instead.
    pub(crate) fn complain_about_missing_assoc_tys(
        &self,
        associated_types: FxIndexMap<Span, FxIndexSet<DefId>>,
        potential_assoc_types: Vec<usize>,
        trait_bounds: &[hir::PolyTraitRef<'_>],
    ) {
        if associated_types.values().all(|v| v.is_empty()) {
            return;
        }

        let tcx = self.tcx();
        // FIXME: Marked `mut` so that we can replace the spans further below with a more
        // appropriate one, but this should be handled earlier in the span assignment.
        let mut associated_types: FxIndexMap<Span, Vec<_>> = associated_types
            .into_iter()
            .map(|(span, def_ids)| {
                (span, def_ids.into_iter().map(|did| tcx.associated_item(did)).collect())
            })
            .collect();
        let mut names: FxIndexMap<String, Vec<Symbol>> = Default::default();
        let mut names_len = 0;

        // Account for things like `dyn Foo + 'a`, like in tests `issue-22434.rs` and
        // `issue-22560.rs`.
        let mut trait_bound_spans: Vec<Span> = vec![];
        let mut dyn_compatibility_violations = false;
        for (span, items) in &associated_types {
            if !items.is_empty() {
                trait_bound_spans.push(*span);
            }
            for assoc_item in items {
                let trait_def_id = assoc_item.container_id(tcx);
                names.entry(tcx.def_path_str(trait_def_id)).or_default().push(assoc_item.name);
                names_len += 1;

                let violations =
                    dyn_compatibility_violations_for_assoc_item(tcx, trait_def_id, *assoc_item);
                if !violations.is_empty() {
                    report_dyn_incompatibility(tcx, *span, None, trait_def_id, &violations).emit();
                    dyn_compatibility_violations = true;
                }
            }
        }
        if dyn_compatibility_violations {
            return;
        }

        // related to issue #91997, turbofishes added only when in an expr or pat
        let mut in_expr_or_pat = false;
        if let ([], [bound]) = (&potential_assoc_types[..], &trait_bounds) {
            let grandparent = tcx.parent_hir_node(tcx.parent_hir_id(bound.trait_ref.hir_ref_id));
            in_expr_or_pat = match grandparent {
                hir::Node::Expr(_) | hir::Node::Pat(_) => true,
                _ => false,
            };
            match bound.trait_ref.path.segments {
                // FIXME: `trait_ref.path.span` can point to a full path with multiple
                // segments, even though `trait_ref.path.segments` is of length `1`. Work
                // around that bug here, even though it should be fixed elsewhere.
                // This would otherwise cause an invalid suggestion. For an example, look at
                // `tests/ui/issues/issue-28344.rs` where instead of the following:
                //
                //   error[E0191]: the value of the associated type `Output`
                //                 (from trait `std::ops::BitXor`) must be specified
                //   --> $DIR/issue-28344.rs:4:17
                //    |
                // LL |     let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
                //    |                 ^^^^^^ help: specify the associated type:
                //    |                              `BitXor<Output = Type>`
                //
                // we would output:
                //
                //   error[E0191]: the value of the associated type `Output`
                //                 (from trait `std::ops::BitXor`) must be specified
                //   --> $DIR/issue-28344.rs:4:17
                //    |
                // LL |     let x: u8 = BitXor::bitor(0 as u8, 0 as u8);
                //    |                 ^^^^^^^^^^^^^ help: specify the associated type:
                //    |                                     `BitXor::bitor<Output = Type>`
                [segment] if segment.args.is_none() => {
                    trait_bound_spans = vec![segment.ident.span];
                    associated_types = associated_types
                        .into_values()
                        .map(|items| (segment.ident.span, items))
                        .collect();
                }
                _ => {}
            }
        }

        // We get all the associated items that _are_ set,
        // so that we can check if any of their names match one of the ones we are missing.
        // This would mean that they are shadowing the associated type we are missing,
        // and we can then use their span to indicate this to the user.
        let bound_names = trait_bounds
            .iter()
            .filter_map(|poly_trait_ref| {
                let path = poly_trait_ref.trait_ref.path.segments.last()?;
                let args = path.args?;

                Some(args.constraints.iter().filter_map(|constraint| {
                    let ident = constraint.ident;
                    let trait_def = path.res.def_id();
                    let assoc_item = tcx.associated_items(trait_def).find_by_name_and_kind(
                        tcx,
                        ident,
                        ty::AssocKind::Type,
                        trait_def,
                    );

                    Some((ident.name, assoc_item?))
                }))
            })
            .flatten()
            .collect::<UnordMap<Symbol, &ty::AssocItem>>();

        let mut names = names
            .into_iter()
            .map(|(trait_, mut assocs)| {
                assocs.sort();
                format!("{} in `{trait_}`", match &assocs[..] {
                    [] => String::new(),
                    [only] => format!("`{only}`"),
                    [assocs @ .., last] => format!(
                        "{} and `{last}`",
                        assocs.iter().map(|a| format!("`{a}`")).collect::<Vec<_>>().join(", ")
                    ),
                })
            })
            .collect::<Vec<String>>();
        names.sort();
        let names = names.join(", ");

        trait_bound_spans.sort();
        let mut err = struct_span_code_err!(
            self.dcx(),
            trait_bound_spans,
            E0191,
            "the value of the associated type{} {} must be specified",
            pluralize!(names_len),
            names,
        );
        let mut suggestions = vec![];
        let mut types_count = 0;
        let mut where_constraints = vec![];
        let mut already_has_generics_args_suggestion = false;
        for (span, assoc_items) in &associated_types {
            let mut names: UnordMap<_, usize> = Default::default();
            for item in assoc_items {
                types_count += 1;
                *names.entry(item.name).or_insert(0) += 1;
            }
            let mut dupes = false;
            let mut shadows = false;
            for item in assoc_items {
                let prefix = if names[&item.name] > 1 {
                    let trait_def_id = item.container_id(tcx);
                    dupes = true;
                    format!("{}::", tcx.def_path_str(trait_def_id))
                } else if bound_names.get(&item.name).is_some_and(|x| x != &item) {
                    let trait_def_id = item.container_id(tcx);
                    shadows = true;
                    format!("{}::", tcx.def_path_str(trait_def_id))
                } else {
                    String::new()
                };

                let mut is_shadowed = false;

                if let Some(assoc_item) = bound_names.get(&item.name)
                    && assoc_item != &item
                {
                    is_shadowed = true;

                    let rename_message =
                        if assoc_item.def_id.is_local() { ", consider renaming it" } else { "" };
                    err.span_label(
                        tcx.def_span(assoc_item.def_id),
                        format!("`{}{}` shadowed here{}", prefix, item.name, rename_message),
                    );
                }

                let rename_message = if is_shadowed { ", consider renaming it" } else { "" };

                if let Some(sp) = tcx.hir().span_if_local(item.def_id) {
                    err.span_label(
                        sp,
                        format!("`{}{}` defined here{}", prefix, item.name, rename_message),
                    );
                }
            }
            if potential_assoc_types.len() == assoc_items.len() {
                // When the amount of missing associated types equals the number of
                // extra type arguments present. A suggesting to replace the generic args with
                // associated types is already emitted.
                already_has_generics_args_suggestion = true;
            } else if let (Ok(snippet), false, false) =
                (tcx.sess.source_map().span_to_snippet(*span), dupes, shadows)
            {
                let types: Vec<_> =
                    assoc_items.iter().map(|item| format!("{} = Type", item.name)).collect();
                let code = if snippet.ends_with('>') {
                    // The user wrote `Trait<'a>` or similar and we don't have a type we can
                    // suggest, but at least we can clue them to the correct syntax
                    // `Trait<'a, Item = Type>` while accounting for the `<'a>` in the
                    // suggestion.
                    format!("{}, {}>", &snippet[..snippet.len() - 1], types.join(", "))
                } else if in_expr_or_pat {
                    // The user wrote `Iterator`, so we don't have a type we can suggest, but at
                    // least we can clue them to the correct syntax `Iterator::<Item = Type>`.
                    format!("{}::<{}>", snippet, types.join(", "))
                } else {
                    // The user wrote `Iterator`, so we don't have a type we can suggest, but at
                    // least we can clue them to the correct syntax `Iterator<Item = Type>`.
                    format!("{}<{}>", snippet, types.join(", "))
                };
                suggestions.push((*span, code));
            } else if dupes {
                where_constraints.push(*span);
            }
        }
        let where_msg = "consider introducing a new type parameter, adding `where` constraints \
                         using the fully-qualified path to the associated types";
        if !where_constraints.is_empty() && suggestions.is_empty() {
            // If there are duplicates associated type names and a single trait bound do not
            // use structured suggestion, it means that there are multiple supertraits with
            // the same associated type name.
            err.help(where_msg);
        }
        if suggestions.len() != 1 || already_has_generics_args_suggestion {
            // We don't need this label if there's an inline suggestion, show otherwise.
            for (span, assoc_items) in &associated_types {
                let mut names: FxIndexMap<_, usize> = FxIndexMap::default();
                for item in assoc_items {
                    types_count += 1;
                    *names.entry(item.name).or_insert(0) += 1;
                }
                let mut label = vec![];
                for item in assoc_items {
                    let postfix = if names[&item.name] > 1 {
                        let trait_def_id = item.container_id(tcx);
                        format!(" (from trait `{}`)", tcx.def_path_str(trait_def_id))
                    } else {
                        String::new()
                    };
                    label.push(format!("`{}`{}", item.name, postfix));
                }
                if !label.is_empty() {
                    err.span_label(
                        *span,
                        format!(
                            "associated type{} {} must be specified",
                            pluralize!(label.len()),
                            label.join(", "),
                        ),
                    );
                }
            }
        }
        suggestions.sort_by_key(|&(span, _)| span);
        // There are cases where one bound points to a span within another bound's span, like when
        // you have code like the following (#115019), so we skip providing a suggestion in those
        // cases to avoid having a malformed suggestion.
        //
        // pub struct Flatten<I> {
        //     inner: <IntoIterator<Item: IntoIterator<Item: >>::IntoIterator as Item>::core,
        //             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
        //             |                  ^^^^^^^^^^^^^^^^^^^^^
        //             |                  |
        //             |                  associated types `Item`, `IntoIter` must be specified
        //             associated types `Item`, `IntoIter` must be specified
        // }
        let overlaps = suggestions.windows(2).any(|pair| pair[0].0.overlaps(pair[1].0));
        if !suggestions.is_empty() && !overlaps {
            err.multipart_suggestion(
                format!("specify the associated type{}", pluralize!(types_count)),
                suggestions,
                Applicability::HasPlaceholders,
            );
            if !where_constraints.is_empty() {
                err.span_help(where_constraints, where_msg);
            }
        }

        err.emit();
    }

    /// On ambiguous associated type, look for an associated function whose name matches the
    /// extended path and, if found, emit an E0223 error with a structured suggestion.
    /// e.g. for `String::from::utf8`, suggest `String::from_utf8` (#109195)
    pub(crate) fn maybe_report_similar_assoc_fn(
        &self,
        span: Span,
        qself_ty: Ty<'tcx>,
        qself: &hir::Ty<'_>,
    ) -> Result<(), ErrorGuaranteed> {
        let tcx = self.tcx();
        if let Some((_, node)) = tcx.hir().parent_iter(qself.hir_id).skip(1).next()
            && let hir::Node::Expr(hir::Expr {
                kind:
                    hir::ExprKind::Path(hir::QPath::TypeRelative(
                        hir::Ty {
                            kind:
                                hir::TyKind::Path(hir::QPath::TypeRelative(
                                    _,
                                    hir::PathSegment { ident: ident2, .. },
                                )),
                            ..
                        },
                        hir::PathSegment { ident: ident3, .. },
                    )),
                ..
            }) = node
            && let Some(ty_def_id) = qself_ty.ty_def_id()
            && let [inherent_impl] = tcx.inherent_impls(ty_def_id)
            && let name = format!("{ident2}_{ident3}")
            && let Some(ty::AssocItem { kind: ty::AssocKind::Fn, .. }) = tcx
                .associated_items(inherent_impl)
                .filter_by_name_unhygienic(Symbol::intern(&name))
                .next()
        {
            Err(struct_span_code_err!(self.dcx(), span, E0223, "ambiguous associated type")
                .with_span_suggestion_verbose(
                    ident2.span.to(ident3.span),
                    format!("there is an associated function with a similar name: `{name}`"),
                    name,
                    Applicability::MaybeIncorrect,
                )
                .emit())
        } else {
            Ok(())
        }
    }

    pub fn report_prohibit_generics_error<'a>(
        &self,
        segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
        args_visitors: impl Iterator<Item = &'a hir::GenericArg<'a>> + Clone,
        err_extend: GenericsArgsErrExtend<'_>,
    ) -> ErrorGuaranteed {
        #[derive(PartialEq, Eq, Hash)]
        enum ProhibitGenericsArg {
            Lifetime,
            Type,
            Const,
            Infer,
        }

        let mut prohibit_args = FxIndexSet::default();
        args_visitors.for_each(|arg| {
            match arg {
                hir::GenericArg::Lifetime(_) => prohibit_args.insert(ProhibitGenericsArg::Lifetime),
                hir::GenericArg::Type(_) => prohibit_args.insert(ProhibitGenericsArg::Type),
                hir::GenericArg::Const(_) => prohibit_args.insert(ProhibitGenericsArg::Const),
                hir::GenericArg::Infer(_) => prohibit_args.insert(ProhibitGenericsArg::Infer),
            };
        });

        let types_and_spans: Vec<_> = segments
            .clone()
            .flat_map(|segment| {
                if segment.args().args.is_empty() {
                    None
                } else {
                    Some((
                        match segment.res {
                            hir::def::Res::PrimTy(ty) => {
                                format!("{} `{}`", segment.res.descr(), ty.name())
                            }
                            hir::def::Res::Def(_, def_id)
                                if let Some(name) = self.tcx().opt_item_name(def_id) =>
                            {
                                format!("{} `{name}`", segment.res.descr())
                            }
                            hir::def::Res::Err => "this type".to_string(),
                            _ => segment.res.descr().to_string(),
                        },
                        segment.ident.span,
                    ))
                }
            })
            .collect();
        let this_type = match &types_and_spans[..] {
            [.., _, (last, _)] => format!(
                "{} and {last}",
                types_and_spans[..types_and_spans.len() - 1]
                    .iter()
                    .map(|(x, _)| x.as_str())
                    .intersperse(", ")
                    .collect::<String>()
            ),
            [(only, _)] => only.to_string(),
            [] => "this type".to_string(),
        };

        let arg_spans: Vec<Span> = segments
            .clone()
            .flat_map(|segment| segment.args().args)
            .map(|arg| arg.span())
            .collect();

        let mut kinds = Vec::with_capacity(4);
        prohibit_args.iter().for_each(|arg| match arg {
            ProhibitGenericsArg::Lifetime => kinds.push("lifetime"),
            ProhibitGenericsArg::Type => kinds.push("type"),
            ProhibitGenericsArg::Const => kinds.push("const"),
            ProhibitGenericsArg::Infer => kinds.push("generic"),
        });

        let (kind, s) = match kinds[..] {
            [.., _, last] => (
                format!(
                    "{} and {last}",
                    kinds[..kinds.len() - 1]
                        .iter()
                        .map(|&x| x)
                        .intersperse(", ")
                        .collect::<String>()
                ),
                "s",
            ),
            [only] => (only.to_string(), ""),
            [] => unreachable!("expected at least one generic to prohibit"),
        };
        let last_span = *arg_spans.last().unwrap();
        let span: MultiSpan = arg_spans.into();
        let mut err = struct_span_code_err!(
            self.dcx(),
            span,
            E0109,
            "{kind} arguments are not allowed on {this_type}",
        );
        err.span_label(last_span, format!("{kind} argument{s} not allowed"));
        for (what, span) in types_and_spans {
            err.span_label(span, format!("not allowed on {what}"));
        }
        generics_args_err_extend(self.tcx(), segments, &mut err, err_extend);
        err.emit()
    }

    pub fn report_trait_object_addition_traits_error(
        &self,
        regular_traits: &Vec<TraitAliasExpansionInfo<'_>>,
    ) -> ErrorGuaranteed {
        let first_trait = &regular_traits[0];
        let additional_trait = &regular_traits[1];
        let mut err = struct_span_code_err!(
            self.dcx(),
            additional_trait.bottom().1,
            E0225,
            "only auto traits can be used as additional traits in a trait object"
        );
        additional_trait.label_with_exp_info(
            &mut err,
            "additional non-auto trait",
            "additional use",
        );
        first_trait.label_with_exp_info(&mut err, "first non-auto trait", "first use");
        err.help(format!(
            "consider creating a new trait with all of these as supertraits and using that \
             trait here instead: `trait NewTrait: {} {{}}`",
            regular_traits
                .iter()
                // FIXME: This should `print_sugared`, but also needs to integrate projection bounds...
                .map(|t| t.trait_ref().print_only_trait_path().to_string())
                .collect::<Vec<_>>()
                .join(" + "),
        ));
        err.note(
            "auto-traits like `Send` and `Sync` are traits that have special properties; \
             for more information on them, visit \
             <https://doc.rust-lang.org/reference/special-types-and-traits.html#auto-traits>",
        );
        err.emit()
    }

    pub fn report_trait_object_with_no_traits_error(
        &self,
        span: Span,
        trait_bounds: &Vec<(Binder<'tcx, TraitRef<'tcx>>, Span)>,
    ) -> ErrorGuaranteed {
        let tcx = self.tcx();
        let trait_alias_span = trait_bounds
            .iter()
            .map(|&(trait_ref, _)| trait_ref.def_id())
            .find(|&trait_ref| tcx.is_trait_alias(trait_ref))
            .map(|trait_ref| tcx.def_span(trait_ref));

        self.dcx().emit_err(TraitObjectDeclaredWithNoTraits { span, trait_alias_span })
    }
}

/// Emit an error for the given associated item constraint.
pub fn prohibit_assoc_item_constraint(
    cx: &dyn HirTyLowerer<'_>,
    constraint: &hir::AssocItemConstraint<'_>,
    segment: Option<(DefId, &hir::PathSegment<'_>, Span)>,
) -> ErrorGuaranteed {
    let tcx = cx.tcx();
    let mut err = cx.dcx().create_err(AssocItemConstraintsNotAllowedHere {
        span: constraint.span,
        fn_trait_expansion: if let Some((_, segment, span)) = segment
            && segment.args().parenthesized == hir::GenericArgsParentheses::ParenSugar
        {
            Some(ParenthesizedFnTraitExpansion {
                span,
                expanded_type: fn_trait_to_string(tcx, segment, false),
            })
        } else {
            None
        },
    });

    // Emit a suggestion to turn the assoc item binding into a generic arg
    // if the relevant item has a generic param whose name matches the binding name;
    // otherwise suggest the removal of the binding.
    if let Some((def_id, segment, _)) = segment
        && segment.args().parenthesized == hir::GenericArgsParentheses::No
    {
        // Suggests removal of the offending binding
        let suggest_removal = |e: &mut Diag<'_>| {
            let constraints = segment.args().constraints;
            let args = segment.args().args;

            // Compute the span to remove based on the position
            // of the binding. We do that as follows:
            //  1. Find the index of the binding in the list of bindings
            //  2. Locate the spans preceding and following the binding.
            //     If it's the first binding the preceding span would be
            //     that of the last arg
            //  3. Using this information work out whether the span
            //     to remove will start from the end of the preceding span,
            //     the start of the next span or will simply be the
            //     span encomassing everything within the generics brackets

            let Some(index) = constraints.iter().position(|b| b.hir_id == constraint.hir_id) else {
                bug!("a type binding exists but its HIR ID not found in generics");
            };

            let preceding_span = if index > 0 {
                Some(constraints[index - 1].span)
            } else {
                args.last().map(|a| a.span())
            };

            let next_span = constraints.get(index + 1).map(|constraint| constraint.span);

            let removal_span = match (preceding_span, next_span) {
                (Some(prec), _) => constraint.span.with_lo(prec.hi()),
                (None, Some(next)) => constraint.span.with_hi(next.lo()),
                (None, None) => {
                    let Some(generics_span) = segment.args().span_ext() else {
                        bug!("a type binding exists but generic span is empty");
                    };

                    generics_span
                }
            };

            // Now emit the suggestion
            e.span_suggestion_verbose(
                removal_span,
                format!("consider removing this associated item {}", constraint.kind.descr()),
                "",
                Applicability::MaybeIncorrect,
            );
        };

        // Suggest replacing the associated item binding with a generic argument.
        // i.e., replacing `<..., T = A, ...>` with `<..., A, ...>`.
        let suggest_direct_use = |e: &mut Diag<'_>, sp: Span| {
            if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(sp) {
                e.span_suggestion_verbose(
                    constraint.span,
                    format!("to use `{snippet}` as a generic argument specify it directly"),
                    snippet,
                    Applicability::MaybeIncorrect,
                );
            }
        };

        // Check if the type has a generic param with the same name
        // as the assoc type name in the associated item binding.
        let generics = tcx.generics_of(def_id);
        let matching_param = generics.own_params.iter().find(|p| p.name == constraint.ident.name);

        // Now emit the appropriate suggestion
        if let Some(matching_param) = matching_param {
            match (constraint.kind, &matching_param.kind) {
                (
                    hir::AssocItemConstraintKind::Equality { term: hir::Term::Ty(ty) },
                    GenericParamDefKind::Type { .. },
                ) => suggest_direct_use(&mut err, ty.span),
                (
                    hir::AssocItemConstraintKind::Equality { term: hir::Term::Const(c) },
                    GenericParamDefKind::Const { .. },
                ) => {
                    suggest_direct_use(&mut err, c.span());
                }
                (hir::AssocItemConstraintKind::Bound { bounds }, _) => {
                    // Suggest `impl<T: Bound> Trait<T> for Foo` when finding
                    // `impl Trait<T: Bound> for Foo`

                    // Get the parent impl block based on the binding we have
                    // and the trait DefId
                    let impl_block = tcx
                        .hir()
                        .parent_iter(constraint.hir_id)
                        .find_map(|(_, node)| node.impl_block_of_trait(def_id));

                    let type_with_constraints =
                        tcx.sess.source_map().span_to_snippet(constraint.span);

                    if let Some(impl_block) = impl_block
                        && let Ok(type_with_constraints) = type_with_constraints
                    {
                        // Filter out the lifetime parameters because
                        // they should be declared before the type parameter
                        let lifetimes: String = bounds
                            .iter()
                            .filter_map(|bound| {
                                if let hir::GenericBound::Outlives(lifetime) = bound {
                                    Some(format!("{lifetime}, "))
                                } else {
                                    None
                                }
                            })
                            .collect();
                        // Figure out a span and suggestion string based on
                        // whether there are any existing parameters
                        let param_decl = if let Some(param_span) =
                            impl_block.generics.span_for_param_suggestion()
                        {
                            (param_span, format!(", {lifetimes}{type_with_constraints}"))
                        } else {
                            (
                                impl_block.generics.span.shrink_to_lo(),
                                format!("<{lifetimes}{type_with_constraints}>"),
                            )
                        };
                        let suggestions = vec![
                            param_decl,
                            (constraint.span.with_lo(constraint.ident.span.hi()), String::new()),
                        ];

                        err.multipart_suggestion_verbose(
                            "declare the type parameter right after the `impl` keyword",
                            suggestions,
                            Applicability::MaybeIncorrect,
                        );
                    }
                }
                _ => suggest_removal(&mut err),
            }
        } else {
            suggest_removal(&mut err);
        }
    }

    err.emit()
}

pub(crate) fn fn_trait_to_string(
    tcx: TyCtxt<'_>,
    trait_segment: &hir::PathSegment<'_>,
    parenthesized: bool,
) -> String {
    let args = trait_segment
        .args
        .and_then(|args| args.args.first())
        .and_then(|arg| match arg {
            hir::GenericArg::Type(ty) => match ty.kind {
                hir::TyKind::Tup(t) => t
                    .iter()
                    .map(|e| tcx.sess.source_map().span_to_snippet(e.span))
                    .collect::<Result<Vec<_>, _>>()
                    .map(|a| a.join(", ")),
                _ => tcx.sess.source_map().span_to_snippet(ty.span),
            }
            .map(|s| {
                // `is_empty()` checks to see if the type is the unit tuple, if so we don't want a comma
                if parenthesized || s.is_empty() { format!("({s})") } else { format!("({s},)") }
            })
            .ok(),
            _ => None,
        })
        .unwrap_or_else(|| "()".to_string());

    let ret = trait_segment
        .args()
        .constraints
        .iter()
        .find_map(|c| {
            if c.ident.name == sym::Output
                && let Some(ty) = c.ty()
                && ty.span != tcx.hir().span(trait_segment.hir_id)
            {
                tcx.sess.source_map().span_to_snippet(ty.span).ok()
            } else {
                None
            }
        })
        .unwrap_or_else(|| "()".to_string());

    if parenthesized {
        format!("{}{} -> {}", trait_segment.ident, args, ret)
    } else {
        format!("{}<{}, Output={}>", trait_segment.ident, args, ret)
    }
}

/// Used for generics args error extend.
pub enum GenericsArgsErrExtend<'tcx> {
    EnumVariant {
        qself: &'tcx hir::Ty<'tcx>,
        assoc_segment: &'tcx hir::PathSegment<'tcx>,
        adt_def: AdtDef<'tcx>,
    },
    OpaqueTy,
    PrimTy(hir::PrimTy),
    SelfTyAlias {
        def_id: DefId,
        span: Span,
    },
    SelfTyParam(Span),
    Param(DefId),
    DefVariant,
    None,
}

fn generics_args_err_extend<'a>(
    tcx: TyCtxt<'_>,
    segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
    err: &mut Diag<'_>,
    err_extend: GenericsArgsErrExtend<'_>,
) {
    match err_extend {
        GenericsArgsErrExtend::EnumVariant { qself, assoc_segment, adt_def } => {
            err.note("enum variants can't have type parameters");
            let type_name = tcx.item_name(adt_def.did());
            let msg = format!(
                "you might have meant to specify type parameters on enum \
                `{type_name}`"
            );
            let Some(args) = assoc_segment.args else {
                return;
            };
            // Get the span of the generics args *including* the leading `::`.
            // We do so by stretching args.span_ext to the left by 2. Earlier
            // it was done based on the end of assoc segment but that sometimes
            // led to impossible spans and caused issues like #116473
            let args_span = args.span_ext.with_lo(args.span_ext.lo() - BytePos(2));
            if tcx.generics_of(adt_def.did()).is_empty() {
                // FIXME(estebank): we could also verify that the arguments being
                // work for the `enum`, instead of just looking if it takes *any*.
                err.span_suggestion_verbose(
                    args_span,
                    format!("{type_name} doesn't have generic parameters"),
                    "",
                    Applicability::MachineApplicable,
                );
                return;
            }
            let Ok(snippet) = tcx.sess.source_map().span_to_snippet(args_span) else {
                err.note(msg);
                return;
            };
            let (qself_sugg_span, is_self) =
                if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = &qself.kind {
                    // If the path segment already has type params, we want to overwrite
                    // them.
                    match &path.segments {
                        // `segment` is the previous to last element on the path,
                        // which would normally be the `enum` itself, while the last
                        // `_` `PathSegment` corresponds to the variant.
                        [
                            ..,
                            hir::PathSegment {
                                ident, args, res: Res::Def(DefKind::Enum, _), ..
                            },
                            _,
                        ] => (
                            // We need to include the `::` in `Type::Variant::<Args>`
                            // to point the span to `::<Args>`, not just `<Args>`.
                            ident
                                .span
                                .shrink_to_hi()
                                .to(args.map_or(ident.span.shrink_to_hi(), |a| a.span_ext)),
                            false,
                        ),
                        [segment] => {
                            (
                                // We need to include the `::` in `Type::Variant::<Args>`
                                // to point the span to `::<Args>`, not just `<Args>`.
                                segment.ident.span.shrink_to_hi().to(segment
                                    .args
                                    .map_or(segment.ident.span.shrink_to_hi(), |a| a.span_ext)),
                                kw::SelfUpper == segment.ident.name,
                            )
                        }
                        _ => {
                            err.note(msg);
                            return;
                        }
                    }
                } else {
                    err.note(msg);
                    return;
                };
            let suggestion = vec![
                if is_self {
                    // Account for people writing `Self::Variant::<Args>`, where
                    // `Self` is the enum, and suggest replacing `Self` with the
                    // appropriate type: `Type::<Args>::Variant`.
                    (qself.span, format!("{type_name}{snippet}"))
                } else {
                    (qself_sugg_span, snippet)
                },
                (args_span, String::new()),
            ];
            err.multipart_suggestion_verbose(msg, suggestion, Applicability::MaybeIncorrect);
        }
        GenericsArgsErrExtend::PrimTy(prim_ty) => {
            let name = prim_ty.name_str();
            for segment in segments {
                if let Some(args) = segment.args {
                    err.span_suggestion_verbose(
                        segment.ident.span.shrink_to_hi().to(args.span_ext),
                        format!("primitive type `{name}` doesn't have generic parameters"),
                        "",
                        Applicability::MaybeIncorrect,
                    );
                }
            }
        }
        GenericsArgsErrExtend::OpaqueTy => {
            err.note("`impl Trait` types can't have type parameters");
        }
        GenericsArgsErrExtend::DefVariant => {
            err.note("enum variants can't have type parameters");
        }
        GenericsArgsErrExtend::Param(def_id) => {
            let span = tcx.def_ident_span(def_id).unwrap();
            let kind = tcx.def_descr(def_id);
            let name = tcx.item_name(def_id);
            err.span_note(span, format!("{kind} `{name}` defined here"));
        }
        GenericsArgsErrExtend::SelfTyParam(span) => {
            err.span_suggestion_verbose(
                span,
                "the `Self` type doesn't accept type parameters",
                "",
                Applicability::MaybeIncorrect,
            );
        }
        GenericsArgsErrExtend::SelfTyAlias { def_id, span } => {
            let ty = tcx.at(span).type_of(def_id).instantiate_identity();
            let span_of_impl = tcx.span_of_impl(def_id);
            let def_id = match *ty.kind() {
                ty::Adt(self_def, _) => self_def.did(),
                _ => return,
            };

            let type_name = tcx.item_name(def_id);
            let span_of_ty = tcx.def_ident_span(def_id);
            let generics = tcx.generics_of(def_id).count();

            let msg = format!("`Self` is of type `{ty}`");
            if let (Ok(i_sp), Some(t_sp)) = (span_of_impl, span_of_ty) {
                let mut span: MultiSpan = vec![t_sp].into();
                span.push_span_label(
                    i_sp,
                    format!("`Self` is on type `{type_name}` in this `impl`"),
                );
                let mut postfix = "";
                if generics == 0 {
                    postfix = ", which doesn't have generic parameters";
                }
                span.push_span_label(t_sp, format!("`Self` corresponds to this type{postfix}"));
                err.span_note(span, msg);
            } else {
                err.note(msg);
            }
            for segment in segments {
                if let Some(args) = segment.args
                    && segment.ident.name == kw::SelfUpper
                {
                    if generics == 0 {
                        // FIXME(estebank): we could also verify that the arguments being
                        // work for the `enum`, instead of just looking if it takes *any*.
                        err.span_suggestion_verbose(
                            segment.ident.span.shrink_to_hi().to(args.span_ext),
                            "the `Self` type doesn't accept type parameters",
                            "",
                            Applicability::MachineApplicable,
                        );
                        return;
                    } else {
                        err.span_suggestion_verbose(
                            segment.ident.span,
                            format!(
                                "the `Self` type doesn't accept type parameters, use the \
                                concrete type's name `{type_name}` instead if you want to \
                                specify its type parameters"
                            ),
                            type_name,
                            Applicability::MaybeIncorrect,
                        );
                    }
                }
            }
        }
        _ => {}
    }
}

pub(super) fn assoc_kind_str(kind: ty::AssocKind) -> &'static str {
    match kind {
        ty::AssocKind::Fn => "function",
        ty::AssocKind::Const => "constant",
        ty::AssocKind::Type => "type",
    }
}