rustc_hir_analysis/hir_ty_lowering/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
//! HIR ty lowering: Lowers type-system entities[^1] from the [HIR][hir] to
//! the [`rustc_middle::ty`] representation.
//!
//! Not to be confused with *AST lowering* which lowers AST constructs to HIR ones
//! or with *THIR* / *MIR* *lowering* / *building* which lowers HIR *bodies*
//! (i.e., “executable code”) to THIR / MIR.
//!
//! Most lowering routines are defined on [`dyn HirTyLowerer`](HirTyLowerer) directly,
//! like the main routine of this module, `lower_ty`.
//!
//! This module used to be called `astconv`.
//!
//! [^1]: This includes types, lifetimes / regions, constants in type positions,
//! trait references and bounds.

mod bounds;
mod cmse;
mod dyn_compatibility;
pub mod errors;
pub mod generics;
mod lint;

use std::slice;

use rustc_ast::TraitObjectSyntax;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::codes::*;
use rustc_errors::{
    Applicability, Diag, DiagCtxtHandle, ErrorGuaranteed, FatalError, struct_span_code_err,
};
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::{GenericArg, GenericArgs, HirId};
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::ObligationCause;
use rustc_middle::middle::stability::AllowUnstable;
use rustc_middle::mir::interpret::{LitToConstError, LitToConstInput};
use rustc_middle::ty::print::PrintPolyTraitRefExt as _;
use rustc_middle::ty::{
    self, Const, GenericArgKind, GenericArgsRef, GenericParamDefKind, ParamEnv, Ty, TyCtxt,
    TypeVisitableExt,
};
use rustc_middle::{bug, span_bug};
use rustc_session::lint::builtin::AMBIGUOUS_ASSOCIATED_ITEMS;
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::symbol::{Ident, Symbol, kw};
use rustc_span::{DUMMY_SP, Span};
use rustc_target::spec::abi;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::wf::object_region_bounds;
use rustc_trait_selection::traits::{self, ObligationCtxt};
use tracing::{debug, debug_span, instrument};

use crate::bounds::Bounds;
use crate::check::check_abi_fn_ptr;
use crate::errors::{AmbiguousLifetimeBound, BadReturnTypeNotation, WildPatTy};
use crate::hir_ty_lowering::errors::{GenericsArgsErrExtend, prohibit_assoc_item_constraint};
use crate::hir_ty_lowering::generics::{check_generic_arg_count, lower_generic_args};
use crate::middle::resolve_bound_vars as rbv;
use crate::require_c_abi_if_c_variadic;

/// A path segment that is semantically allowed to have generic arguments.
#[derive(Debug)]
pub struct GenericPathSegment(pub DefId, pub usize);

#[derive(Copy, Clone, Debug)]
pub enum PredicateFilter {
    /// All predicates may be implied by the trait.
    All,

    /// Only traits that reference `Self: ..` are implied by the trait.
    SelfOnly,

    /// Only traits that reference `Self: ..` and define an associated type
    /// with the given ident are implied by the trait. This mode exists to
    /// side-step query cycles when lowering associated types.
    SelfThatDefines(Ident),

    /// Only traits that reference `Self: ..` and their associated type bounds.
    /// For example, given `Self: Tr<A: B>`, this would expand to `Self: Tr`
    /// and `<Self as Tr>::A: B`.
    SelfAndAssociatedTypeBounds,
}

#[derive(Debug)]
pub enum RegionInferReason<'a> {
    /// Lifetime on a trait object that is spelled explicitly, e.g. `+ 'a` or `+ '_`.
    ExplicitObjectLifetime,
    /// A trait object's lifetime when it is elided, e.g. `dyn Any`.
    ObjectLifetimeDefault,
    /// Generic lifetime parameter
    Param(&'a ty::GenericParamDef),
    RegionPredicate,
    Reference,
    OutlivesBound,
}

/// A context which can lower type-system entities from the [HIR][hir] to
/// the [`rustc_middle::ty`] representation.
///
/// This trait used to be called `AstConv`.
pub trait HirTyLowerer<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx>;

    fn dcx(&self) -> DiagCtxtHandle<'_>;

    /// Returns the [`LocalDefId`] of the overarching item whose constituents get lowered.
    fn item_def_id(&self) -> LocalDefId;

    /// Returns the region to use when a lifetime is omitted (and not elided).
    fn re_infer(&self, span: Span, reason: RegionInferReason<'_>) -> ty::Region<'tcx>;

    /// Returns the type to use when a type is omitted.
    fn ty_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Ty<'tcx>;

    /// Returns the const to use when a const is omitted.
    fn ct_infer(&self, param: Option<&ty::GenericParamDef>, span: Span) -> Const<'tcx>;

    /// Probe bounds in scope where the bounded type coincides with the given type parameter.
    ///
    /// Rephrased, this returns bounds of the form `T: Trait`, where `T` is a type parameter
    /// with the given `def_id`. This is a subset of the full set of bounds.
    ///
    /// This method may use the given `assoc_name` to disregard bounds whose trait reference
    /// doesn't define an associated item with the provided name.
    ///
    /// This is used for one specific purpose: Resolving “short-hand” associated type references
    /// like `T::Item` where `T` is a type parameter. In principle, we would do that by first
    /// getting the full set of predicates in scope and then filtering down to find those that
    /// apply to `T`, but this can lead to cycle errors. The problem is that we have to do this
    /// resolution *in order to create the predicates in the first place*.
    /// Hence, we have this “special pass”.
    fn probe_ty_param_bounds(
        &self,
        span: Span,
        def_id: LocalDefId,
        assoc_name: Ident,
    ) -> ty::EarlyBinder<'tcx, &'tcx [(ty::Clause<'tcx>, Span)]>;

    /// Lower an associated type to a projection.
    ///
    /// This method has to be defined by the concrete lowering context because
    /// dealing with higher-ranked trait references depends on its capabilities:
    ///
    /// If the context can make use of type inference, it can simply instantiate
    /// any late-bound vars bound by the trait reference with inference variables.
    /// If it doesn't support type inference, there is nothing reasonable it can
    /// do except reject the associated type.
    ///
    /// The canonical example of this is associated type `T::P` where `T` is a type
    /// param constrained by `T: for<'a> Trait<'a>` and where `Trait` defines `P`.
    fn lower_assoc_ty(
        &self,
        span: Span,
        item_def_id: DefId,
        item_segment: &hir::PathSegment<'tcx>,
        poly_trait_ref: ty::PolyTraitRef<'tcx>,
    ) -> Ty<'tcx>;

    fn lower_fn_sig(
        &self,
        decl: &hir::FnDecl<'tcx>,
        generics: Option<&hir::Generics<'_>>,
        hir_id: HirId,
        hir_ty: Option<&hir::Ty<'_>>,
    ) -> (Vec<Ty<'tcx>>, Ty<'tcx>);

    /// Returns `AdtDef` if `ty` is an ADT.
    ///
    /// Note that `ty` might be a alias type that needs normalization.
    /// This used to get the enum variants in scope of the type.
    /// For example, `Self::A` could refer to an associated type
    /// or to an enum variant depending on the result of this function.
    fn probe_adt(&self, span: Span, ty: Ty<'tcx>) -> Option<ty::AdtDef<'tcx>>;

    /// Record the lowered type of a HIR node in this context.
    fn record_ty(&self, hir_id: HirId, ty: Ty<'tcx>, span: Span);

    /// The inference context of the lowering context if applicable.
    fn infcx(&self) -> Option<&InferCtxt<'tcx>>;

    /// Convenience method for coercing the lowering context into a trait object type.
    ///
    /// Most lowering routines are defined on the trait object type directly
    /// necessitating a coercion step from the concrete lowering context.
    fn lowerer(&self) -> &dyn HirTyLowerer<'tcx>
    where
        Self: Sized,
    {
        self
    }
}

/// The "qualified self" of an associated item path.
///
/// For diagnostic purposes only.
enum AssocItemQSelf {
    Trait(DefId),
    TyParam(LocalDefId, Span),
    SelfTyAlias,
}

impl AssocItemQSelf {
    fn to_string(&self, tcx: TyCtxt<'_>) -> String {
        match *self {
            Self::Trait(def_id) => tcx.def_path_str(def_id),
            Self::TyParam(def_id, _) => tcx.hir().ty_param_name(def_id).to_string(),
            Self::SelfTyAlias => kw::SelfUpper.to_string(),
        }
    }
}

/// New-typed boolean indicating whether explicit late-bound lifetimes
/// are present in a set of generic arguments.
///
/// For example if we have some method `fn f<'a>(&'a self)` implemented
/// for some type `T`, although `f` is generic in the lifetime `'a`, `'a`
/// is late-bound so should not be provided explicitly. Thus, if `f` is
/// instantiated with some generic arguments providing `'a` explicitly,
/// we taint those arguments with `ExplicitLateBound::Yes` so that we
/// can provide an appropriate diagnostic later.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum ExplicitLateBound {
    Yes,
    No,
}

#[derive(Copy, Clone, PartialEq)]
pub enum IsMethodCall {
    Yes,
    No,
}

/// Denotes the "position" of a generic argument, indicating if it is a generic type,
/// generic function or generic method call.
#[derive(Copy, Clone, PartialEq)]
pub(crate) enum GenericArgPosition {
    Type,
    Value, // e.g., functions
    MethodCall,
}

/// A marker denoting that the generic arguments that were
/// provided did not match the respective generic parameters.
#[derive(Clone, Debug)]
pub struct GenericArgCountMismatch {
    pub reported: ErrorGuaranteed,
    /// A list of indices of arguments provided that were not valid.
    pub invalid_args: Vec<usize>,
}

/// Decorates the result of a generic argument count mismatch
/// check with whether explicit late bounds were provided.
#[derive(Clone, Debug)]
pub struct GenericArgCountResult {
    pub explicit_late_bound: ExplicitLateBound,
    pub correct: Result<(), GenericArgCountMismatch>,
}

/// A context which can lower HIR's [`GenericArg`] to `rustc_middle`'s [`ty::GenericArg`].
///
/// Its only consumer is [`generics::lower_generic_args`].
/// Read its documentation to learn more.
pub trait GenericArgsLowerer<'a, 'tcx> {
    fn args_for_def_id(&mut self, def_id: DefId) -> (Option<&'a GenericArgs<'tcx>>, bool);

    fn provided_kind(
        &mut self,
        preceding_args: &[ty::GenericArg<'tcx>],
        param: &ty::GenericParamDef,
        arg: &GenericArg<'tcx>,
    ) -> ty::GenericArg<'tcx>;

    fn inferred_kind(
        &mut self,
        preceding_args: &[ty::GenericArg<'tcx>],
        param: &ty::GenericParamDef,
        infer_args: bool,
    ) -> ty::GenericArg<'tcx>;
}

impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
    /// Lower a lifetime from the HIR to our internal notion of a lifetime called a *region*.
    #[instrument(level = "debug", skip(self), ret)]
    pub fn lower_lifetime(
        &self,
        lifetime: &hir::Lifetime,
        reason: RegionInferReason<'_>,
    ) -> ty::Region<'tcx> {
        let tcx = self.tcx();
        let lifetime_name = |def_id| tcx.hir().name(tcx.local_def_id_to_hir_id(def_id));

        match tcx.named_bound_var(lifetime.hir_id) {
            Some(rbv::ResolvedArg::StaticLifetime) => tcx.lifetimes.re_static,

            Some(rbv::ResolvedArg::LateBound(debruijn, index, def_id)) => {
                let name = lifetime_name(def_id);
                let br = ty::BoundRegion {
                    var: ty::BoundVar::from_u32(index),
                    kind: ty::BrNamed(def_id.to_def_id(), name),
                };
                ty::Region::new_bound(tcx, debruijn, br)
            }

            Some(rbv::ResolvedArg::EarlyBound(def_id)) => {
                let name = tcx.hir().ty_param_name(def_id);
                let item_def_id = tcx.hir().ty_param_owner(def_id);
                let generics = tcx.generics_of(item_def_id);
                let index = generics.param_def_id_to_index[&def_id.to_def_id()];
                ty::Region::new_early_param(tcx, ty::EarlyParamRegion { index, name })
            }

            Some(rbv::ResolvedArg::Free(scope, id)) => {
                let name = lifetime_name(id);
                ty::Region::new_late_param(
                    tcx,
                    scope.to_def_id(),
                    ty::BrNamed(id.to_def_id(), name),
                )

                // (*) -- not late-bound, won't change
            }

            Some(rbv::ResolvedArg::Error(guar)) => ty::Region::new_error(tcx, guar),

            None => self.re_infer(lifetime.ident.span, reason),
        }
    }

    pub fn lower_generic_args_of_path_segment(
        &self,
        span: Span,
        def_id: DefId,
        item_segment: &hir::PathSegment<'tcx>,
    ) -> GenericArgsRef<'tcx> {
        let (args, _) = self.lower_generic_args_of_path(span, def_id, &[], item_segment, None);
        if let Some(c) = item_segment.args().constraints.first() {
            prohibit_assoc_item_constraint(self, c, Some((def_id, item_segment, span)));
        }
        args
    }

    /// Lower the generic arguments provided to some path.
    ///
    /// If this is a trait reference, you also need to pass the self type `self_ty`.
    /// The lowering process may involve applying defaulted type parameters.
    ///
    /// Associated item constraints are not handled here! They are either lowered via
    /// `lower_assoc_item_constraint` or rejected via `prohibit_assoc_item_constraint`.
    ///
    /// ### Example
    ///
    /// ```ignore (illustrative)
    ///    T: std::ops::Index<usize, Output = u32>
    /// // ^1 ^^^^^^^^^^^^^^2 ^^^^3  ^^^^^^^^^^^4
    /// ```
    ///
    /// 1. The `self_ty` here would refer to the type `T`.
    /// 2. The path in question is the path to the trait `std::ops::Index`,
    ///    which will have been resolved to a `def_id`
    /// 3. The `generic_args` contains info on the `<...>` contents. The `usize` type
    ///    parameters are returned in the `GenericArgsRef`
    /// 4. Associated item constraints like `Output = u32` are contained in `generic_args.constraints`.
    ///
    /// Note that the type listing given here is *exactly* what the user provided.
    ///
    /// For (generic) associated types
    ///
    /// ```ignore (illustrative)
    /// <Vec<u8> as Iterable<u8>>::Iter::<'a>
    /// ```
    ///
    /// We have the parent args are the args for the parent trait:
    /// `[Vec<u8>, u8]` and `generic_args` are the arguments for the associated
    /// type itself: `['a]`. The returned `GenericArgsRef` concatenates these two
    /// lists: `[Vec<u8>, u8, 'a]`.
    #[instrument(level = "debug", skip(self, span), ret)]
    fn lower_generic_args_of_path(
        &self,
        span: Span,
        def_id: DefId,
        parent_args: &[ty::GenericArg<'tcx>],
        segment: &hir::PathSegment<'tcx>,
        self_ty: Option<Ty<'tcx>>,
    ) -> (GenericArgsRef<'tcx>, GenericArgCountResult) {
        // If the type is parameterized by this region, then replace this
        // region with the current anon region binding (in other words,
        // whatever & would get replaced with).

        let tcx = self.tcx();
        let generics = tcx.generics_of(def_id);
        debug!(?generics);

        if generics.has_self {
            if generics.parent.is_some() {
                // The parent is a trait so it should have at least one
                // generic parameter for the `Self` type.
                assert!(!parent_args.is_empty())
            } else {
                // This item (presumably a trait) needs a self-type.
                assert!(self_ty.is_some());
            }
        } else {
            assert!(self_ty.is_none());
        }

        let arg_count = check_generic_arg_count(
            self,
            def_id,
            segment,
            generics,
            GenericArgPosition::Type,
            self_ty.is_some(),
        );

        // Skip processing if type has no generic parameters.
        // Traits always have `Self` as a generic parameter, which means they will not return early
        // here and so associated item constraints will be handled regardless of whether there are
        // any non-`Self` generic parameters.
        if generics.is_own_empty() {
            return (tcx.mk_args(parent_args), arg_count);
        }

        struct GenericArgsCtxt<'a, 'tcx> {
            lowerer: &'a dyn HirTyLowerer<'tcx>,
            def_id: DefId,
            generic_args: &'a GenericArgs<'tcx>,
            span: Span,
            infer_args: bool,
            incorrect_args: &'a Result<(), GenericArgCountMismatch>,
        }

        impl<'a, 'tcx> GenericArgsLowerer<'a, 'tcx> for GenericArgsCtxt<'a, 'tcx> {
            fn args_for_def_id(&mut self, did: DefId) -> (Option<&'a GenericArgs<'tcx>>, bool) {
                if did == self.def_id {
                    (Some(self.generic_args), self.infer_args)
                } else {
                    // The last component of this tuple is unimportant.
                    (None, false)
                }
            }

            fn provided_kind(
                &mut self,
                _preceding_args: &[ty::GenericArg<'tcx>],
                param: &ty::GenericParamDef,
                arg: &GenericArg<'tcx>,
            ) -> ty::GenericArg<'tcx> {
                let tcx = self.lowerer.tcx();

                if let Err(incorrect) = self.incorrect_args {
                    if incorrect.invalid_args.contains(&(param.index as usize)) {
                        return param.to_error(tcx);
                    }
                }

                let handle_ty_args = |has_default, ty: &hir::Ty<'tcx>| {
                    if has_default {
                        tcx.check_optional_stability(
                            param.def_id,
                            Some(arg.hir_id()),
                            arg.span(),
                            None,
                            AllowUnstable::No,
                            |_, _| {
                                // Default generic parameters may not be marked
                                // with stability attributes, i.e. when the
                                // default parameter was defined at the same time
                                // as the rest of the type. As such, we ignore missing
                                // stability attributes.
                            },
                        );
                    }
                    self.lowerer.lower_ty(ty).into()
                };

                match (&param.kind, arg) {
                    (GenericParamDefKind::Lifetime, GenericArg::Lifetime(lt)) => {
                        self.lowerer.lower_lifetime(lt, RegionInferReason::Param(param)).into()
                    }
                    (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Type(ty)) => {
                        handle_ty_args(has_default, ty)
                    }
                    (&GenericParamDefKind::Type { has_default, .. }, GenericArg::Infer(inf)) => {
                        handle_ty_args(has_default, &inf.to_ty())
                    }
                    (GenericParamDefKind::Const { .. }, GenericArg::Const(ct)) => {
                        ty::Const::from_const_arg(tcx, ct, ty::FeedConstTy::Param(param.def_id))
                            .into()
                    }
                    (&GenericParamDefKind::Const { .. }, GenericArg::Infer(inf)) => {
                        self.lowerer.ct_infer(Some(param), inf.span).into()
                    }
                    (kind, arg) => span_bug!(
                        self.span,
                        "mismatched path argument for kind {kind:?}: found arg {arg:?}"
                    ),
                }
            }

            fn inferred_kind(
                &mut self,
                preceding_args: &[ty::GenericArg<'tcx>],
                param: &ty::GenericParamDef,
                infer_args: bool,
            ) -> ty::GenericArg<'tcx> {
                let tcx = self.lowerer.tcx();

                if let Err(incorrect) = self.incorrect_args {
                    if incorrect.invalid_args.contains(&(param.index as usize)) {
                        return param.to_error(tcx);
                    }
                }
                match param.kind {
                    GenericParamDefKind::Lifetime => {
                        self.lowerer.re_infer(self.span, RegionInferReason::Param(param)).into()
                    }
                    GenericParamDefKind::Type { has_default, .. } => {
                        if !infer_args && has_default {
                            // No type parameter provided, but a default exists.
                            if let Some(prev) =
                                preceding_args.iter().find_map(|arg| match arg.unpack() {
                                    GenericArgKind::Type(ty) => ty.error_reported().err(),
                                    _ => None,
                                })
                            {
                                // Avoid ICE #86756 when type error recovery goes awry.
                                return Ty::new_error(tcx, prev).into();
                            }
                            tcx.at(self.span)
                                .type_of(param.def_id)
                                .instantiate(tcx, preceding_args)
                                .into()
                        } else if infer_args {
                            self.lowerer.ty_infer(Some(param), self.span).into()
                        } else {
                            // We've already errored above about the mismatch.
                            Ty::new_misc_error(tcx).into()
                        }
                    }
                    GenericParamDefKind::Const { has_default, .. } => {
                        let ty = tcx
                            .at(self.span)
                            .type_of(param.def_id)
                            .no_bound_vars()
                            .expect("const parameter types cannot be generic");
                        if let Err(guar) = ty.error_reported() {
                            return ty::Const::new_error(tcx, guar).into();
                        }
                        // FIXME(effects) see if we should special case effect params here
                        if !infer_args && has_default {
                            tcx.const_param_default(param.def_id)
                                .instantiate(tcx, preceding_args)
                                .into()
                        } else if infer_args {
                            self.lowerer.ct_infer(Some(param), self.span).into()
                        } else {
                            // We've already errored above about the mismatch.
                            ty::Const::new_misc_error(tcx).into()
                        }
                    }
                }
            }
        }

        let mut args_ctx = GenericArgsCtxt {
            lowerer: self,
            def_id,
            span,
            generic_args: segment.args(),
            infer_args: segment.infer_args,
            incorrect_args: &arg_count.correct,
        };
        let args = lower_generic_args(
            self,
            def_id,
            parent_args,
            self_ty.is_some(),
            self_ty,
            &arg_count,
            &mut args_ctx,
        );

        (args, arg_count)
    }

    #[instrument(level = "debug", skip_all)]
    pub fn lower_generic_args_of_assoc_item(
        &self,
        span: Span,
        item_def_id: DefId,
        item_segment: &hir::PathSegment<'tcx>,
        parent_args: GenericArgsRef<'tcx>,
    ) -> GenericArgsRef<'tcx> {
        debug!(?span, ?item_def_id, ?item_segment);
        let (args, _) =
            self.lower_generic_args_of_path(span, item_def_id, parent_args, item_segment, None);
        if let Some(c) = item_segment.args().constraints.first() {
            prohibit_assoc_item_constraint(self, c, Some((item_def_id, item_segment, span)));
        }
        args
    }

    /// Lower a trait reference as found in an impl header as the implementee.
    ///
    /// The self type `self_ty` is the implementer of the trait.
    pub fn lower_impl_trait_ref(
        &self,
        trait_ref: &hir::TraitRef<'tcx>,
        self_ty: Ty<'tcx>,
    ) -> ty::TraitRef<'tcx> {
        let _ = self.prohibit_generic_args(
            trait_ref.path.segments.split_last().unwrap().1.iter(),
            GenericsArgsErrExtend::None,
        );

        self.lower_mono_trait_ref(
            trait_ref.path.span,
            trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise()),
            self_ty,
            trait_ref.path.segments.last().unwrap(),
            true,
        )
    }

    /// Lower a polymorphic trait reference given a self type into `bounds`.
    ///
    /// *Polymorphic* in the sense that it may bind late-bound vars.
    ///
    /// This may generate auxiliary bounds iff the trait reference contains associated item constraints.
    ///
    /// ### Example
    ///
    /// Given the trait ref `Iterator<Item = u32>` and the self type `Ty`, this will add the
    ///
    /// 1. *trait predicate* `<Ty as Iterator>` (known as `Ty: Iterator` in the surface syntax) and the
    /// 2. *projection predicate* `<Ty as Iterator>::Item = u32`
    ///
    /// to `bounds`.
    ///
    /// ### A Note on Binders
    ///
    /// Against our usual convention, there is an implied binder around the `self_ty` and the
    /// `trait_ref` here. So they may reference late-bound vars.
    ///
    /// If for example you had `for<'a> Foo<'a>: Bar<'a>`, then the `self_ty` would be `Foo<'a>`
    /// where `'a` is a bound region at depth 0. Similarly, the `trait_ref` would be `Bar<'a>`.
    /// The lowered poly-trait-ref will track this binder explicitly, however.
    #[instrument(level = "debug", skip(self, span, constness, bounds))]
    pub(crate) fn lower_poly_trait_ref(
        &self,
        trait_ref: &hir::TraitRef<'tcx>,
        span: Span,
        constness: Option<ty::BoundConstness>,
        polarity: ty::PredicatePolarity,
        self_ty: Ty<'tcx>,
        bounds: &mut Bounds<'tcx>,
        predicate_filter: PredicateFilter,
    ) -> GenericArgCountResult {
        let trait_def_id = trait_ref.trait_def_id().unwrap_or_else(|| FatalError.raise());
        let trait_segment = trait_ref.path.segments.last().unwrap();

        let _ = self.prohibit_generic_args(
            trait_ref.path.segments.split_last().unwrap().1.iter(),
            GenericsArgsErrExtend::None,
        );
        self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment, false);

        let (generic_args, arg_count) = self.lower_generic_args_of_path(
            trait_ref.path.span,
            trait_def_id,
            &[],
            trait_segment,
            Some(self_ty),
        );

        if let Some(constness) = constness
            && !self.tcx().is_const_trait(trait_def_id)
        {
            self.dcx().emit_err(crate::errors::ConstBoundForNonConstTrait {
                span: trait_ref.path.span,
                modifier: constness.as_str(),
            });
        }

        let tcx = self.tcx();
        let bound_vars = tcx.late_bound_vars(trait_ref.hir_ref_id);
        debug!(?bound_vars);

        let poly_trait_ref = ty::Binder::bind_with_vars(
            ty::TraitRef::new_from_args(tcx, trait_def_id, generic_args),
            bound_vars,
        );

        debug!(?poly_trait_ref);
        bounds.push_trait_bound(
            tcx,
            self.item_def_id().to_def_id(),
            poly_trait_ref,
            span,
            polarity,
            constness,
            predicate_filter,
        );

        let mut dup_constraints = FxIndexMap::default();
        for constraint in trait_segment.args().constraints {
            // Don't register any associated item constraints for negative bounds,
            // since we should have emitted an error for them earlier, and they
            // would not be well-formed!
            if polarity != ty::PredicatePolarity::Positive {
                assert!(
                    self.dcx().has_errors().is_some(),
                    "negative trait bounds should not have assoc item constraints",
                );
                continue;
            }

            // Specify type to assert that error was already reported in `Err` case.
            let _: Result<_, ErrorGuaranteed> = self.lower_assoc_item_constraint(
                trait_ref.hir_ref_id,
                poly_trait_ref,
                constraint,
                bounds,
                &mut dup_constraints,
                constraint.span,
                predicate_filter,
            );
            // Okay to ignore `Err` because of `ErrorGuaranteed` (see above).
        }

        arg_count
    }

    /// Lower a monomorphic trait reference given a self type while prohibiting associated item bindings.
    ///
    /// *Monomorphic* in the sense that it doesn't bind any late-bound vars.
    fn lower_mono_trait_ref(
        &self,
        span: Span,
        trait_def_id: DefId,
        self_ty: Ty<'tcx>,
        trait_segment: &hir::PathSegment<'tcx>,
        is_impl: bool,
    ) -> ty::TraitRef<'tcx> {
        self.complain_about_internal_fn_trait(span, trait_def_id, trait_segment, is_impl);

        let (generic_args, _) =
            self.lower_generic_args_of_path(span, trait_def_id, &[], trait_segment, Some(self_ty));
        if let Some(c) = trait_segment.args().constraints.first() {
            prohibit_assoc_item_constraint(self, c, Some((trait_def_id, trait_segment, span)));
        }
        ty::TraitRef::new_from_args(self.tcx(), trait_def_id, generic_args)
    }

    fn probe_trait_that_defines_assoc_item(
        &self,
        trait_def_id: DefId,
        assoc_kind: ty::AssocKind,
        assoc_name: Ident,
    ) -> bool {
        self.tcx()
            .associated_items(trait_def_id)
            .find_by_name_and_kind(self.tcx(), assoc_name, assoc_kind, trait_def_id)
            .is_some()
    }

    fn lower_path_segment(
        &self,
        span: Span,
        did: DefId,
        item_segment: &hir::PathSegment<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx();
        let args = self.lower_generic_args_of_path_segment(span, did, item_segment);

        if let DefKind::TyAlias = tcx.def_kind(did)
            && tcx.type_alias_is_lazy(did)
        {
            // Type aliases defined in crates that have the
            // feature `lazy_type_alias` enabled get encoded as a type alias that normalization will
            // then actually instantiate the where bounds of.
            let alias_ty = ty::AliasTy::new_from_args(tcx, did, args);
            Ty::new_alias(tcx, ty::Weak, alias_ty)
        } else {
            tcx.at(span).type_of(did).instantiate(tcx, args)
        }
    }

    /// Search for a trait bound on a type parameter whose trait defines the associated item
    /// given by `assoc_name` and `kind`.
    ///
    /// This fails if there is no such bound in the list of candidates or if there are multiple
    /// candidates in which case it reports ambiguity.
    ///
    /// `ty_param_def_id` is the `LocalDefId` of the type parameter.
    #[instrument(level = "debug", skip_all, ret)]
    fn probe_single_ty_param_bound_for_assoc_item(
        &self,
        ty_param_def_id: LocalDefId,
        ty_param_span: Span,
        kind: ty::AssocKind,
        assoc_name: Ident,
        span: Span,
    ) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed> {
        debug!(?ty_param_def_id, ?assoc_name, ?span);
        let tcx = self.tcx();

        let predicates = &self.probe_ty_param_bounds(span, ty_param_def_id, assoc_name);
        debug!("predicates={:#?}", predicates);

        self.probe_single_bound_for_assoc_item(
            || {
                let trait_refs = predicates
                    .iter_identity_copied()
                    .filter_map(|(p, _)| Some(p.as_trait_clause()?.map_bound(|t| t.trait_ref)));
                traits::transitive_bounds_that_define_assoc_item(tcx, trait_refs, assoc_name)
            },
            AssocItemQSelf::TyParam(ty_param_def_id, ty_param_span),
            kind,
            assoc_name,
            span,
            None,
        )
    }

    /// Search for a single trait bound whose trait defines the associated item given by `assoc_name`.
    ///
    /// This fails if there is no such bound in the list of candidates or if there are multiple
    /// candidates in which case it reports ambiguity.
    #[instrument(level = "debug", skip(self, all_candidates, qself, constraint), ret)]
    fn probe_single_bound_for_assoc_item<I>(
        &self,
        all_candidates: impl Fn() -> I,
        qself: AssocItemQSelf,
        assoc_kind: ty::AssocKind,
        assoc_name: Ident,
        span: Span,
        constraint: Option<&hir::AssocItemConstraint<'tcx>>,
    ) -> Result<ty::PolyTraitRef<'tcx>, ErrorGuaranteed>
    where
        I: Iterator<Item = ty::PolyTraitRef<'tcx>>,
    {
        let tcx = self.tcx();

        let mut matching_candidates = all_candidates().filter(|r| {
            self.probe_trait_that_defines_assoc_item(r.def_id(), assoc_kind, assoc_name)
        });

        let Some(bound) = matching_candidates.next() else {
            let reported = self.complain_about_assoc_item_not_found(
                all_candidates,
                qself,
                assoc_kind,
                assoc_name,
                span,
                constraint,
            );
            return Err(reported);
        };
        debug!(?bound);

        if let Some(bound2) = matching_candidates.next() {
            debug!(?bound2);

            let assoc_kind_str = errors::assoc_kind_str(assoc_kind);
            let qself_str = qself.to_string(tcx);
            let mut err = self.dcx().create_err(crate::errors::AmbiguousAssocItem {
                span,
                assoc_kind: assoc_kind_str,
                assoc_name,
                qself: &qself_str,
            });
            // Provide a more specific error code index entry for equality bindings.
            err.code(
                if let Some(constraint) = constraint
                    && let hir::AssocItemConstraintKind::Equality { .. } = constraint.kind
                {
                    E0222
                } else {
                    E0221
                },
            );

            // FIXME(#97583): Print associated item bindings properly (i.e., not as equality predicates!).
            // FIXME: Turn this into a structured, translateable & more actionable suggestion.
            let mut where_bounds = vec![];
            for bound in [bound, bound2].into_iter().chain(matching_candidates) {
                let bound_id = bound.def_id();
                let bound_span = tcx
                    .associated_items(bound_id)
                    .find_by_name_and_kind(tcx, assoc_name, assoc_kind, bound_id)
                    .and_then(|item| tcx.hir().span_if_local(item.def_id));

                if let Some(bound_span) = bound_span {
                    err.span_label(
                        bound_span,
                        format!("ambiguous `{assoc_name}` from `{}`", bound.print_trait_sugared(),),
                    );
                    if let Some(constraint) = constraint {
                        match constraint.kind {
                            hir::AssocItemConstraintKind::Equality { term } => {
                                let term: ty::Term<'_> = match term {
                                    hir::Term::Ty(ty) => self.lower_ty(ty).into(),
                                    hir::Term::Const(ct) => {
                                        ty::Const::from_const_arg(tcx, ct, ty::FeedConstTy::No)
                                            .into()
                                    }
                                };
                                // FIXME(#97583): This isn't syntactically well-formed!
                                where_bounds.push(format!(
                                    "        T: {trait}::{assoc_name} = {term}",
                                    trait = bound.print_only_trait_path(),
                                ));
                            }
                            // FIXME: Provide a suggestion.
                            hir::AssocItemConstraintKind::Bound { bounds: _ } => {}
                        }
                    } else {
                        err.span_suggestion_verbose(
                            span.with_hi(assoc_name.span.lo()),
                            "use fully-qualified syntax to disambiguate",
                            format!("<{qself_str} as {}>::", bound.print_only_trait_path()),
                            Applicability::MaybeIncorrect,
                        );
                    }
                } else {
                    err.note(format!(
                        "associated {assoc_kind_str} `{assoc_name}` could derive from `{}`",
                        bound.print_only_trait_path(),
                    ));
                }
            }
            if !where_bounds.is_empty() {
                err.help(format!(
                    "consider introducing a new type parameter `T` and adding `where` constraints:\
                     \n    where\n        T: {qself_str},\n{}",
                    where_bounds.join(",\n"),
                ));
                let reported = err.emit();
                return Err(reported);
            }
            err.emit();
        }

        Ok(bound)
    }

    /// Lower a [type-relative] path referring to an associated type or to an enum variant.
    ///
    /// If the path refers to an enum variant and `permit_variants` holds,
    /// the returned type is simply the provided self type `qself_ty`.
    ///
    /// A path like `A::B::C::D` is understood as `<A::B::C>::D`. I.e.,
    /// `qself_ty` / `qself` is `A::B::C` and `assoc_segment` is `D`.
    /// We return the lowered type and the `DefId` for the whole path.
    ///
    /// We only support associated type paths whose self type is a type parameter or a `Self`
    /// type alias (in a trait impl) like `T::Ty` (where `T` is a ty param) or `Self::Ty`.
    /// We **don't** support paths whose self type is an arbitrary type like `Struct::Ty` where
    /// struct `Struct` impls an in-scope trait that defines an associated type called `Ty`.
    /// For the latter case, we report ambiguity.
    /// While desirable to support, the implementation would be non-trivial. Tracked in [#22519].
    ///
    /// At the time of writing, *inherent associated types* are also resolved here. This however
    /// is [problematic][iat]. A proper implementation would be as non-trivial as the one
    /// described in the previous paragraph and their modeling of projections would likely be
    /// very similar in nature.
    ///
    /// [type-relative]: hir::QPath::TypeRelative
    /// [#22519]: https://github.com/rust-lang/rust/issues/22519
    /// [iat]: https://github.com/rust-lang/rust/issues/8995#issuecomment-1569208403
    //
    // NOTE: When this function starts resolving `Trait::AssocTy` successfully
    // it should also start reporting the `BARE_TRAIT_OBJECTS` lint.
    #[instrument(level = "debug", skip_all, ret)]
    pub fn lower_assoc_path(
        &self,
        hir_ref_id: HirId,
        span: Span,
        qself_ty: Ty<'tcx>,
        qself: &'tcx hir::Ty<'tcx>,
        assoc_segment: &'tcx hir::PathSegment<'tcx>,
        permit_variants: bool,
    ) -> Result<(Ty<'tcx>, DefKind, DefId), ErrorGuaranteed> {
        debug!(%qself_ty, ?assoc_segment.ident);
        let tcx = self.tcx();

        let assoc_ident = assoc_segment.ident;

        // Check if we have an enum variant or an inherent associated type.
        let mut variant_resolution = None;
        if let Some(adt_def) = self.probe_adt(span, qself_ty) {
            if adt_def.is_enum() {
                let variant_def = adt_def
                    .variants()
                    .iter()
                    .find(|vd| tcx.hygienic_eq(assoc_ident, vd.ident(tcx), adt_def.did()));
                if let Some(variant_def) = variant_def {
                    if permit_variants {
                        tcx.check_stability(variant_def.def_id, Some(hir_ref_id), span, None);
                        let _ = self.prohibit_generic_args(
                            slice::from_ref(assoc_segment).iter(),
                            GenericsArgsErrExtend::EnumVariant { qself, assoc_segment, adt_def },
                        );
                        return Ok((qself_ty, DefKind::Variant, variant_def.def_id));
                    } else {
                        variant_resolution = Some(variant_def.def_id);
                    }
                }
            }

            // FIXME(inherent_associated_types, #106719): Support self types other than ADTs.
            if let Some((ty, did)) = self.probe_inherent_assoc_ty(
                assoc_ident,
                assoc_segment,
                adt_def.did(),
                qself_ty,
                hir_ref_id,
                span,
            )? {
                return Ok((ty, DefKind::AssocTy, did));
            }
        }

        let qself_res = if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = &qself.kind {
            path.res
        } else {
            Res::Err
        };

        // Find the type of the associated item, and the trait where the associated
        // item is declared.
        let bound = match (qself_ty.kind(), qself_res) {
            (_, Res::SelfTyAlias { alias_to: impl_def_id, is_trait_impl: true, .. }) => {
                // `Self` in an impl of a trait -- we have a concrete self type and a
                // trait reference.
                let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) else {
                    // A cycle error occurred, most likely.
                    self.dcx().span_bug(span, "expected cycle error");
                };

                self.probe_single_bound_for_assoc_item(
                    || {
                        traits::supertraits(
                            tcx,
                            ty::Binder::dummy(trait_ref.instantiate_identity()),
                        )
                    },
                    AssocItemQSelf::SelfTyAlias,
                    ty::AssocKind::Type,
                    assoc_ident,
                    span,
                    None,
                )?
            }
            (
                &ty::Param(_),
                Res::SelfTyParam { trait_: param_did } | Res::Def(DefKind::TyParam, param_did),
            ) => self.probe_single_ty_param_bound_for_assoc_item(
                param_did.expect_local(),
                qself.span,
                ty::AssocKind::Type,
                assoc_ident,
                span,
            )?,
            _ => {
                let reported = if variant_resolution.is_some() {
                    // Variant in type position
                    let msg = format!("expected type, found variant `{assoc_ident}`");
                    self.dcx().span_err(span, msg)
                } else if qself_ty.is_enum() {
                    let mut err = struct_span_code_err!(
                        self.dcx(),
                        assoc_ident.span,
                        E0599,
                        "no variant named `{}` found for enum `{}`",
                        assoc_ident,
                        qself_ty,
                    );

                    let adt_def = qself_ty.ty_adt_def().expect("enum is not an ADT");
                    if let Some(variant_name) = find_best_match_for_name(
                        &adt_def
                            .variants()
                            .iter()
                            .map(|variant| variant.name)
                            .collect::<Vec<Symbol>>(),
                        assoc_ident.name,
                        None,
                    ) && let Some(variant) =
                        adt_def.variants().iter().find(|s| s.name == variant_name)
                    {
                        let mut suggestion = vec![(assoc_ident.span, variant_name.to_string())];
                        if let hir::Node::Stmt(hir::Stmt {
                            kind: hir::StmtKind::Semi(ref expr),
                            ..
                        })
                        | hir::Node::Expr(ref expr) = tcx.parent_hir_node(hir_ref_id)
                            && let hir::ExprKind::Struct(..) = expr.kind
                        {
                            match variant.ctor {
                                None => {
                                    // struct
                                    suggestion = vec![(
                                        assoc_ident.span.with_hi(expr.span.hi()),
                                        if variant.fields.is_empty() {
                                            format!("{variant_name} {{}}")
                                        } else {
                                            format!(
                                                "{variant_name} {{ {} }}",
                                                variant
                                                    .fields
                                                    .iter()
                                                    .map(|f| format!("{}: /* value */", f.name))
                                                    .collect::<Vec<_>>()
                                                    .join(", ")
                                            )
                                        },
                                    )];
                                }
                                Some((hir::def::CtorKind::Fn, def_id)) => {
                                    // tuple
                                    let fn_sig = tcx.fn_sig(def_id).instantiate_identity();
                                    let inputs = fn_sig.inputs().skip_binder();
                                    suggestion = vec![(
                                        assoc_ident.span.with_hi(expr.span.hi()),
                                        format!(
                                            "{variant_name}({})",
                                            inputs
                                                .iter()
                                                .map(|i| format!("/* {i} */"))
                                                .collect::<Vec<_>>()
                                                .join(", ")
                                        ),
                                    )];
                                }
                                Some((hir::def::CtorKind::Const, _)) => {
                                    // unit
                                    suggestion = vec![(
                                        assoc_ident.span.with_hi(expr.span.hi()),
                                        variant_name.to_string(),
                                    )];
                                }
                            }
                        }
                        err.multipart_suggestion_verbose(
                            "there is a variant with a similar name",
                            suggestion,
                            Applicability::HasPlaceholders,
                        );
                    } else {
                        err.span_label(
                            assoc_ident.span,
                            format!("variant not found in `{qself_ty}`"),
                        );
                    }

                    if let Some(sp) = tcx.hir().span_if_local(adt_def.did()) {
                        err.span_label(sp, format!("variant `{assoc_ident}` not found here"));
                    }

                    err.emit()
                } else if let Err(reported) = qself_ty.error_reported() {
                    reported
                } else if let ty::Alias(ty::Opaque, alias_ty) = qself_ty.kind() {
                    // `<impl Trait as OtherTrait>::Assoc` makes no sense.
                    struct_span_code_err!(
                        self.dcx(),
                        tcx.def_span(alias_ty.def_id),
                        E0667,
                        "`impl Trait` is not allowed in path parameters"
                    )
                    .emit() // Already reported in an earlier stage.
                } else {
                    self.maybe_report_similar_assoc_fn(span, qself_ty, qself)?;

                    let traits: Vec<_> =
                        self.probe_traits_that_match_assoc_ty(qself_ty, assoc_ident);

                    // Don't print `ty::Error` to the user.
                    self.report_ambiguous_assoc_ty(
                        span,
                        &[qself_ty.to_string()],
                        &traits,
                        assoc_ident.name,
                    )
                };
                return Err(reported);
            }
        };

        let trait_did = bound.def_id();
        let assoc_ty = self
            .probe_assoc_item(assoc_ident, ty::AssocKind::Type, hir_ref_id, span, trait_did)
            .expect("failed to find associated type");
        let ty = self.lower_assoc_ty(span, assoc_ty.def_id, assoc_segment, bound);

        if let Some(variant_def_id) = variant_resolution {
            tcx.node_span_lint(AMBIGUOUS_ASSOCIATED_ITEMS, hir_ref_id, span, |lint| {
                lint.primary_message("ambiguous associated item");
                let mut could_refer_to = |kind: DefKind, def_id, also| {
                    let note_msg = format!(
                        "`{}` could{} refer to the {} defined here",
                        assoc_ident,
                        also,
                        tcx.def_kind_descr(kind, def_id)
                    );
                    lint.span_note(tcx.def_span(def_id), note_msg);
                };

                could_refer_to(DefKind::Variant, variant_def_id, "");
                could_refer_to(DefKind::AssocTy, assoc_ty.def_id, " also");

                lint.span_suggestion(
                    span,
                    "use fully-qualified syntax",
                    format!("<{} as {}>::{}", qself_ty, tcx.item_name(trait_did), assoc_ident),
                    Applicability::MachineApplicable,
                );
            });
        }
        Ok((ty, DefKind::AssocTy, assoc_ty.def_id))
    }

    fn probe_inherent_assoc_ty(
        &self,
        name: Ident,
        segment: &hir::PathSegment<'tcx>,
        adt_did: DefId,
        self_ty: Ty<'tcx>,
        block: HirId,
        span: Span,
    ) -> Result<Option<(Ty<'tcx>, DefId)>, ErrorGuaranteed> {
        let tcx = self.tcx();

        // Don't attempt to look up inherent associated types when the feature is not enabled.
        // Theoretically it'd be fine to do so since we feature-gate their definition site.
        // However, due to current limitations of the implementation (caused by us performing
        // selection during HIR ty lowering instead of in the trait solver), IATs can lead to cycle
        // errors (#108491) which mask the feature-gate error, needlessly confusing users
        // who use IATs by accident (#113265).
        if !tcx.features().inherent_associated_types {
            return Ok(None);
        }

        let candidates: Vec<_> = tcx
            .inherent_impls(adt_did)
            .iter()
            .filter_map(|&impl_| {
                let (item, scope) =
                    self.probe_assoc_item_unchecked(name, ty::AssocKind::Type, block, impl_)?;
                Some((impl_, (item.def_id, scope)))
            })
            .collect();

        if candidates.is_empty() {
            return Ok(None);
        }

        //
        // Select applicable inherent associated type candidates modulo regions.
        //

        // In contexts that have no inference context, just make a new one.
        // We do need a local variable to store it, though.
        let infcx_;
        let infcx = match self.infcx() {
            Some(infcx) => infcx,
            None => {
                assert!(!self_ty.has_infer());
                infcx_ = tcx.infer_ctxt().ignoring_regions().build();
                &infcx_
            }
        };

        // FIXME(inherent_associated_types): Acquiring the ParamEnv this early leads to cycle errors
        // when inside of an ADT (#108491) or where clause.
        let param_env = tcx.param_env(block.owner);

        let mut universes = if self_ty.has_escaping_bound_vars() {
            vec![None; self_ty.outer_exclusive_binder().as_usize()]
        } else {
            vec![]
        };

        let (impl_, (assoc_item, def_scope)) = crate::traits::with_replaced_escaping_bound_vars(
            infcx,
            &mut universes,
            self_ty,
            |self_ty| {
                self.select_inherent_assoc_type_candidates(
                    infcx, name, span, self_ty, param_env, candidates,
                )
            },
        )?;

        self.check_assoc_item(assoc_item, name, def_scope, block, span);

        // FIXME(fmease): Currently creating throwaway `parent_args` to please
        // `lower_generic_args_of_assoc_item`. Modify the latter instead (or sth. similar) to
        // not require the parent args logic.
        let parent_args = ty::GenericArgs::identity_for_item(tcx, impl_);
        let args = self.lower_generic_args_of_assoc_item(span, assoc_item, segment, parent_args);
        let args = tcx.mk_args_from_iter(
            std::iter::once(ty::GenericArg::from(self_ty))
                .chain(args.into_iter().skip(parent_args.len())),
        );

        let ty =
            Ty::new_alias(tcx, ty::Inherent, ty::AliasTy::new_from_args(tcx, assoc_item, args));

        Ok(Some((ty, assoc_item)))
    }

    fn select_inherent_assoc_type_candidates(
        &self,
        infcx: &InferCtxt<'tcx>,
        name: Ident,
        span: Span,
        self_ty: Ty<'tcx>,
        param_env: ParamEnv<'tcx>,
        candidates: Vec<(DefId, (DefId, DefId))>,
    ) -> Result<(DefId, (DefId, DefId)), ErrorGuaranteed> {
        let tcx = self.tcx();
        let mut fulfillment_errors = Vec::new();

        let applicable_candidates: Vec<_> = candidates
            .iter()
            .copied()
            .filter(|&(impl_, _)| {
                infcx.probe(|_| {
                    let ocx = ObligationCtxt::new_with_diagnostics(infcx);
                    let self_ty = ocx.normalize(&ObligationCause::dummy(), param_env, self_ty);

                    let impl_args = infcx.fresh_args_for_item(span, impl_);
                    let impl_ty = tcx.type_of(impl_).instantiate(tcx, impl_args);
                    let impl_ty = ocx.normalize(&ObligationCause::dummy(), param_env, impl_ty);

                    // Check that the self types can be related.
                    if ocx.eq(&ObligationCause::dummy(), param_env, impl_ty, self_ty).is_err() {
                        return false;
                    }

                    // Check whether the impl imposes obligations we have to worry about.
                    let impl_bounds = tcx.predicates_of(impl_).instantiate(tcx, impl_args);
                    let impl_bounds =
                        ocx.normalize(&ObligationCause::dummy(), param_env, impl_bounds);
                    let impl_obligations = traits::predicates_for_generics(
                        |_, _| ObligationCause::dummy(),
                        param_env,
                        impl_bounds,
                    );
                    ocx.register_obligations(impl_obligations);

                    let mut errors = ocx.select_where_possible();
                    if !errors.is_empty() {
                        fulfillment_errors.append(&mut errors);
                        return false;
                    }

                    true
                })
            })
            .collect();

        match &applicable_candidates[..] {
            &[] => Err(self.complain_about_inherent_assoc_ty_not_found(
                name,
                self_ty,
                candidates,
                fulfillment_errors,
                span,
            )),

            &[applicable_candidate] => Ok(applicable_candidate),

            &[_, ..] => Err(self.complain_about_ambiguous_inherent_assoc_ty(
                name,
                applicable_candidates.into_iter().map(|(_, (candidate, _))| candidate).collect(),
                span,
            )),
        }
    }

    /// Given name and kind search for the assoc item in the provided scope and check if it's accessible[^1].
    ///
    /// [^1]: I.e., accessible in the provided scope wrt. visibility and stability.
    fn probe_assoc_item(
        &self,
        ident: Ident,
        kind: ty::AssocKind,
        block: HirId,
        span: Span,
        scope: DefId,
    ) -> Option<ty::AssocItem> {
        let (item, scope) = self.probe_assoc_item_unchecked(ident, kind, block, scope)?;
        self.check_assoc_item(item.def_id, ident, scope, block, span);
        Some(item)
    }

    /// Given name and kind search for the assoc item in the provided scope
    /// *without* checking if it's accessible[^1].
    ///
    /// [^1]: I.e., accessible in the provided scope wrt. visibility and stability.
    fn probe_assoc_item_unchecked(
        &self,
        ident: Ident,
        kind: ty::AssocKind,
        block: HirId,
        scope: DefId,
    ) -> Option<(ty::AssocItem, /*scope*/ DefId)> {
        let tcx = self.tcx();

        let (ident, def_scope) = tcx.adjust_ident_and_get_scope(ident, scope, block);
        // We have already adjusted the item name above, so compare with `.normalize_to_macros_2_0()`
        // instead of calling `filter_by_name_and_kind` which would needlessly normalize the
        // `ident` again and again.
        let item = tcx
            .associated_items(scope)
            .filter_by_name_unhygienic(ident.name)
            .find(|i| i.kind == kind && i.ident(tcx).normalize_to_macros_2_0() == ident)?;

        Some((*item, def_scope))
    }

    /// Check if the given assoc item is accessible in the provided scope wrt. visibility and stability.
    fn check_assoc_item(
        &self,
        item_def_id: DefId,
        ident: Ident,
        scope: DefId,
        block: HirId,
        span: Span,
    ) {
        let tcx = self.tcx();

        if !tcx.visibility(item_def_id).is_accessible_from(scope, tcx) {
            self.dcx().emit_err(crate::errors::AssocItemIsPrivate {
                span,
                kind: tcx.def_descr(item_def_id),
                name: ident,
                defined_here_label: tcx.def_span(item_def_id),
            });
        }

        tcx.check_stability(item_def_id, Some(block), span, None);
    }

    fn probe_traits_that_match_assoc_ty(
        &self,
        qself_ty: Ty<'tcx>,
        assoc_ident: Ident,
    ) -> Vec<String> {
        let tcx = self.tcx();

        // In contexts that have no inference context, just make a new one.
        // We do need a local variable to store it, though.
        let infcx_;
        let infcx = if let Some(infcx) = self.infcx() {
            infcx
        } else {
            assert!(!qself_ty.has_infer());
            infcx_ = tcx.infer_ctxt().build();
            &infcx_
        };

        tcx.all_traits()
            .filter(|trait_def_id| {
                // Consider only traits with the associated type
                tcx.associated_items(*trait_def_id)
                        .in_definition_order()
                        .any(|i| {
                            i.kind.namespace() == Namespace::TypeNS
                                && i.ident(tcx).normalize_to_macros_2_0() == assoc_ident
                                && matches!(i.kind, ty::AssocKind::Type)
                        })
                    // Consider only accessible traits
                    && tcx.visibility(*trait_def_id)
                        .is_accessible_from(self.item_def_id(), tcx)
                    && tcx.all_impls(*trait_def_id)
                        .any(|impl_def_id| {
                            let impl_header = tcx.impl_trait_header(impl_def_id);
                            impl_header.is_some_and(|header| {
                                let trait_ref = header.trait_ref.instantiate(
                                    tcx,
                                    infcx.fresh_args_for_item(DUMMY_SP, impl_def_id),
                                );

                                let value = tcx.fold_regions(qself_ty, |_, _| tcx.lifetimes.re_erased);
                                // FIXME: Don't bother dealing with non-lifetime binders here...
                                if value.has_escaping_bound_vars() {
                                    return false;
                                }
                                infcx
                                    .can_eq(
                                        ty::ParamEnv::empty(),
                                        trait_ref.self_ty(),
                                        value,
                                    ) && header.polarity != ty::ImplPolarity::Negative
                            })
                        })
            })
            .map(|trait_def_id| tcx.def_path_str(trait_def_id))
            .collect()
    }

    /// Lower a qualified path to a type.
    #[instrument(level = "debug", skip_all)]
    fn lower_qpath(
        &self,
        span: Span,
        opt_self_ty: Option<Ty<'tcx>>,
        item_def_id: DefId,
        trait_segment: &hir::PathSegment<'tcx>,
        item_segment: &hir::PathSegment<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx();

        let trait_def_id = tcx.parent(item_def_id);
        debug!(?trait_def_id);

        let Some(self_ty) = opt_self_ty else {
            return self.error_missing_qpath_self_ty(trait_def_id, span, item_segment);
        };
        debug!(?self_ty);

        let trait_ref =
            self.lower_mono_trait_ref(span, trait_def_id, self_ty, trait_segment, false);
        debug!(?trait_ref);

        let item_args =
            self.lower_generic_args_of_assoc_item(span, item_def_id, item_segment, trait_ref.args);

        Ty::new_projection_from_args(tcx, item_def_id, item_args)
    }

    fn error_missing_qpath_self_ty(
        &self,
        trait_def_id: DefId,
        span: Span,
        item_segment: &hir::PathSegment<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx();
        let path_str = tcx.def_path_str(trait_def_id);

        let def_id = self.item_def_id();
        debug!(item_def_id = ?def_id);

        // FIXME: document why/how this is different from `tcx.local_parent(def_id)`
        let parent_def_id =
            tcx.hir().get_parent_item(tcx.local_def_id_to_hir_id(def_id)).to_def_id();
        debug!(?parent_def_id);

        // If the trait in segment is the same as the trait defining the item,
        // use the `<Self as ..>` syntax in the error.
        let is_part_of_self_trait_constraints = def_id.to_def_id() == trait_def_id;
        let is_part_of_fn_in_self_trait = parent_def_id == trait_def_id;

        let type_names = if is_part_of_self_trait_constraints || is_part_of_fn_in_self_trait {
            vec!["Self".to_string()]
        } else {
            // Find all the types that have an `impl` for the trait.
            tcx.all_impls(trait_def_id)
                .filter_map(|impl_def_id| tcx.impl_trait_header(impl_def_id))
                .filter(|header| {
                    // Consider only accessible traits
                    tcx.visibility(trait_def_id).is_accessible_from(self.item_def_id(), tcx)
                        && header.polarity != ty::ImplPolarity::Negative
                })
                .map(|header| header.trait_ref.instantiate_identity().self_ty())
                // We don't care about blanket impls.
                .filter(|self_ty| !self_ty.has_non_region_param())
                .map(|self_ty| tcx.erase_regions(self_ty).to_string())
                .collect()
        };
        // FIXME: also look at `tcx.generics_of(self.item_def_id()).params` any that
        // references the trait. Relevant for the first case in
        // `src/test/ui/associated-types/associated-types-in-ambiguous-context.rs`
        let reported =
            self.report_ambiguous_assoc_ty(span, &type_names, &[path_str], item_segment.ident.name);
        Ty::new_error(tcx, reported)
    }

    pub fn prohibit_generic_args<'a>(
        &self,
        segments: impl Iterator<Item = &'a hir::PathSegment<'a>> + Clone,
        err_extend: GenericsArgsErrExtend<'_>,
    ) -> Result<(), ErrorGuaranteed> {
        let args_visitors = segments.clone().flat_map(|segment| segment.args().args);
        let mut result = Ok(());
        if let Some(_) = args_visitors.clone().next() {
            result = Err(self.report_prohibit_generics_error(
                segments.clone(),
                args_visitors,
                err_extend,
            ));
        }

        for segment in segments {
            // Only emit the first error to avoid overloading the user with error messages.
            if let Some(c) = segment.args().constraints.first() {
                return Err(prohibit_assoc_item_constraint(self, c, None));
            }
        }

        result
    }

    /// Probe path segments that are semantically allowed to have generic arguments.
    ///
    /// ### Example
    ///
    /// ```ignore (illustrative)
    ///    Option::None::<()>
    /// //         ^^^^ permitted to have generic args
    ///
    /// // ==> [GenericPathSegment(Option_def_id, 1)]
    ///
    ///    Option::<()>::None
    /// // ^^^^^^        ^^^^ *not* permitted to have generic args
    /// // permitted to have generic args
    ///
    /// // ==> [GenericPathSegment(Option_def_id, 0)]
    /// ```
    // FIXME(eddyb, varkor) handle type paths here too, not just value ones.
    pub fn probe_generic_path_segments(
        &self,
        segments: &[hir::PathSegment<'_>],
        self_ty: Option<Ty<'tcx>>,
        kind: DefKind,
        def_id: DefId,
        span: Span,
    ) -> Vec<GenericPathSegment> {
        // We need to extract the generic arguments supplied by the user in
        // the path `path`. Due to the current setup, this is a bit of a
        // tricky process; the problem is that resolve only tells us the
        // end-point of the path resolution, and not the intermediate steps.
        // Luckily, we can (at least for now) deduce the intermediate steps
        // just from the end-point.
        //
        // There are basically five cases to consider:
        //
        // 1. Reference to a constructor of a struct:
        //
        //        struct Foo<T>(...)
        //
        //    In this case, the generic arguments are declared in the type space.
        //
        // 2. Reference to a constructor of an enum variant:
        //
        //        enum E<T> { Foo(...) }
        //
        //    In this case, the generic arguments are defined in the type space,
        //    but may be specified either on the type or the variant.
        //
        // 3. Reference to a free function or constant:
        //
        //        fn foo<T>() {}
        //
        //    In this case, the path will again always have the form
        //    `a::b::foo::<T>` where only the final segment should have generic
        //    arguments. However, in this case, those arguments are declared on
        //    a value, and hence are in the value space.
        //
        // 4. Reference to an associated function or constant:
        //
        //        impl<A> SomeStruct<A> {
        //            fn foo<B>(...) {}
        //        }
        //
        //    Here we can have a path like `a::b::SomeStruct::<A>::foo::<B>`,
        //    in which case generic arguments may appear in two places. The
        //    penultimate segment, `SomeStruct::<A>`, contains generic arguments
        //    in the type space, and the final segment, `foo::<B>` contains
        //    generic arguments in value space.
        //
        // The first step then is to categorize the segments appropriately.

        let tcx = self.tcx();

        assert!(!segments.is_empty());
        let last = segments.len() - 1;

        let mut generic_segments = vec![];

        match kind {
            // Case 1. Reference to a struct constructor.
            DefKind::Ctor(CtorOf::Struct, ..) => {
                // Everything but the final segment should have no
                // parameters at all.
                let generics = tcx.generics_of(def_id);
                // Variant and struct constructors use the
                // generics of their parent type definition.
                let generics_def_id = generics.parent.unwrap_or(def_id);
                generic_segments.push(GenericPathSegment(generics_def_id, last));
            }

            // Case 2. Reference to a variant constructor.
            DefKind::Ctor(CtorOf::Variant, ..) | DefKind::Variant => {
                let (generics_def_id, index) = if let Some(self_ty) = self_ty {
                    let adt_def = self.probe_adt(span, self_ty).unwrap();
                    debug_assert!(adt_def.is_enum());
                    (adt_def.did(), last)
                } else if last >= 1 && segments[last - 1].args.is_some() {
                    // Everything but the penultimate segment should have no
                    // parameters at all.
                    let mut def_id = def_id;

                    // `DefKind::Ctor` -> `DefKind::Variant`
                    if let DefKind::Ctor(..) = kind {
                        def_id = tcx.parent(def_id);
                    }

                    // `DefKind::Variant` -> `DefKind::Enum`
                    let enum_def_id = tcx.parent(def_id);
                    (enum_def_id, last - 1)
                } else {
                    // FIXME: lint here recommending `Enum::<...>::Variant` form
                    // instead of `Enum::Variant::<...>` form.

                    // Everything but the final segment should have no
                    // parameters at all.
                    let generics = tcx.generics_of(def_id);
                    // Variant and struct constructors use the
                    // generics of their parent type definition.
                    (generics.parent.unwrap_or(def_id), last)
                };
                generic_segments.push(GenericPathSegment(generics_def_id, index));
            }

            // Case 3. Reference to a top-level value.
            DefKind::Fn | DefKind::Const | DefKind::ConstParam | DefKind::Static { .. } => {
                generic_segments.push(GenericPathSegment(def_id, last));
            }

            // Case 4. Reference to a method or associated const.
            DefKind::AssocFn | DefKind::AssocConst => {
                if segments.len() >= 2 {
                    let generics = tcx.generics_of(def_id);
                    generic_segments.push(GenericPathSegment(generics.parent.unwrap(), last - 1));
                }
                generic_segments.push(GenericPathSegment(def_id, last));
            }

            kind => bug!("unexpected definition kind {:?} for {:?}", kind, def_id),
        }

        debug!(?generic_segments);

        generic_segments
    }

    /// Lower a type `Path` to a type.
    #[instrument(level = "debug", skip_all)]
    pub fn lower_path(
        &self,
        opt_self_ty: Option<Ty<'tcx>>,
        path: &hir::Path<'tcx>,
        hir_id: HirId,
        permit_variants: bool,
    ) -> Ty<'tcx> {
        debug!(?path.res, ?opt_self_ty, ?path.segments);
        let tcx = self.tcx();

        let span = path.span;
        match path.res {
            Res::Def(DefKind::OpaqueTy, did) => {
                // Check for desugared `impl Trait`.
                assert!(tcx.is_type_alias_impl_trait(did));
                let item_segment = path.segments.split_last().unwrap();
                let _ = self
                    .prohibit_generic_args(item_segment.1.iter(), GenericsArgsErrExtend::OpaqueTy);
                let args = self.lower_generic_args_of_path_segment(span, did, item_segment.0);
                Ty::new_opaque(tcx, did, args)
            }
            Res::Def(
                DefKind::Enum
                | DefKind::TyAlias
                | DefKind::Struct
                | DefKind::Union
                | DefKind::ForeignTy,
                did,
            ) => {
                assert_eq!(opt_self_ty, None);
                let _ = self.prohibit_generic_args(
                    path.segments.split_last().unwrap().1.iter(),
                    GenericsArgsErrExtend::None,
                );
                self.lower_path_segment(span, did, path.segments.last().unwrap())
            }
            Res::Def(kind @ DefKind::Variant, def_id) if permit_variants => {
                // Lower "variant type" as if it were a real type.
                // The resulting `Ty` is type of the variant's enum for now.
                assert_eq!(opt_self_ty, None);

                let generic_segments =
                    self.probe_generic_path_segments(path.segments, None, kind, def_id, span);
                let indices: FxHashSet<_> =
                    generic_segments.iter().map(|GenericPathSegment(_, index)| index).collect();
                let _ = self.prohibit_generic_args(
                    path.segments.iter().enumerate().filter_map(|(index, seg)| {
                        if !indices.contains(&index) { Some(seg) } else { None }
                    }),
                    GenericsArgsErrExtend::DefVariant,
                );

                let GenericPathSegment(def_id, index) = generic_segments.last().unwrap();
                self.lower_path_segment(span, *def_id, &path.segments[*index])
            }
            Res::Def(DefKind::TyParam, def_id) => {
                assert_eq!(opt_self_ty, None);
                let _ = self.prohibit_generic_args(
                    path.segments.iter(),
                    GenericsArgsErrExtend::Param(def_id),
                );
                self.lower_ty_param(hir_id)
            }
            Res::SelfTyParam { .. } => {
                // `Self` in trait or type alias.
                assert_eq!(opt_self_ty, None);
                let _ = self.prohibit_generic_args(
                    path.segments.iter(),
                    if let [hir::PathSegment { args: Some(args), ident, .. }] = &path.segments {
                        GenericsArgsErrExtend::SelfTyParam(
                            ident.span.shrink_to_hi().to(args.span_ext),
                        )
                    } else {
                        GenericsArgsErrExtend::None
                    },
                );
                tcx.types.self_param
            }
            Res::SelfTyAlias { alias_to: def_id, forbid_generic, .. } => {
                // `Self` in impl (we know the concrete type).
                assert_eq!(opt_self_ty, None);
                // Try to evaluate any array length constants.
                let ty = tcx.at(span).type_of(def_id).instantiate_identity();
                let _ = self.prohibit_generic_args(
                    path.segments.iter(),
                    GenericsArgsErrExtend::SelfTyAlias { def_id, span },
                );
                // HACK(min_const_generics): Forbid generic `Self` types
                // here as we can't easily do that during nameres.
                //
                // We do this before normalization as we otherwise allow
                // ```rust
                // trait AlwaysApplicable { type Assoc; }
                // impl<T: ?Sized> AlwaysApplicable for T { type Assoc = usize; }
                //
                // trait BindsParam<T> {
                //     type ArrayTy;
                // }
                // impl<T> BindsParam<T> for <T as AlwaysApplicable>::Assoc {
                //    type ArrayTy = [u8; Self::MAX];
                // }
                // ```
                // Note that the normalization happens in the param env of
                // the anon const, which is empty. This is why the
                // `AlwaysApplicable` impl needs a `T: ?Sized` bound for
                // this to compile if we were to normalize here.
                if forbid_generic && ty.has_param() {
                    let mut err = self.dcx().struct_span_err(
                        path.span,
                        "generic `Self` types are currently not permitted in anonymous constants",
                    );
                    if let Some(hir::Node::Item(&hir::Item {
                        kind: hir::ItemKind::Impl(impl_),
                        ..
                    })) = tcx.hir().get_if_local(def_id)
                    {
                        err.span_note(impl_.self_ty.span, "not a concrete type");
                    }
                    let reported = err.emit();
                    Ty::new_error(tcx, reported)
                } else {
                    ty
                }
            }
            Res::Def(DefKind::AssocTy, def_id) => {
                debug_assert!(path.segments.len() >= 2);
                let _ = self.prohibit_generic_args(
                    path.segments[..path.segments.len() - 2].iter(),
                    GenericsArgsErrExtend::None,
                );
                self.lower_qpath(
                    span,
                    opt_self_ty,
                    def_id,
                    &path.segments[path.segments.len() - 2],
                    path.segments.last().unwrap(),
                )
            }
            Res::PrimTy(prim_ty) => {
                assert_eq!(opt_self_ty, None);
                let _ = self.prohibit_generic_args(
                    path.segments.iter(),
                    GenericsArgsErrExtend::PrimTy(prim_ty),
                );
                match prim_ty {
                    hir::PrimTy::Bool => tcx.types.bool,
                    hir::PrimTy::Char => tcx.types.char,
                    hir::PrimTy::Int(it) => Ty::new_int(tcx, ty::int_ty(it)),
                    hir::PrimTy::Uint(uit) => Ty::new_uint(tcx, ty::uint_ty(uit)),
                    hir::PrimTy::Float(ft) => Ty::new_float(tcx, ty::float_ty(ft)),
                    hir::PrimTy::Str => tcx.types.str_,
                }
            }
            Res::Err => {
                let e = self
                    .tcx()
                    .dcx()
                    .span_delayed_bug(path.span, "path with `Res::Err` but no error emitted");
                Ty::new_error(tcx, e)
            }
            Res::Def(..) => {
                assert_eq!(
                    path.segments.get(0).map(|seg| seg.ident.name),
                    Some(kw::SelfUpper),
                    "only expected incorrect resolution for `Self`"
                );
                Ty::new_error(
                    self.tcx(),
                    self.dcx().span_delayed_bug(span, "incorrect resolution for `Self`"),
                )
            }
            _ => span_bug!(span, "unexpected resolution: {:?}", path.res),
        }
    }

    /// Lower a type parameter from the HIR to our internal notion of a type.
    ///
    /// Early-bound type parameters get lowered to [`ty::Param`]
    /// and late-bound ones to [`ty::Bound`].
    pub(crate) fn lower_ty_param(&self, hir_id: HirId) -> Ty<'tcx> {
        let tcx = self.tcx();
        match tcx.named_bound_var(hir_id) {
            Some(rbv::ResolvedArg::LateBound(debruijn, index, def_id)) => {
                let name = tcx.item_name(def_id.to_def_id());
                let br = ty::BoundTy {
                    var: ty::BoundVar::from_u32(index),
                    kind: ty::BoundTyKind::Param(def_id.to_def_id(), name),
                };
                Ty::new_bound(tcx, debruijn, br)
            }
            Some(rbv::ResolvedArg::EarlyBound(def_id)) => {
                let item_def_id = tcx.hir().ty_param_owner(def_id);
                let generics = tcx.generics_of(item_def_id);
                let index = generics.param_def_id_to_index[&def_id.to_def_id()];
                Ty::new_param(tcx, index, tcx.hir().ty_param_name(def_id))
            }
            Some(rbv::ResolvedArg::Error(guar)) => Ty::new_error(tcx, guar),
            arg => bug!("unexpected bound var resolution for {hir_id:?}: {arg:?}"),
        }
    }

    /// Lower a const parameter from the HIR to our internal notion of a constant.
    ///
    /// Early-bound const parameters get lowered to [`ty::ConstKind::Param`]
    /// and late-bound ones to [`ty::ConstKind::Bound`].
    pub(crate) fn lower_const_param(&self, hir_id: HirId) -> Const<'tcx> {
        let tcx = self.tcx();
        match tcx.named_bound_var(hir_id) {
            Some(rbv::ResolvedArg::EarlyBound(def_id)) => {
                // Find the name and index of the const parameter by indexing the generics of
                // the parent item and construct a `ParamConst`.
                let item_def_id = tcx.local_parent(def_id);
                let generics = tcx.generics_of(item_def_id);
                let index = generics.param_def_id_to_index[&def_id.to_def_id()];
                let name = tcx.item_name(def_id.to_def_id());
                ty::Const::new_param(tcx, ty::ParamConst::new(index, name))
            }
            Some(rbv::ResolvedArg::LateBound(debruijn, index, _)) => {
                ty::Const::new_bound(tcx, debruijn, ty::BoundVar::from_u32(index))
            }
            Some(rbv::ResolvedArg::Error(guar)) => ty::Const::new_error(tcx, guar),
            arg => bug!("unexpected bound var resolution for {:?}: {arg:?}", hir_id),
        }
    }

    fn lower_delegation_ty(&self, idx: hir::InferDelegationKind) -> Ty<'tcx> {
        let delegation_sig = self.tcx().inherit_sig_for_delegation_item(self.item_def_id());
        match idx {
            hir::InferDelegationKind::Input(idx) => delegation_sig[idx],
            hir::InferDelegationKind::Output => *delegation_sig.last().unwrap(),
        }
    }

    /// Lower a type from the HIR to our internal notion of a type given some extra data for diagnostics.
    ///
    /// Extra diagnostic data:
    ///
    /// 1. `borrowed`: Whether trait object types are borrowed like in `&dyn Trait`.
    ///    Used to avoid emitting redundant errors.
    /// 2. `in_path`: Whether the type appears inside of a path.
    ///    Used to provide correct diagnostics for bare trait object types.
    #[instrument(level = "debug", skip(self), ret)]
    pub fn lower_ty(&self, hir_ty: &hir::Ty<'tcx>) -> Ty<'tcx> {
        let tcx = self.tcx();

        let result_ty = match &hir_ty.kind {
            hir::TyKind::InferDelegation(_, idx) => self.lower_delegation_ty(*idx),
            hir::TyKind::Slice(ty) => Ty::new_slice(tcx, self.lower_ty(ty)),
            hir::TyKind::Ptr(mt) => Ty::new_ptr(tcx, self.lower_ty(mt.ty), mt.mutbl),
            hir::TyKind::Ref(region, mt) => {
                let r = self.lower_lifetime(region, RegionInferReason::Reference);
                debug!(?r);
                let t = self.lower_ty(mt.ty);
                Ty::new_ref(tcx, r, t, mt.mutbl)
            }
            hir::TyKind::Never => tcx.types.never,
            hir::TyKind::Tup(fields) => {
                Ty::new_tup_from_iter(tcx, fields.iter().map(|t| self.lower_ty(t)))
            }
            hir::TyKind::AnonAdt(item_id) => {
                let _guard = debug_span!("AnonAdt");

                let did = item_id.owner_id.def_id;
                let adt_def = tcx.adt_def(did);

                let args = ty::GenericArgs::for_item(tcx, did.to_def_id(), |param, _| {
                    tcx.mk_param_from_def(param)
                });
                debug!(?args);

                Ty::new_adt(tcx, adt_def, tcx.mk_args(args))
            }
            hir::TyKind::BareFn(bf) => {
                require_c_abi_if_c_variadic(tcx, bf.decl, bf.abi, hir_ty.span);

                Ty::new_fn_ptr(
                    tcx,
                    self.lower_fn_ty(hir_ty.hir_id, bf.safety, bf.abi, bf.decl, None, Some(hir_ty)),
                )
            }
            hir::TyKind::TraitObject(bounds, lifetime, repr) => {
                if let Some(guar) = self.prohibit_or_lint_bare_trait_object_ty(hir_ty) {
                    // Don't continue with type analysis if the `dyn` keyword is missing
                    // It generates confusing errors, especially if the user meant to use another
                    // keyword like `impl`
                    Ty::new_error(tcx, guar)
                } else {
                    let repr = match repr {
                        TraitObjectSyntax::Dyn | TraitObjectSyntax::None => ty::Dyn,
                        TraitObjectSyntax::DynStar => ty::DynStar,
                    };
                    self.lower_trait_object_ty(hir_ty.span, hir_ty.hir_id, bounds, lifetime, repr)
                }
            }
            // If we encounter a fully qualified path with RTN generics, then it must have
            // *not* gone through `lower_ty_maybe_return_type_notation`, and therefore
            // it's certainly in an illegal position.
            hir::TyKind::Path(hir::QPath::Resolved(_, path))
                if path.segments.last().and_then(|segment| segment.args).is_some_and(|args| {
                    matches!(args.parenthesized, hir::GenericArgsParentheses::ReturnTypeNotation)
                }) =>
            {
                let guar = self.dcx().emit_err(BadReturnTypeNotation { span: hir_ty.span });
                Ty::new_error(tcx, guar)
            }
            hir::TyKind::Path(hir::QPath::Resolved(maybe_qself, path)) => {
                debug!(?maybe_qself, ?path);
                let opt_self_ty = maybe_qself.as_ref().map(|qself| self.lower_ty(qself));
                self.lower_path(opt_self_ty, path, hir_ty.hir_id, false)
            }
            &hir::TyKind::OpaqueDef(opaque_ty, lifetimes) => {
                let local_def_id = opaque_ty.def_id;

                // If this is an RPITIT and we are using the new RPITIT lowering scheme, we
                // generate the def_id of an associated type for the trait and return as
                // type a projection.
                match opaque_ty.origin {
                    hir::OpaqueTyOrigin::FnReturn {
                        in_trait_or_impl: Some(hir::RpitContext::Trait),
                        ..
                    }
                    | hir::OpaqueTyOrigin::AsyncFn {
                        in_trait_or_impl: Some(hir::RpitContext::Trait),
                        ..
                    } => self.lower_opaque_ty(
                        tcx.associated_type_for_impl_trait_in_trait(local_def_id).to_def_id(),
                        lifetimes,
                        true,
                    ),
                    hir::OpaqueTyOrigin::FnReturn {
                        in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl),
                        ..
                    }
                    | hir::OpaqueTyOrigin::AsyncFn {
                        in_trait_or_impl: None | Some(hir::RpitContext::TraitImpl),
                        ..
                    }
                    | hir::OpaqueTyOrigin::TyAlias { .. } => {
                        self.lower_opaque_ty(local_def_id.to_def_id(), lifetimes, false)
                    }
                }
            }
            // If we encounter a type relative path with RTN generics, then it must have
            // *not* gone through `lower_ty_maybe_return_type_notation`, and therefore
            // it's certainly in an illegal position.
            hir::TyKind::Path(hir::QPath::TypeRelative(_, segment))
                if segment.args.is_some_and(|args| {
                    matches!(args.parenthesized, hir::GenericArgsParentheses::ReturnTypeNotation)
                }) =>
            {
                let guar = self.dcx().emit_err(BadReturnTypeNotation { span: hir_ty.span });
                Ty::new_error(tcx, guar)
            }
            hir::TyKind::Path(hir::QPath::TypeRelative(qself, segment)) => {
                debug!(?qself, ?segment);
                let ty = self.lower_ty(qself);
                self.lower_assoc_path(hir_ty.hir_id, hir_ty.span, ty, qself, segment, false)
                    .map(|(ty, _, _)| ty)
                    .unwrap_or_else(|guar| Ty::new_error(tcx, guar))
            }
            &hir::TyKind::Path(hir::QPath::LangItem(lang_item, span)) => {
                let def_id = tcx.require_lang_item(lang_item, Some(span));
                let (args, _) = self.lower_generic_args_of_path(
                    span,
                    def_id,
                    &[],
                    &hir::PathSegment::invalid(),
                    None,
                );
                tcx.at(span).type_of(def_id).instantiate(tcx, args)
            }
            hir::TyKind::Array(ty, length) => {
                let length = match length {
                    hir::ArrayLen::Infer(inf) => self.ct_infer(None, inf.span),
                    hir::ArrayLen::Body(constant) => {
                        ty::Const::from_const_arg(tcx, constant, ty::FeedConstTy::No)
                    }
                };

                Ty::new_array_with_const_len(tcx, self.lower_ty(ty), length)
            }
            hir::TyKind::Typeof(e) => tcx.type_of(e.def_id).instantiate_identity(),
            hir::TyKind::Infer => {
                // Infer also appears as the type of arguments or return
                // values in an ExprKind::Closure, or as
                // the type of local variables. Both of these cases are
                // handled specially and will not descend into this routine.
                self.ty_infer(None, hir_ty.span)
            }
            hir::TyKind::Pat(ty, pat) => {
                let ty = self.lower_ty(ty);
                let pat_ty = match pat.kind {
                    hir::PatKind::Wild => {
                        let err = self.dcx().emit_err(WildPatTy { span: pat.span });
                        Ty::new_error(tcx, err)
                    }
                    hir::PatKind::Range(start, end, include_end) => {
                        let expr_to_const = |expr: &'tcx hir::Expr<'tcx>| -> ty::Const<'tcx> {
                            let (expr, neg) = match expr.kind {
                                hir::ExprKind::Unary(hir::UnOp::Neg, negated) => {
                                    (negated, Some((expr.hir_id, expr.span)))
                                }
                                _ => (expr, None),
                            };
                            let (c, c_ty) = match &expr.kind {
                                hir::ExprKind::Lit(lit) => {
                                    let lit_input =
                                        LitToConstInput { lit: &lit.node, ty, neg: neg.is_some() };
                                    let ct = match tcx.lit_to_const(lit_input) {
                                        Ok(c) => c,
                                        Err(LitToConstError::Reported(err)) => {
                                            ty::Const::new_error(tcx, err)
                                        }
                                        Err(LitToConstError::TypeError) => todo!(),
                                    };
                                    (ct, ty)
                                }

                                hir::ExprKind::Path(hir::QPath::Resolved(
                                    _,
                                    path @ &hir::Path {
                                        res: Res::Def(DefKind::ConstParam, def_id),
                                        ..
                                    },
                                )) => {
                                    let _ = self.prohibit_generic_args(
                                        path.segments.iter(),
                                        GenericsArgsErrExtend::Param(def_id),
                                    );
                                    let ty = tcx
                                        .type_of(def_id)
                                        .no_bound_vars()
                                        .expect("const parameter types cannot be generic");
                                    let ct = self.lower_const_param(expr.hir_id);
                                    (ct, ty)
                                }

                                _ => {
                                    let err = tcx
                                        .dcx()
                                        .emit_err(crate::errors::NonConstRange { span: expr.span });
                                    (ty::Const::new_error(tcx, err), Ty::new_error(tcx, err))
                                }
                            };
                            self.record_ty(expr.hir_id, c_ty, expr.span);
                            if let Some((id, span)) = neg {
                                self.record_ty(id, c_ty, span);
                            }
                            c
                        };

                        let start = start.map(expr_to_const);
                        let end = end.map(expr_to_const);

                        let include_end = match include_end {
                            hir::RangeEnd::Included => true,
                            hir::RangeEnd::Excluded => false,
                        };

                        let pat = tcx.mk_pat(ty::PatternKind::Range { start, end, include_end });
                        Ty::new_pat(tcx, ty, pat)
                    }
                    hir::PatKind::Err(e) => Ty::new_error(tcx, e),
                    _ => Ty::new_error_with_message(
                        tcx,
                        pat.span,
                        format!("unsupported pattern for pattern type: {pat:#?}"),
                    ),
                };
                self.record_ty(pat.hir_id, ty, pat.span);
                pat_ty
            }
            hir::TyKind::Err(guar) => Ty::new_error(tcx, *guar),
        };

        self.record_ty(hir_ty.hir_id, result_ty, hir_ty.span);
        result_ty
    }

    /// Lower an opaque type (i.e., an existential impl-Trait type) from the HIR.
    #[instrument(level = "debug", skip_all, ret)]
    fn lower_opaque_ty(
        &self,
        def_id: DefId,
        lifetimes: &[hir::GenericArg<'_>],
        in_trait: bool,
    ) -> Ty<'tcx> {
        debug!(?def_id, ?lifetimes);
        let tcx = self.tcx();

        let generics = tcx.generics_of(def_id);
        debug!(?generics);

        let args = ty::GenericArgs::for_item(tcx, def_id, |param, _| {
            // We use `generics.count() - lifetimes.len()` here instead of `generics.parent_count`
            // since return-position impl trait in trait squashes all of the generics from its source fn
            // into its own generics, so the opaque's "own" params isn't always just lifetimes.
            if let Some(i) = (param.index as usize).checked_sub(generics.count() - lifetimes.len())
            {
                // Resolve our own lifetime parameters.
                let GenericParamDefKind::Lifetime { .. } = param.kind else {
                    span_bug!(
                        tcx.def_span(param.def_id),
                        "only expected lifetime for opaque's own generics, got {:?}",
                        param
                    );
                };
                let hir::GenericArg::Lifetime(lifetime) = &lifetimes[i] else {
                    bug!(
                        "expected lifetime argument for param {param:?}, found {:?}",
                        &lifetimes[i]
                    )
                };
                self.lower_lifetime(lifetime, RegionInferReason::Param(&param)).into()
            } else {
                tcx.mk_param_from_def(param)
            }
        });
        debug!(?args);

        if in_trait {
            Ty::new_projection_from_args(tcx, def_id, args)
        } else {
            Ty::new_opaque(tcx, def_id, args)
        }
    }

    pub fn lower_arg_ty(&self, ty: &hir::Ty<'tcx>, expected_ty: Option<Ty<'tcx>>) -> Ty<'tcx> {
        match ty.kind {
            hir::TyKind::Infer if let Some(expected_ty) = expected_ty => {
                self.record_ty(ty.hir_id, expected_ty, ty.span);
                expected_ty
            }
            _ => self.lower_ty(ty),
        }
    }

    /// Lower a function type from the HIR to our internal notion of a function signature.
    #[instrument(level = "debug", skip(self, hir_id, safety, abi, decl, generics, hir_ty), ret)]
    pub fn lower_fn_ty(
        &self,
        hir_id: HirId,
        safety: hir::Safety,
        abi: abi::Abi,
        decl: &hir::FnDecl<'tcx>,
        generics: Option<&hir::Generics<'_>>,
        hir_ty: Option<&hir::Ty<'_>>,
    ) -> ty::PolyFnSig<'tcx> {
        let tcx = self.tcx();
        let bound_vars = tcx.late_bound_vars(hir_id);
        debug!(?bound_vars);

        let (input_tys, output_ty) = self.lower_fn_sig(decl, generics, hir_id, hir_ty);

        debug!(?output_ty);

        let fn_ty = tcx.mk_fn_sig(input_tys, output_ty, decl.c_variadic, safety, abi);
        let bare_fn_ty = ty::Binder::bind_with_vars(fn_ty, bound_vars);

        if let hir::Node::Ty(hir::Ty { kind: hir::TyKind::BareFn(bare_fn_ty), span, .. }) =
            tcx.hir_node(hir_id)
        {
            check_abi_fn_ptr(tcx, hir_id, *span, bare_fn_ty.abi);
        }

        // reject function types that violate cmse ABI requirements
        cmse::validate_cmse_abi(self.tcx(), self.dcx(), hir_id, abi, bare_fn_ty);

        // Find any late-bound regions declared in return type that do
        // not appear in the arguments. These are not well-formed.
        //
        // Example:
        //     for<'a> fn() -> &'a str <-- 'a is bad
        //     for<'a> fn(&'a String) -> &'a str <-- 'a is ok
        let inputs = bare_fn_ty.inputs();
        let late_bound_in_args =
            tcx.collect_constrained_late_bound_regions(inputs.map_bound(|i| i.to_owned()));
        let output = bare_fn_ty.output();
        let late_bound_in_ret = tcx.collect_referenced_late_bound_regions(output);

        self.validate_late_bound_regions(late_bound_in_args, late_bound_in_ret, |br_name| {
            struct_span_code_err!(
                self.dcx(),
                decl.output.span(),
                E0581,
                "return type references {}, which is not constrained by the fn input types",
                br_name
            )
        });

        bare_fn_ty
    }

    /// Given a fn_hir_id for a impl function, suggest the type that is found on the
    /// corresponding function in the trait that the impl implements, if it exists.
    /// If arg_idx is Some, then it corresponds to an input type index, otherwise it
    /// corresponds to the return type.
    pub(super) fn suggest_trait_fn_ty_for_impl_fn_infer(
        &self,
        fn_hir_id: HirId,
        arg_idx: Option<usize>,
    ) -> Option<Ty<'tcx>> {
        let tcx = self.tcx();
        let hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), ident, .. }) =
            tcx.hir_node(fn_hir_id)
        else {
            return None;
        };
        let i = tcx.parent_hir_node(fn_hir_id).expect_item().expect_impl();

        let trait_ref = self.lower_impl_trait_ref(i.of_trait.as_ref()?, self.lower_ty(i.self_ty));

        let assoc = tcx.associated_items(trait_ref.def_id).find_by_name_and_kind(
            tcx,
            *ident,
            ty::AssocKind::Fn,
            trait_ref.def_id,
        )?;

        let fn_sig = tcx.fn_sig(assoc.def_id).instantiate(
            tcx,
            trait_ref.args.extend_to(tcx, assoc.def_id, |param, _| tcx.mk_param_from_def(param)),
        );
        let fn_sig = tcx.liberate_late_bound_regions(fn_hir_id.expect_owner().to_def_id(), fn_sig);

        Some(if let Some(arg_idx) = arg_idx {
            *fn_sig.inputs().get(arg_idx)?
        } else {
            fn_sig.output()
        })
    }

    #[instrument(level = "trace", skip(self, generate_err))]
    fn validate_late_bound_regions<'cx>(
        &'cx self,
        constrained_regions: FxIndexSet<ty::BoundRegionKind>,
        referenced_regions: FxIndexSet<ty::BoundRegionKind>,
        generate_err: impl Fn(&str) -> Diag<'cx>,
    ) {
        for br in referenced_regions.difference(&constrained_regions) {
            let br_name = match *br {
                ty::BrNamed(_, kw::UnderscoreLifetime) | ty::BrAnon | ty::BrEnv => {
                    "an anonymous lifetime".to_string()
                }
                ty::BrNamed(_, name) => format!("lifetime `{name}`"),
            };

            let mut err = generate_err(&br_name);

            if let ty::BrNamed(_, kw::UnderscoreLifetime) | ty::BrAnon = *br {
                // The only way for an anonymous lifetime to wind up
                // in the return type but **also** be unconstrained is
                // if it only appears in "associated types" in the
                // input. See #47511 and #62200 for examples. In this case,
                // though we can easily give a hint that ought to be
                // relevant.
                err.note(
                    "lifetimes appearing in an associated or opaque type are not considered constrained",
                );
                err.note("consider introducing a named lifetime parameter");
            }

            err.emit();
        }
    }

    /// Given the bounds on an object, determines what single region bound (if any) we can
    /// use to summarize this type.
    ///
    /// The basic idea is that we will use the bound the user
    /// provided, if they provided one, and otherwise search the supertypes of trait bounds
    /// for region bounds. It may be that we can derive no bound at all, in which case
    /// we return `None`.
    #[instrument(level = "debug", skip(self, span), ret)]
    fn compute_object_lifetime_bound(
        &self,
        span: Span,
        existential_predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
    ) -> Option<ty::Region<'tcx>> // if None, use the default
    {
        let tcx = self.tcx();

        // No explicit region bound specified. Therefore, examine trait
        // bounds and see if we can derive region bounds from those.
        let derived_region_bounds = object_region_bounds(tcx, existential_predicates);

        // If there are no derived region bounds, then report back that we
        // can find no region bound. The caller will use the default.
        if derived_region_bounds.is_empty() {
            return None;
        }

        // If any of the derived region bounds are 'static, that is always
        // the best choice.
        if derived_region_bounds.iter().any(|r| r.is_static()) {
            return Some(tcx.lifetimes.re_static);
        }

        // Determine whether there is exactly one unique region in the set
        // of derived region bounds. If so, use that. Otherwise, report an
        // error.
        let r = derived_region_bounds[0];
        if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
            self.dcx().emit_err(AmbiguousLifetimeBound { span });
        }
        Some(r)
    }
}