rustc_hir_typeck/coercion.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
//! # Type Coercion
//!
//! Under certain circumstances we will coerce from one type to another,
//! for example by auto-borrowing. This occurs in situations where the
//! compiler has a firm 'expected type' that was supplied from the user,
//! and where the actual type is similar to that expected type in purpose
//! but not in representation (so actual subtyping is inappropriate).
//!
//! ## Reborrowing
//!
//! Note that if we are expecting a reference, we will *reborrow*
//! even if the argument provided was already a reference. This is
//! useful for freezing mut things (that is, when the expected type is &T
//! but you have &mut T) and also for avoiding the linearity
//! of mut things (when the expected is &mut T and you have &mut T). See
//! the various `tests/ui/coerce/*.rs` tests for
//! examples of where this is useful.
//!
//! ## Subtle note
//!
//! When inferring the generic arguments of functions, the argument
//! order is relevant, which can lead to the following edge case:
//!
//! ```ignore (illustrative)
//! fn foo<T>(a: T, b: T) {
//! // ...
//! }
//!
//! foo(&7i32, &mut 7i32);
//! // This compiles, as we first infer `T` to be `&i32`,
//! // and then coerce `&mut 7i32` to `&7i32`.
//!
//! foo(&mut 7i32, &7i32);
//! // This does not compile, as we first infer `T` to be `&mut i32`
//! // and are then unable to coerce `&7i32` to `&mut i32`.
//! ```
use std::ops::Deref;
use rustc_errors::codes::*;
use rustc_errors::{Applicability, Diag, struct_span_code_err};
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
use rustc_infer::infer::relate::RelateResult;
use rustc_infer::infer::{Coercion, DefineOpaqueTypes, InferOk, InferResult};
use rustc_infer::traits::{
IfExpressionCause, MatchExpressionArmCause, Obligation, PredicateObligation,
PredicateObligations,
};
use rustc_middle::lint::in_external_macro;
use rustc_middle::span_bug;
use rustc_middle::traits::BuiltinImplSource;
use rustc_middle::ty::adjustment::{
Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, PointerCoercion,
};
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, GenericArgsRef, Ty, TyCtxt};
use rustc_session::parse::feature_err;
use rustc_span::symbol::sym;
use rustc_span::{BytePos, DUMMY_SP, DesugaringKind, Span};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::infer::InferCtxtExt as _;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
use rustc_trait_selection::traits::{
self, NormalizeExt, ObligationCause, ObligationCauseCode, ObligationCtxt,
};
use smallvec::{SmallVec, smallvec};
use tracing::{debug, instrument};
use crate::FnCtxt;
use crate::errors::SuggestBoxingForReturnImplTrait;
struct Coerce<'a, 'tcx> {
fcx: &'a FnCtxt<'a, 'tcx>,
cause: ObligationCause<'tcx>,
use_lub: bool,
/// Determines whether or not allow_two_phase_borrow is set on any
/// autoref adjustments we create while coercing. We don't want to
/// allow deref coercions to create two-phase borrows, at least initially,
/// but we do need two-phase borrows for function argument reborrows.
/// See #47489 and #48598
/// See docs on the "AllowTwoPhase" type for a more detailed discussion
allow_two_phase: AllowTwoPhase,
/// Whether we allow `NeverToAny` coercions. This is unsound if we're
/// coercing a place expression without it counting as a read in the MIR.
/// This is a side-effect of HIR not really having a great distinction
/// between places and values.
coerce_never: bool,
}
impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
type Target = FnCtxt<'a, 'tcx>;
fn deref(&self) -> &Self::Target {
self.fcx
}
}
type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;
/// Coercing a mutable reference to an immutable works, while
/// coercing `&T` to `&mut T` should be forbidden.
fn coerce_mutbls<'tcx>(
from_mutbl: hir::Mutability,
to_mutbl: hir::Mutability,
) -> RelateResult<'tcx, ()> {
if from_mutbl >= to_mutbl { Ok(()) } else { Err(TypeError::Mutability) }
}
/// Do not require any adjustments, i.e. coerce `x -> x`.
fn identity(_: Ty<'_>) -> Vec<Adjustment<'_>> {
vec![]
}
fn simple<'tcx>(kind: Adjust<'tcx>) -> impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>> {
move |target| vec![Adjustment { kind, target }]
}
/// This always returns `Ok(...)`.
fn success<'tcx>(
adj: Vec<Adjustment<'tcx>>,
target: Ty<'tcx>,
obligations: PredicateObligations<'tcx>,
) -> CoerceResult<'tcx> {
Ok(InferOk { value: (adj, target), obligations })
}
impl<'f, 'tcx> Coerce<'f, 'tcx> {
fn new(
fcx: &'f FnCtxt<'f, 'tcx>,
cause: ObligationCause<'tcx>,
allow_two_phase: AllowTwoPhase,
coerce_never: bool,
) -> Self {
Coerce { fcx, cause, allow_two_phase, use_lub: false, coerce_never }
}
fn unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
self.commit_if_ok(|_| {
let at = self.at(&self.cause, self.fcx.param_env);
let res = if self.use_lub {
at.lub(b, a)
} else {
at.sup(DefineOpaqueTypes::Yes, b, a)
.map(|InferOk { value: (), obligations }| InferOk { value: b, obligations })
};
// In the new solver, lazy norm may allow us to shallowly equate
// more types, but we emit possibly impossible-to-satisfy obligations.
// Filter these cases out to make sure our coercion is more accurate.
match res {
Ok(InferOk { value, obligations }) if self.next_trait_solver() => {
let ocx = ObligationCtxt::new(self);
ocx.register_obligations(obligations);
if ocx.select_where_possible().is_empty() {
Ok(InferOk { value, obligations: ocx.into_pending_obligations() })
} else {
Err(TypeError::Mismatch)
}
}
res => res,
}
})
}
/// Unify two types (using sub or lub) and produce a specific coercion.
fn unify_and<F>(&self, a: Ty<'tcx>, b: Ty<'tcx>, f: F) -> CoerceResult<'tcx>
where
F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
{
self.unify(a, b)
.and_then(|InferOk { value: ty, obligations }| success(f(ty), ty, obligations))
}
#[instrument(skip(self))]
fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
// First, remove any resolved type variables (at the top level, at least):
let a = self.shallow_resolve(a);
let b = self.shallow_resolve(b);
debug!("Coerce.tys({:?} => {:?})", a, b);
// Coercing from `!` to any type is allowed:
if a.is_never() {
if self.coerce_never {
return success(simple(Adjust::NeverToAny)(b), b, PredicateObligations::new());
} else {
// Otherwise the only coercion we can do is unification.
return self.unify_and(a, b, identity);
}
}
// Coercing *from* an unresolved inference variable means that
// we have no information about the source type. This will always
// ultimately fall back to some form of subtyping.
if a.is_ty_var() {
return self.coerce_from_inference_variable(a, b, identity);
}
// Consider coercing the subtype to a DST
//
// NOTE: this is wrapped in a `commit_if_ok` because it creates
// a "spurious" type variable, and we don't want to have that
// type variable in memory if the coercion fails.
let unsize = self.commit_if_ok(|_| self.coerce_unsized(a, b));
match unsize {
Ok(_) => {
debug!("coerce: unsize successful");
return unsize;
}
Err(error) => {
debug!(?error, "coerce: unsize failed");
}
}
// Examine the supertype and consider auto-borrowing.
match *b.kind() {
ty::RawPtr(_, b_mutbl) => {
return self.coerce_unsafe_ptr(a, b, b_mutbl);
}
ty::Ref(r_b, _, mutbl_b) => {
return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
}
ty::Dynamic(predicates, region, ty::DynStar) if self.tcx.features().dyn_star => {
return self.coerce_dyn_star(a, b, predicates, region);
}
ty::Adt(pin, _)
if self.tcx.features().pin_ergonomics
&& self.tcx.is_lang_item(pin.did(), hir::LangItem::Pin) =>
{
return self.coerce_pin(a, b);
}
_ => {}
}
match *a.kind() {
ty::FnDef(..) => {
// Function items are coercible to any closure
// type; function pointers are not (that would
// require double indirection).
// Additionally, we permit coercion of function
// items to drop the unsafe qualifier.
self.coerce_from_fn_item(a, b)
}
ty::FnPtr(a_sig_tys, a_hdr) => {
// We permit coercion of fn pointers to drop the
// unsafe qualifier.
self.coerce_from_fn_pointer(a, a_sig_tys.with(a_hdr), b)
}
ty::Closure(closure_def_id_a, args_a) => {
// Non-capturing closures are coercible to
// function pointers or unsafe function pointers.
// It cannot convert closures that require unsafe.
self.coerce_closure_to_fn(a, closure_def_id_a, args_a, b)
}
_ => {
// Otherwise, just use unification rules.
self.unify_and(a, b, identity)
}
}
}
/// Coercing *from* an inference variable. In this case, we have no information
/// about the source type, so we can't really do a true coercion and we always
/// fall back to subtyping (`unify_and`).
fn coerce_from_inference_variable(
&self,
a: Ty<'tcx>,
b: Ty<'tcx>,
make_adjustments: impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
) -> CoerceResult<'tcx> {
debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
assert!(a.is_ty_var() && self.shallow_resolve(a) == a);
assert!(self.shallow_resolve(b) == b);
if b.is_ty_var() {
// Two unresolved type variables: create a `Coerce` predicate.
let target_ty = if self.use_lub { self.next_ty_var(self.cause.span) } else { b };
let mut obligations = PredicateObligations::with_capacity(2);
for &source_ty in &[a, b] {
if source_ty != target_ty {
obligations.push(Obligation::new(
self.tcx(),
self.cause.clone(),
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Coerce(ty::CoercePredicate {
a: source_ty,
b: target_ty,
})),
));
}
}
debug!(
"coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
target_ty, obligations
);
let adjustments = make_adjustments(target_ty);
InferResult::Ok(InferOk { value: (adjustments, target_ty), obligations })
} else {
// One unresolved type variable: just apply subtyping, we may be able
// to do something useful.
self.unify_and(a, b, make_adjustments)
}
}
/// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
/// To match `A` with `B`, autoderef will be performed,
/// calling `deref`/`deref_mut` where necessary.
fn coerce_borrowed_pointer(
&self,
a: Ty<'tcx>,
b: Ty<'tcx>,
r_b: ty::Region<'tcx>,
mutbl_b: hir::Mutability,
) -> CoerceResult<'tcx> {
debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
// If we have a parameter of type `&M T_a` and the value
// provided is `expr`, we will be adding an implicit borrow,
// meaning that we convert `f(expr)` to `f(&M *expr)`. Therefore,
// to type check, we will construct the type that `&M*expr` would
// yield.
let (r_a, mt_a) = match *a.kind() {
ty::Ref(r_a, ty, mutbl) => {
let mt_a = ty::TypeAndMut { ty, mutbl };
coerce_mutbls(mt_a.mutbl, mutbl_b)?;
(r_a, mt_a)
}
_ => return self.unify_and(a, b, identity),
};
let span = self.cause.span;
let mut first_error = None;
let mut r_borrow_var = None;
let mut autoderef = self.autoderef(span, a);
let mut found = None;
for (referent_ty, autoderefs) in autoderef.by_ref() {
if autoderefs == 0 {
// Don't let this pass, otherwise it would cause
// &T to autoref to &&T.
continue;
}
// At this point, we have deref'd `a` to `referent_ty`. So
// imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
// In the autoderef loop for `&'a mut Vec<T>`, we would get
// three callbacks:
//
// - `&'a mut Vec<T>` -- 0 derefs, just ignore it
// - `Vec<T>` -- 1 deref
// - `[T]` -- 2 deref
//
// At each point after the first callback, we want to
// check to see whether this would match out target type
// (`&'b mut [T]`) if we autoref'd it. We can't just
// compare the referent types, though, because we still
// have to consider the mutability. E.g., in the case
// we've been considering, we have an `&mut` reference, so
// the `T` in `[T]` needs to be unified with equality.
//
// Therefore, we construct reference types reflecting what
// the types will be after we do the final auto-ref and
// compare those. Note that this means we use the target
// mutability [1], since it may be that we are coercing
// from `&mut T` to `&U`.
//
// One fine point concerns the region that we use. We
// choose the region such that the region of the final
// type that results from `unify` will be the region we
// want for the autoref:
//
// - if in sub mode, that means we want to use `'b` (the
// region from the target reference) for both
// pointers [2]. This is because sub mode (somewhat
// arbitrarily) returns the subtype region. In the case
// where we are coercing to a target type, we know we
// want to use that target type region (`'b`) because --
// for the program to type-check -- it must be the
// smaller of the two.
// - One fine point. It may be surprising that we can
// use `'b` without relating `'a` and `'b`. The reason
// that this is ok is that what we produce is
// effectively a `&'b *x` expression (if you could
// annotate the region of a borrow), and regionck has
// code that adds edges from the region of a borrow
// (`'b`, here) into the regions in the borrowed
// expression (`*x`, here). (Search for "link".)
// - if in lub mode, things can get fairly complicated. The
// easiest thing is just to make a fresh
// region variable [4], which effectively means we defer
// the decision to region inference (and regionck, which will add
// some more edges to this variable). However, this can wind up
// creating a crippling number of variables in some cases --
// e.g., #32278 -- so we optimize one particular case [3].
// Let me try to explain with some examples:
// - The "running example" above represents the simple case,
// where we have one `&` reference at the outer level and
// ownership all the rest of the way down. In this case,
// we want `LUB('a, 'b)` as the resulting region.
// - However, if there are nested borrows, that region is
// too strong. Consider a coercion from `&'a &'x Rc<T>` to
// `&'b T`. In this case, `'a` is actually irrelevant.
// The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
// we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
// (The errors actually show up in borrowck, typically, because
// this extra edge causes the region `'a` to be inferred to something
// too big, which then results in borrowck errors.)
// - We could track the innermost shared reference, but there is already
// code in regionck that has the job of creating links between
// the region of a borrow and the regions in the thing being
// borrowed (here, `'a` and `'x`), and it knows how to handle
// all the various cases. So instead we just make a region variable
// and let regionck figure it out.
let r = if !self.use_lub {
r_b // [2] above
} else if autoderefs == 1 {
r_a // [3] above
} else {
if r_borrow_var.is_none() {
// create var lazily, at most once
let coercion = Coercion(span);
let r = self.next_region_var(coercion);
r_borrow_var = Some(r); // [4] above
}
r_borrow_var.unwrap()
};
let derefd_ty_a = Ty::new_ref(
self.tcx,
r,
referent_ty,
mutbl_b, // [1] above
);
match self.unify(derefd_ty_a, b) {
Ok(ok) => {
found = Some(ok);
break;
}
Err(err) => {
if first_error.is_none() {
first_error = Some(err);
}
}
}
}
// Extract type or return an error. We return the first error
// we got, which should be from relating the "base" type
// (e.g., in example above, the failure from relating `Vec<T>`
// to the target type), since that should be the least
// confusing.
let Some(InferOk { value: ty, mut obligations }) = found else {
let err = first_error.expect("coerce_borrowed_pointer had no error");
debug!("coerce_borrowed_pointer: failed with err = {:?}", err);
return Err(err);
};
if ty == a && mt_a.mutbl.is_not() && autoderef.step_count() == 1 {
// As a special case, if we would produce `&'a *x`, that's
// a total no-op. We end up with the type `&'a T` just as
// we started with. In that case, just skip it
// altogether. This is just an optimization.
//
// Note that for `&mut`, we DO want to reborrow --
// otherwise, this would be a move, which might be an
// error. For example `foo(self.x)` where `self` and
// `self.x` both have `&mut `type would be a move of
// `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
// which is a borrow.
assert!(mutbl_b.is_not()); // can only coerce &T -> &U
return success(vec![], ty, obligations);
}
let InferOk { value: mut adjustments, obligations: o } =
self.adjust_steps_as_infer_ok(&autoderef);
obligations.extend(o);
obligations.extend(autoderef.into_obligations());
// Now apply the autoref. We have to extract the region out of
// the final ref type we got.
let ty::Ref(r_borrow, _, _) = ty.kind() else {
span_bug!(span, "expected a ref type, got {:?}", ty);
};
let mutbl = AutoBorrowMutability::new(mutbl_b, self.allow_two_phase);
adjustments.push(Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(*r_borrow, mutbl)),
target: ty,
});
debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
success(adjustments, ty, obligations)
}
/// Performs [unsized coercion] by emulating a fulfillment loop on a
/// `CoerceUnsized` goal until all `CoerceUnsized` and `Unsize` goals
/// are successfully selected.
///
/// [unsized coercion](https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions)
#[instrument(skip(self), level = "debug")]
fn coerce_unsized(&self, mut source: Ty<'tcx>, mut target: Ty<'tcx>) -> CoerceResult<'tcx> {
source = self.shallow_resolve(source);
target = self.shallow_resolve(target);
debug!(?source, ?target);
// We don't apply any coercions incase either the source or target
// aren't sufficiently well known but tend to instead just equate
// them both.
if source.is_ty_var() {
debug!("coerce_unsized: source is a TyVar, bailing out");
return Err(TypeError::Mismatch);
}
if target.is_ty_var() {
debug!("coerce_unsized: target is a TyVar, bailing out");
return Err(TypeError::Mismatch);
}
let traits =
(self.tcx.lang_items().unsize_trait(), self.tcx.lang_items().coerce_unsized_trait());
let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
debug!("missing Unsize or CoerceUnsized traits");
return Err(TypeError::Mismatch);
};
// Note, we want to avoid unnecessary unsizing. We don't want to coerce to
// a DST unless we have to. This currently comes out in the wash since
// we can't unify [T] with U. But to properly support DST, we need to allow
// that, at which point we will need extra checks on the target here.
// Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
let reborrow = match (source.kind(), target.kind()) {
(&ty::Ref(_, ty_a, mutbl_a), &ty::Ref(_, _, mutbl_b)) => {
coerce_mutbls(mutbl_a, mutbl_b)?;
let coercion = Coercion(self.cause.span);
let r_borrow = self.next_region_var(coercion);
// We don't allow two-phase borrows here, at least for initial
// implementation. If it happens that this coercion is a function argument,
// the reborrow in coerce_borrowed_ptr will pick it up.
let mutbl = AutoBorrowMutability::new(mutbl_b, AllowTwoPhase::No);
Some((Adjustment { kind: Adjust::Deref(None), target: ty_a }, Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(r_borrow, mutbl)),
target: Ty::new_ref(self.tcx, r_borrow, ty_a, mutbl_b),
}))
}
(&ty::Ref(_, ty_a, mt_a), &ty::RawPtr(_, mt_b)) => {
coerce_mutbls(mt_a, mt_b)?;
Some((Adjustment { kind: Adjust::Deref(None), target: ty_a }, Adjustment {
kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
target: Ty::new_ptr(self.tcx, ty_a, mt_b),
}))
}
_ => None,
};
let coerce_source = reborrow.as_ref().map_or(source, |(_, r)| r.target);
// Setup either a subtyping or a LUB relationship between
// the `CoerceUnsized` target type and the expected type.
// We only have the latter, so we use an inference variable
// for the former and let type inference do the rest.
let coerce_target = self.next_ty_var(self.cause.span);
let mut coercion = self.unify_and(coerce_target, target, |target| {
let unsize = Adjustment { kind: Adjust::Pointer(PointerCoercion::Unsize), target };
match reborrow {
None => vec![unsize],
Some((ref deref, ref autoref)) => vec![deref.clone(), autoref.clone(), unsize],
}
})?;
let mut selcx = traits::SelectionContext::new(self);
// Create an obligation for `Source: CoerceUnsized<Target>`.
let cause =
ObligationCause::new(self.cause.span, self.body_id, ObligationCauseCode::Coercion {
source,
target,
});
// Use a FIFO queue for this custom fulfillment procedure.
//
// A Vec (or SmallVec) is not a natural choice for a queue. However,
// this code path is hot, and this queue usually has a max length of 1
// and almost never more than 3. By using a SmallVec we avoid an
// allocation, at the (very small) cost of (occasionally) having to
// shift subsequent elements down when removing the front element.
let mut queue: SmallVec<[PredicateObligation<'tcx>; 4]> = smallvec![Obligation::new(
self.tcx,
cause,
self.fcx.param_env,
ty::TraitRef::new(self.tcx, coerce_unsized_did, [coerce_source, coerce_target])
)];
let mut has_unsized_tuple_coercion = false;
let mut has_trait_upcasting_coercion = None;
// Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
// emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
// inference might unify those two inner type variables later.
let traits = [coerce_unsized_did, unsize_did];
while !queue.is_empty() {
let obligation = queue.remove(0);
let trait_pred = match obligation.predicate.kind().no_bound_vars() {
Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)))
if traits.contains(&trait_pred.def_id()) =>
{
self.resolve_vars_if_possible(trait_pred)
}
// Eagerly process alias-relate obligations in new trait solver,
// since these can be emitted in the process of solving trait goals,
// but we need to constrain vars before processing goals mentioning
// them.
Some(ty::PredicateKind::AliasRelate(..)) => {
let ocx = ObligationCtxt::new(self);
ocx.register_obligation(obligation);
if !ocx.select_where_possible().is_empty() {
return Err(TypeError::Mismatch);
}
coercion.obligations.extend(ocx.into_pending_obligations());
continue;
}
_ => {
coercion.obligations.push(obligation);
continue;
}
};
debug!("coerce_unsized resolve step: {:?}", trait_pred);
match selcx.select(&obligation.with(selcx.tcx(), trait_pred)) {
// Uncertain or unimplemented.
Ok(None) => {
if trait_pred.def_id() == unsize_did {
let self_ty = trait_pred.self_ty();
let unsize_ty = trait_pred.trait_ref.args[1].expect_ty();
debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
match (self_ty.kind(), unsize_ty.kind()) {
(&ty::Infer(ty::TyVar(v)), ty::Dynamic(..))
if self.type_var_is_sized(v) =>
{
debug!("coerce_unsized: have sized infer {:?}", v);
coercion.obligations.push(obligation);
// `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
// for unsizing.
}
_ => {
// Some other case for `$0: Unsize<Something>`. Note that we
// hit this case even if `Something` is a sized type, so just
// don't do the coercion.
debug!("coerce_unsized: ambiguous unsize");
return Err(TypeError::Mismatch);
}
}
} else {
debug!("coerce_unsized: early return - ambiguous");
return Err(TypeError::Mismatch);
}
}
Err(traits::Unimplemented) => {
debug!("coerce_unsized: early return - can't prove obligation");
return Err(TypeError::Mismatch);
}
// Dyn-compatibility violations or miscellaneous.
Err(err) => {
self.err_ctxt().report_selection_error(obligation.clone(), &obligation, &err);
// Treat this like an obligation and follow through
// with the unsizing - the lack of a coercion should
// be silent, as it causes a type mismatch later.
}
Ok(Some(impl_source)) => {
// Some builtin coercions are still unstable so we detect
// these here and emit a feature error if coercion doesn't fail
// due to another reason.
match impl_source {
traits::ImplSource::Builtin(
BuiltinImplSource::TraitUpcasting { .. },
_,
) => {
has_trait_upcasting_coercion =
Some((trait_pred.self_ty(), trait_pred.trait_ref.args.type_at(1)));
}
traits::ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => {
has_unsized_tuple_coercion = true;
}
_ => {}
}
queue.extend(impl_source.nested_obligations())
}
}
}
if let Some((sub, sup)) = has_trait_upcasting_coercion
&& !self.tcx().features().trait_upcasting
{
// Renders better when we erase regions, since they're not really the point here.
let (sub, sup) = self.tcx.erase_regions((sub, sup));
let mut err = feature_err(
&self.tcx.sess,
sym::trait_upcasting,
self.cause.span,
format!("cannot cast `{sub}` to `{sup}`, trait upcasting coercion is experimental"),
);
err.note(format!("required when coercing `{source}` into `{target}`"));
err.emit();
}
if has_unsized_tuple_coercion && !self.tcx.features().unsized_tuple_coercion {
feature_err(
&self.tcx.sess,
sym::unsized_tuple_coercion,
self.cause.span,
"unsized tuple coercion is not stable enough for use and is subject to change",
)
.emit();
}
Ok(coercion)
}
fn coerce_dyn_star(
&self,
a: Ty<'tcx>,
b: Ty<'tcx>,
predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
b_region: ty::Region<'tcx>,
) -> CoerceResult<'tcx> {
if !self.tcx.features().dyn_star {
return Err(TypeError::Mismatch);
}
if let ty::Dynamic(a_data, _, _) = a.kind()
&& let ty::Dynamic(b_data, _, _) = b.kind()
&& a_data.principal_def_id() == b_data.principal_def_id()
{
return self.unify_and(a, b, |_| vec![]);
}
// Check the obligations of the cast -- for example, when casting
// `usize` to `dyn* Clone + 'static`:
let obligations = predicates
.iter()
.map(|predicate| {
// For each existential predicate (e.g., `?Self: Clone`) instantiate
// the type of the expression (e.g., `usize` in our example above)
// and then require that the resulting predicate (e.g., `usize: Clone`)
// holds (it does).
let predicate = predicate.with_self_ty(self.tcx, a);
Obligation::new(self.tcx, self.cause.clone(), self.param_env, predicate)
})
.chain([
// Enforce the region bound (e.g., `usize: 'static`, in our example).
Obligation::new(
self.tcx,
self.cause.clone(),
self.param_env,
ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
ty::OutlivesPredicate(a, b_region),
))),
),
// Enforce that the type is `usize`/pointer-sized.
Obligation::new(
self.tcx,
self.cause.clone(),
self.param_env,
ty::TraitRef::new(
self.tcx,
self.tcx
.require_lang_item(hir::LangItem::PointerLike, Some(self.cause.span)),
[a],
),
),
])
.collect();
Ok(InferOk {
value: (
vec![Adjustment { kind: Adjust::Pointer(PointerCoercion::DynStar), target: b }],
b,
),
obligations,
})
}
/// Applies reborrowing for `Pin`
///
/// We currently only support reborrowing `Pin<&mut T>` as `Pin<&mut T>`. This is accomplished
/// by inserting a call to `Pin::as_mut` during MIR building.
///
/// In the future we might want to support other reborrowing coercions, such as:
/// - `Pin<&mut T>` as `Pin<&T>`
/// - `Pin<&T>` as `Pin<&T>`
/// - `Pin<Box<T>>` as `Pin<&T>`
/// - `Pin<Box<T>>` as `Pin<&mut T>`
#[instrument(skip(self), level = "trace")]
fn coerce_pin(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
// We need to make sure the two types are compatible for coercion.
// Then we will build a ReborrowPin adjustment and return that as an InferOk.
// Right now we can only reborrow if this is a `Pin<&mut T>`.
let extract_pin_mut = |ty: Ty<'tcx>| {
// Get the T out of Pin<T>
let (pin, ty) = match ty.kind() {
ty::Adt(pin, args) if self.tcx.is_lang_item(pin.did(), hir::LangItem::Pin) => {
(*pin, args[0].expect_ty())
}
_ => {
debug!("can't reborrow {:?} as pinned", ty);
return Err(TypeError::Mismatch);
}
};
// Make sure the T is something we understand (just `&mut U` for now)
match ty.kind() {
ty::Ref(region, ty, mutbl) => Ok((pin, *region, *ty, *mutbl)),
_ => {
debug!("can't reborrow pin of inner type {:?}", ty);
Err(TypeError::Mismatch)
}
}
};
let (pin, a_region, a_ty, mut_a) = extract_pin_mut(a)?;
let (_, b_region, _b_ty, mut_b) = extract_pin_mut(b)?;
coerce_mutbls(mut_a, mut_b)?;
// update a with b's mutability since we'll be coercing mutability
let a = Ty::new_adt(
self.tcx,
pin,
self.tcx.mk_args(&[Ty::new_ref(self.tcx, a_region, a_ty, mut_b).into()]),
);
// To complete the reborrow, we need to make sure we can unify the inner types, and if so we
// add the adjustments.
self.unify_and(a, b, |_inner_ty| {
vec![Adjustment { kind: Adjust::ReborrowPin(b_region, mut_b), target: b }]
})
}
fn coerce_from_safe_fn<F, G>(
&self,
a: Ty<'tcx>,
fn_ty_a: ty::PolyFnSig<'tcx>,
b: Ty<'tcx>,
to_unsafe: F,
normal: G,
) -> CoerceResult<'tcx>
where
F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
G: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
{
self.commit_if_ok(|snapshot| {
let outer_universe = self.infcx.universe();
let result = if let ty::FnPtr(_, hdr_b) = b.kind()
&& let (hir::Safety::Safe, hir::Safety::Unsafe) = (fn_ty_a.safety(), hdr_b.safety)
{
let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
self.unify_and(unsafe_a, b, to_unsafe)
} else {
self.unify_and(a, b, normal)
};
// FIXME(#73154): This is a hack. Currently LUB can generate
// unsolvable constraints. Additionally, it returns `a`
// unconditionally, even when the "LUB" is `b`. In the future, we
// want the coerced type to be the actual supertype of these two,
// but for now, we want to just error to ensure we don't lock
// ourselves into a specific behavior with NLL.
self.leak_check(outer_universe, Some(snapshot))?;
result
})
}
fn coerce_from_fn_pointer(
&self,
a: Ty<'tcx>,
fn_ty_a: ty::PolyFnSig<'tcx>,
b: Ty<'tcx>,
) -> CoerceResult<'tcx> {
//! Attempts to coerce from the type of a Rust function item
//! into a closure or a `proc`.
//!
let b = self.shallow_resolve(b);
debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);
self.coerce_from_safe_fn(
a,
fn_ty_a,
b,
simple(Adjust::Pointer(PointerCoercion::UnsafeFnPointer)),
identity,
)
}
fn coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
//! Attempts to coerce from the type of a Rust function item
//! into a closure or a `proc`.
let b = self.shallow_resolve(b);
let InferOk { value: b, mut obligations } =
self.at(&self.cause, self.param_env).normalize(b);
debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
match b.kind() {
ty::FnPtr(_, b_hdr) => {
let a_sig = a.fn_sig(self.tcx);
if let ty::FnDef(def_id, _) = *a.kind() {
// Intrinsics are not coercible to function pointers
if self.tcx.intrinsic(def_id).is_some() {
return Err(TypeError::IntrinsicCast);
}
// Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396).
if b_hdr.safety == hir::Safety::Safe
&& !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
{
return Err(TypeError::TargetFeatureCast(def_id));
}
}
let InferOk { value: a_sig, obligations: o1 } =
self.at(&self.cause, self.param_env).normalize(a_sig);
obligations.extend(o1);
let a_fn_pointer = Ty::new_fn_ptr(self.tcx, a_sig);
let InferOk { value, obligations: o2 } = self.coerce_from_safe_fn(
a_fn_pointer,
a_sig,
b,
|unsafe_ty| {
vec![
Adjustment {
kind: Adjust::Pointer(PointerCoercion::ReifyFnPointer),
target: a_fn_pointer,
},
Adjustment {
kind: Adjust::Pointer(PointerCoercion::UnsafeFnPointer),
target: unsafe_ty,
},
]
},
simple(Adjust::Pointer(PointerCoercion::ReifyFnPointer)),
)?;
obligations.extend(o2);
Ok(InferOk { value, obligations })
}
_ => self.unify_and(a, b, identity),
}
}
fn coerce_closure_to_fn(
&self,
a: Ty<'tcx>,
closure_def_id_a: DefId,
args_a: GenericArgsRef<'tcx>,
b: Ty<'tcx>,
) -> CoerceResult<'tcx> {
//! Attempts to coerce from the type of a non-capturing closure
//! into a function pointer.
//!
let b = self.shallow_resolve(b);
match b.kind() {
// At this point we haven't done capture analysis, which means
// that the ClosureArgs just contains an inference variable instead
// of tuple of captured types.
//
// All we care here is if any variable is being captured and not the exact paths,
// so we check `upvars_mentioned` for root variables being captured.
ty::FnPtr(_, hdr)
if self
.tcx
.upvars_mentioned(closure_def_id_a.expect_local())
.is_none_or(|u| u.is_empty()) =>
{
// We coerce the closure, which has fn type
// `extern "rust-call" fn((arg0,arg1,...)) -> _`
// to
// `fn(arg0,arg1,...) -> _`
// or
// `unsafe fn(arg0,arg1,...) -> _`
let closure_sig = args_a.as_closure().sig();
let safety = hdr.safety;
let pointer_ty =
Ty::new_fn_ptr(self.tcx, self.tcx.signature_unclosure(closure_sig, safety));
debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
self.unify_and(
pointer_ty,
b,
simple(Adjust::Pointer(PointerCoercion::ClosureFnPointer(safety))),
)
}
_ => self.unify_and(a, b, identity),
}
}
fn coerce_unsafe_ptr(
&self,
a: Ty<'tcx>,
b: Ty<'tcx>,
mutbl_b: hir::Mutability,
) -> CoerceResult<'tcx> {
debug!("coerce_unsafe_ptr(a={:?}, b={:?})", a, b);
let (is_ref, mt_a) = match *a.kind() {
ty::Ref(_, ty, mutbl) => (true, ty::TypeAndMut { ty, mutbl }),
ty::RawPtr(ty, mutbl) => (false, ty::TypeAndMut { ty, mutbl }),
_ => return self.unify_and(a, b, identity),
};
coerce_mutbls(mt_a.mutbl, mutbl_b)?;
// Check that the types which they point at are compatible.
let a_unsafe = Ty::new_ptr(self.tcx, mt_a.ty, mutbl_b);
// Although references and unsafe ptrs have the same
// representation, we still register an Adjust::DerefRef so that
// regionck knows that the region for `a` must be valid here.
if is_ref {
self.unify_and(a_unsafe, b, |target| {
vec![Adjustment { kind: Adjust::Deref(None), target: mt_a.ty }, Adjustment {
kind: Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)),
target,
}]
})
} else if mt_a.mutbl != mutbl_b {
self.unify_and(a_unsafe, b, simple(Adjust::Pointer(PointerCoercion::MutToConstPointer)))
} else {
self.unify_and(a_unsafe, b, identity)
}
}
}
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
/// Attempt to coerce an expression to a type, and return the
/// adjusted type of the expression, if successful.
/// Adjustments are only recorded if the coercion succeeded.
/// The expressions *must not* have any preexisting adjustments.
pub(crate) fn coerce(
&self,
expr: &'tcx hir::Expr<'tcx>,
expr_ty: Ty<'tcx>,
mut target: Ty<'tcx>,
allow_two_phase: AllowTwoPhase,
cause: Option<ObligationCause<'tcx>>,
) -> RelateResult<'tcx, Ty<'tcx>> {
let source = self.try_structurally_resolve_type(expr.span, expr_ty);
if self.next_trait_solver() {
target = self.try_structurally_resolve_type(
cause.as_ref().map_or(expr.span, |cause| cause.span),
target,
);
}
debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
let cause =
cause.unwrap_or_else(|| self.cause(expr.span, ObligationCauseCode::ExprAssignable));
let coerce = Coerce::new(
self,
cause,
allow_two_phase,
self.expr_guaranteed_to_constitute_read_for_never(expr),
);
let ok = self.commit_if_ok(|_| coerce.coerce(source, target))?;
let (adjustments, _) = self.register_infer_ok_obligations(ok);
self.apply_adjustments(expr, adjustments);
Ok(if let Err(guar) = expr_ty.error_reported() {
Ty::new_error(self.tcx, guar)
} else {
target
})
}
/// Probe whether `expr_ty` can be coerced to `target_ty`. This has no side-effects,
/// and may return false positives if types are not yet fully constrained by inference.
///
/// Returns false if the coercion is not possible, or if the coercion creates any
/// sub-obligations that result in errors.
///
/// This should only be used for diagnostics.
pub(crate) fn may_coerce(&self, expr_ty: Ty<'tcx>, target_ty: Ty<'tcx>) -> bool {
let cause = self.cause(DUMMY_SP, ObligationCauseCode::ExprAssignable);
// We don't ever need two-phase here since we throw out the result of the coercion.
// We also just always set `coerce_never` to true, since this is a heuristic.
let coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No, true);
self.probe(|_| {
// Make sure to structurally resolve the types, since we use
// the `TyKind`s heavily in coercion.
let ocx = ObligationCtxt::new(self);
let structurally_resolve = |ty| {
let ty = self.shallow_resolve(ty);
if self.next_trait_solver()
&& let ty::Alias(..) = ty.kind()
{
ocx.structurally_normalize(&cause, self.param_env, ty)
} else {
Ok(ty)
}
};
let Ok(expr_ty) = structurally_resolve(expr_ty) else {
return false;
};
let Ok(target_ty) = structurally_resolve(target_ty) else {
return false;
};
let Ok(ok) = coerce.coerce(expr_ty, target_ty) else {
return false;
};
ocx.register_obligations(ok.obligations);
ocx.select_where_possible().is_empty()
})
}
/// Given a type and a target type, this function will calculate and return
/// how many dereference steps needed to coerce `expr_ty` to `target`. If
/// it's not possible, return `None`.
pub(crate) fn deref_steps_for_suggestion(
&self,
expr_ty: Ty<'tcx>,
target: Ty<'tcx>,
) -> Option<usize> {
let cause = self.cause(DUMMY_SP, ObligationCauseCode::ExprAssignable);
// We don't ever need two-phase here since we throw out the result of the coercion.
let coerce = Coerce::new(self, cause, AllowTwoPhase::No, true);
coerce
.autoderef(DUMMY_SP, expr_ty)
.find_map(|(ty, steps)| self.probe(|_| coerce.unify(ty, target)).ok().map(|_| steps))
}
/// Given a type, this function will calculate and return the type given
/// for `<Ty as Deref>::Target` only if `Ty` also implements `DerefMut`.
///
/// This function is for diagnostics only, since it does not register
/// trait or region sub-obligations. (presumably we could, but it's not
/// particularly important for diagnostics...)
pub(crate) fn deref_once_mutably_for_diagnostic(&self, expr_ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
self.autoderef(DUMMY_SP, expr_ty).silence_errors().nth(1).and_then(|(deref_ty, _)| {
self.infcx
.type_implements_trait(
self.tcx.lang_items().deref_mut_trait()?,
[expr_ty],
self.param_env,
)
.may_apply()
.then_some(deref_ty)
})
}
/// Given some expressions, their known unified type and another expression,
/// tries to unify the types, potentially inserting coercions on any of the
/// provided expressions and returns their LUB (aka "common supertype").
///
/// This is really an internal helper. From outside the coercion
/// module, you should instantiate a `CoerceMany` instance.
fn try_find_coercion_lub<E>(
&self,
cause: &ObligationCause<'tcx>,
exprs: &[E],
prev_ty: Ty<'tcx>,
new: &hir::Expr<'_>,
new_ty: Ty<'tcx>,
) -> RelateResult<'tcx, Ty<'tcx>>
where
E: AsCoercionSite,
{
let prev_ty = self.try_structurally_resolve_type(cause.span, prev_ty);
let new_ty = self.try_structurally_resolve_type(new.span, new_ty);
debug!(
"coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
prev_ty,
new_ty,
exprs.len()
);
// The following check fixes #88097, where the compiler erroneously
// attempted to coerce a closure type to itself via a function pointer.
if prev_ty == new_ty {
return Ok(prev_ty);
}
// Special-case that coercion alone cannot handle:
// Function items or non-capturing closures of differing IDs or GenericArgs.
let (a_sig, b_sig) = {
let is_capturing_closure = |ty: Ty<'tcx>| {
if let &ty::Closure(closure_def_id, _args) = ty.kind() {
self.tcx.upvars_mentioned(closure_def_id.expect_local()).is_some()
} else {
false
}
};
if is_capturing_closure(prev_ty) || is_capturing_closure(new_ty) {
(None, None)
} else {
match (prev_ty.kind(), new_ty.kind()) {
(ty::FnDef(..), ty::FnDef(..)) => {
// Don't reify if the function types have a LUB, i.e., they
// are the same function and their parameters have a LUB.
match self
.commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
{
// We have a LUB of prev_ty and new_ty, just return it.
Ok(ok) => return Ok(self.register_infer_ok_obligations(ok)),
Err(_) => {
(Some(prev_ty.fn_sig(self.tcx)), Some(new_ty.fn_sig(self.tcx)))
}
}
}
(ty::Closure(_, args), ty::FnDef(..)) => {
let b_sig = new_ty.fn_sig(self.tcx);
let a_sig =
self.tcx.signature_unclosure(args.as_closure().sig(), b_sig.safety());
(Some(a_sig), Some(b_sig))
}
(ty::FnDef(..), ty::Closure(_, args)) => {
let a_sig = prev_ty.fn_sig(self.tcx);
let b_sig =
self.tcx.signature_unclosure(args.as_closure().sig(), a_sig.safety());
(Some(a_sig), Some(b_sig))
}
(ty::Closure(_, args_a), ty::Closure(_, args_b)) => (
Some(
self.tcx
.signature_unclosure(args_a.as_closure().sig(), hir::Safety::Safe),
),
Some(
self.tcx
.signature_unclosure(args_b.as_closure().sig(), hir::Safety::Safe),
),
),
_ => (None, None),
}
}
};
if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
// Intrinsics are not coercible to function pointers.
if a_sig.abi() == Abi::RustIntrinsic || b_sig.abi() == Abi::RustIntrinsic {
return Err(TypeError::IntrinsicCast);
}
// The signature must match.
let (a_sig, b_sig) = self.normalize(new.span, (a_sig, b_sig));
let sig = self
.at(cause, self.param_env)
.lub(a_sig, b_sig)
.map(|ok| self.register_infer_ok_obligations(ok))?;
// Reify both sides and return the reified fn pointer type.
let fn_ptr = Ty::new_fn_ptr(self.tcx, sig);
let prev_adjustment = match prev_ty.kind() {
ty::Closure(..) => {
Adjust::Pointer(PointerCoercion::ClosureFnPointer(a_sig.safety()))
}
ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
_ => span_bug!(cause.span, "should not try to coerce a {prev_ty} to a fn pointer"),
};
let next_adjustment = match new_ty.kind() {
ty::Closure(..) => {
Adjust::Pointer(PointerCoercion::ClosureFnPointer(b_sig.safety()))
}
ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
_ => span_bug!(new.span, "should not try to coerce a {new_ty} to a fn pointer"),
};
for expr in exprs.iter().map(|e| e.as_coercion_site()) {
self.apply_adjustments(expr, vec![Adjustment {
kind: prev_adjustment.clone(),
target: fn_ptr,
}]);
}
self.apply_adjustments(new, vec![Adjustment { kind: next_adjustment, target: fn_ptr }]);
return Ok(fn_ptr);
}
// Configure a Coerce instance to compute the LUB.
// We don't allow two-phase borrows on any autorefs this creates since we
// probably aren't processing function arguments here and even if we were,
// they're going to get autorefed again anyway and we can apply 2-phase borrows
// at that time.
//
// NOTE: we set `coerce_never` to `true` here because coercion LUBs only
// operate on values and not places, so a never coercion is valid.
let mut coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No, true);
coerce.use_lub = true;
// First try to coerce the new expression to the type of the previous ones,
// but only if the new expression has no coercion already applied to it.
let mut first_error = None;
if !self.typeck_results.borrow().adjustments().contains_key(new.hir_id) {
let result = self.commit_if_ok(|_| coerce.coerce(new_ty, prev_ty));
match result {
Ok(ok) => {
let (adjustments, target) = self.register_infer_ok_obligations(ok);
self.apply_adjustments(new, adjustments);
debug!(
"coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
new_ty, prev_ty, target
);
return Ok(target);
}
Err(e) => first_error = Some(e),
}
}
// Then try to coerce the previous expressions to the type of the new one.
// This requires ensuring there are no coercions applied to *any* of the
// previous expressions, other than noop reborrows (ignoring lifetimes).
for expr in exprs {
let expr = expr.as_coercion_site();
let noop = match self.typeck_results.borrow().expr_adjustments(expr) {
&[
Adjustment { kind: Adjust::Deref(_), .. },
Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(_, mutbl_adj)), .. },
] => {
match *self.node_ty(expr.hir_id).kind() {
ty::Ref(_, _, mt_orig) => {
let mutbl_adj: hir::Mutability = mutbl_adj.into();
// Reborrow that we can safely ignore, because
// the next adjustment can only be a Deref
// which will be merged into it.
mutbl_adj == mt_orig
}
_ => false,
}
}
&[Adjustment { kind: Adjust::NeverToAny, .. }] | &[] => true,
_ => false,
};
if !noop {
debug!(
"coercion::try_find_coercion_lub: older expression {:?} had adjustments, requiring LUB",
expr,
);
return Err(self
.commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
.unwrap_err());
}
}
match self.commit_if_ok(|_| coerce.coerce(prev_ty, new_ty)) {
Err(_) => {
// Avoid giving strange errors on failed attempts.
if let Some(e) = first_error {
Err(e)
} else {
Err(self
.commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
.unwrap_err())
}
}
Ok(ok) => {
let (adjustments, target) = self.register_infer_ok_obligations(ok);
for expr in exprs {
let expr = expr.as_coercion_site();
self.apply_adjustments(expr, adjustments.clone());
}
debug!(
"coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
prev_ty, new_ty, target
);
Ok(target)
}
}
}
}
/// Check whether `ty` can be coerced to `output_ty`.
/// Used from clippy.
pub fn can_coerce<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
body_id: LocalDefId,
ty: Ty<'tcx>,
output_ty: Ty<'tcx>,
) -> bool {
let root_ctxt = crate::typeck_root_ctxt::TypeckRootCtxt::new(tcx, body_id);
let fn_ctxt = FnCtxt::new(&root_ctxt, param_env, body_id);
fn_ctxt.may_coerce(ty, output_ty)
}
/// CoerceMany encapsulates the pattern you should use when you have
/// many expressions that are all getting coerced to a common
/// type. This arises, for example, when you have a match (the result
/// of each arm is coerced to a common type). It also arises in less
/// obvious places, such as when you have many `break foo` expressions
/// that target the same loop, or the various `return` expressions in
/// a function.
///
/// The basic protocol is as follows:
///
/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
/// This will also serve as the "starting LUB". The expectation is
/// that this type is something which all of the expressions *must*
/// be coercible to. Use a fresh type variable if needed.
/// - For each expression whose result is to be coerced, invoke `coerce()` with.
/// - In some cases we wish to coerce "non-expressions" whose types are implicitly
/// unit. This happens for example if you have a `break` with no expression,
/// or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
/// - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
/// from you so that you don't have to worry your pretty head about it.
/// But if an error is reported, the final type will be `err`.
/// - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
/// previously coerced expressions.
/// - When all done, invoke `complete()`. This will return the LUB of
/// all your expressions.
/// - WARNING: I don't believe this final type is guaranteed to be
/// related to your initial `expected_ty` in any particular way,
/// although it will typically be a subtype, so you should check it.
/// - Invoking `complete()` may cause us to go and adjust the "adjustments" on
/// previously coerced expressions.
///
/// Example:
///
/// ```ignore (illustrative)
/// let mut coerce = CoerceMany::new(expected_ty);
/// for expr in exprs {
/// let expr_ty = fcx.check_expr_with_expectation(expr, expected);
/// coerce.coerce(fcx, &cause, expr, expr_ty);
/// }
/// let final_ty = coerce.complete(fcx);
/// ```
pub(crate) struct CoerceMany<'tcx, 'exprs, E: AsCoercionSite> {
expected_ty: Ty<'tcx>,
final_ty: Option<Ty<'tcx>>,
expressions: Expressions<'tcx, 'exprs, E>,
pushed: usize,
}
/// The type of a `CoerceMany` that is storing up the expressions into
/// a buffer. We use this in `check/mod.rs` for things like `break`.
pub(crate) type DynamicCoerceMany<'tcx> = CoerceMany<'tcx, 'tcx, &'tcx hir::Expr<'tcx>>;
enum Expressions<'tcx, 'exprs, E: AsCoercionSite> {
Dynamic(Vec<&'tcx hir::Expr<'tcx>>),
UpFront(&'exprs [E]),
}
impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
/// The usual case; collect the set of expressions dynamically.
/// If the full set of coercion sites is known before hand,
/// consider `with_coercion_sites()` instead to avoid allocation.
pub(crate) fn new(expected_ty: Ty<'tcx>) -> Self {
Self::make(expected_ty, Expressions::Dynamic(vec![]))
}
/// As an optimization, you can create a `CoerceMany` with a
/// preexisting slice of expressions. In this case, you are
/// expected to pass each element in the slice to `coerce(...)` in
/// order. This is used with arrays in particular to avoid
/// needlessly cloning the slice.
pub(crate) fn with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self {
Self::make(expected_ty, Expressions::UpFront(coercion_sites))
}
fn make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self {
CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
}
/// Returns the "expected type" with which this coercion was
/// constructed. This represents the "downward propagated" type
/// that was given to us at the start of typing whatever construct
/// we are typing (e.g., the match expression).
///
/// Typically, this is used as the expected type when
/// type-checking each of the alternative expressions whose types
/// we are trying to merge.
pub(crate) fn expected_ty(&self) -> Ty<'tcx> {
self.expected_ty
}
/// Returns the current "merged type", representing our best-guess
/// at the LUB of the expressions we've seen so far (if any). This
/// isn't *final* until you call `self.complete()`, which will return
/// the merged type.
pub(crate) fn merged_ty(&self) -> Ty<'tcx> {
self.final_ty.unwrap_or(self.expected_ty)
}
/// Indicates that the value generated by `expression`, which is
/// of type `expression_ty`, is one of the possibilities that we
/// could coerce from. This will record `expression`, and later
/// calls to `coerce` may come back and add adjustments and things
/// if necessary.
pub(crate) fn coerce<'a>(
&mut self,
fcx: &FnCtxt<'a, 'tcx>,
cause: &ObligationCause<'tcx>,
expression: &'tcx hir::Expr<'tcx>,
expression_ty: Ty<'tcx>,
) {
self.coerce_inner(fcx, cause, Some(expression), expression_ty, |_| {}, false)
}
/// Indicates that one of the inputs is a "forced unit". This
/// occurs in a case like `if foo { ... };`, where the missing else
/// generates a "forced unit". Another example is a `loop { break;
/// }`, where the `break` has no argument expression. We treat
/// these cases slightly differently for error-reporting
/// purposes. Note that these tend to correspond to cases where
/// the `()` expression is implicit in the source, and hence we do
/// not take an expression argument.
///
/// The `augment_error` gives you a chance to extend the error
/// message, in case any results (e.g., we use this to suggest
/// removing a `;`).
pub(crate) fn coerce_forced_unit<'a>(
&mut self,
fcx: &FnCtxt<'a, 'tcx>,
cause: &ObligationCause<'tcx>,
augment_error: impl FnOnce(&mut Diag<'_>),
label_unit_as_expected: bool,
) {
self.coerce_inner(
fcx,
cause,
None,
fcx.tcx.types.unit,
augment_error,
label_unit_as_expected,
)
}
/// The inner coercion "engine". If `expression` is `None`, this
/// is a forced-unit case, and hence `expression_ty` must be
/// `Nil`.
#[instrument(skip(self, fcx, augment_error, label_expression_as_expected), level = "debug")]
pub(crate) fn coerce_inner<'a>(
&mut self,
fcx: &FnCtxt<'a, 'tcx>,
cause: &ObligationCause<'tcx>,
expression: Option<&'tcx hir::Expr<'tcx>>,
mut expression_ty: Ty<'tcx>,
augment_error: impl FnOnce(&mut Diag<'_>),
label_expression_as_expected: bool,
) {
// Incorporate whatever type inference information we have
// until now; in principle we might also want to process
// pending obligations, but doing so should only improve
// compatibility (hopefully that is true) by helping us
// uncover never types better.
if expression_ty.is_ty_var() {
expression_ty = fcx.infcx.shallow_resolve(expression_ty);
}
// If we see any error types, just propagate that error
// upwards.
if let Err(guar) = (expression_ty, self.merged_ty()).error_reported() {
self.final_ty = Some(Ty::new_error(fcx.tcx, guar));
return;
}
let (expected, found) = if label_expression_as_expected {
// In the case where this is a "forced unit", like
// `break`, we want to call the `()` "expected"
// since it is implied by the syntax.
// (Note: not all force-units work this way.)"
(expression_ty, self.merged_ty())
} else {
// Otherwise, the "expected" type for error
// reporting is the current unification type,
// which is basically the LUB of the expressions
// we've seen so far (combined with the expected
// type)
(self.merged_ty(), expression_ty)
};
// Handle the actual type unification etc.
let result = if let Some(expression) = expression {
if self.pushed == 0 {
// Special-case the first expression we are coercing.
// To be honest, I'm not entirely sure why we do this.
// We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
fcx.coerce(
expression,
expression_ty,
self.expected_ty,
AllowTwoPhase::No,
Some(cause.clone()),
)
} else {
match self.expressions {
Expressions::Dynamic(ref exprs) => fcx.try_find_coercion_lub(
cause,
exprs,
self.merged_ty(),
expression,
expression_ty,
),
Expressions::UpFront(coercion_sites) => fcx.try_find_coercion_lub(
cause,
&coercion_sites[0..self.pushed],
self.merged_ty(),
expression,
expression_ty,
),
}
}
} else {
// this is a hack for cases where we default to `()` because
// the expression etc has been omitted from the source. An
// example is an `if let` without an else:
//
// if let Some(x) = ... { }
//
// we wind up with a second match arm that is like `_ =>
// ()`. That is the case we are considering here. We take
// a different path to get the right "expected, found"
// message and so forth (and because we know that
// `expression_ty` will be unit).
//
// Another example is `break` with no argument expression.
assert!(expression_ty.is_unit(), "if let hack without unit type");
fcx.at(cause, fcx.param_env)
.eq(
// needed for tests/ui/type-alias-impl-trait/issue-65679-inst-opaque-ty-from-val-twice.rs
DefineOpaqueTypes::Yes,
expected,
found,
)
.map(|infer_ok| {
fcx.register_infer_ok_obligations(infer_ok);
expression_ty
})
};
debug!(?result);
match result {
Ok(v) => {
self.final_ty = Some(v);
if let Some(e) = expression {
match self.expressions {
Expressions::Dynamic(ref mut buffer) => buffer.push(e),
Expressions::UpFront(coercion_sites) => {
// if the user gave us an array to validate, check that we got
// the next expression in the list, as expected
assert_eq!(
coercion_sites[self.pushed].as_coercion_site().hir_id,
e.hir_id
);
}
}
self.pushed += 1;
}
}
Err(coercion_error) => {
// Mark that we've failed to coerce the types here to suppress
// any superfluous errors we might encounter while trying to
// emit or provide suggestions on how to fix the initial error.
fcx.set_tainted_by_errors(
fcx.dcx().span_delayed_bug(cause.span, "coercion error but no error emitted"),
);
let (expected, found) = fcx.resolve_vars_if_possible((expected, found));
let mut err;
let mut unsized_return = false;
match *cause.code() {
ObligationCauseCode::ReturnNoExpression => {
err = struct_span_code_err!(
fcx.dcx(),
cause.span,
E0069,
"`return;` in a function whose return type is not `()`"
);
if let Some(value) = fcx.err_ctxt().ty_kind_suggestion(fcx.param_env, found)
{
err.span_suggestion_verbose(
cause.span.shrink_to_hi(),
"give the `return` a value of the expected type",
format!(" {value}"),
Applicability::HasPlaceholders,
);
}
err.span_label(cause.span, "return type is not `()`");
}
ObligationCauseCode::BlockTailExpression(blk_id, ..) => {
err = self.report_return_mismatched_types(
cause,
expected,
found,
coercion_error,
fcx,
blk_id,
expression,
);
if !fcx.tcx.features().unsized_locals {
unsized_return = self.is_return_ty_definitely_unsized(fcx);
}
}
ObligationCauseCode::ReturnValue(return_expr_id) => {
err = self.report_return_mismatched_types(
cause,
expected,
found,
coercion_error,
fcx,
return_expr_id,
expression,
);
if !fcx.tcx.features().unsized_locals {
unsized_return = self.is_return_ty_definitely_unsized(fcx);
}
}
ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
arm_span,
arm_ty,
prior_arm_ty,
ref prior_non_diverging_arms,
tail_defines_return_position_impl_trait: Some(rpit_def_id),
..
}) => {
err = fcx.err_ctxt().report_mismatched_types(
cause,
expected,
found,
coercion_error,
);
// Check that we're actually in the second or later arm
if prior_non_diverging_arms.len() > 0 {
self.suggest_boxing_tail_for_return_position_impl_trait(
fcx,
&mut err,
rpit_def_id,
arm_ty,
prior_arm_ty,
prior_non_diverging_arms
.iter()
.chain(std::iter::once(&arm_span))
.copied(),
);
}
}
ObligationCauseCode::IfExpression(box IfExpressionCause {
then_id,
else_id,
then_ty,
else_ty,
tail_defines_return_position_impl_trait: Some(rpit_def_id),
..
}) => {
err = fcx.err_ctxt().report_mismatched_types(
cause,
expected,
found,
coercion_error,
);
let then_span = fcx.find_block_span_from_hir_id(then_id);
let else_span = fcx.find_block_span_from_hir_id(else_id);
// don't suggest wrapping either blocks in `if .. {} else {}`
let is_empty_arm = |id| {
let hir::Node::Block(blk) = fcx.tcx.hir_node(id) else {
return false;
};
if blk.expr.is_some() || !blk.stmts.is_empty() {
return false;
}
let Some((_, hir::Node::Expr(expr))) =
fcx.tcx.hir().parent_iter(id).nth(1)
else {
return false;
};
matches!(expr.kind, hir::ExprKind::If(..))
};
if !is_empty_arm(then_id) && !is_empty_arm(else_id) {
self.suggest_boxing_tail_for_return_position_impl_trait(
fcx,
&mut err,
rpit_def_id,
then_ty,
else_ty,
[then_span, else_span].into_iter(),
);
}
}
_ => {
err = fcx.err_ctxt().report_mismatched_types(
cause,
expected,
found,
coercion_error,
);
}
}
augment_error(&mut err);
if let Some(expr) = expression {
if let hir::ExprKind::Loop(
_,
_,
loop_src @ (hir::LoopSource::While | hir::LoopSource::ForLoop),
_,
) = expr.kind
{
let loop_type = if loop_src == hir::LoopSource::While {
"`while` loops"
} else {
"`for` loops"
};
err.note(format!("{loop_type} evaluate to unit type `()`"));
}
fcx.emit_coerce_suggestions(
&mut err,
expr,
found,
expected,
None,
Some(coercion_error),
);
}
let reported = err.emit_unless(unsized_return);
self.final_ty = Some(Ty::new_error(fcx.tcx, reported));
}
}
}
fn suggest_boxing_tail_for_return_position_impl_trait(
&self,
fcx: &FnCtxt<'_, 'tcx>,
err: &mut Diag<'_>,
rpit_def_id: LocalDefId,
a_ty: Ty<'tcx>,
b_ty: Ty<'tcx>,
arm_spans: impl Iterator<Item = Span>,
) {
let compatible = |ty: Ty<'tcx>| {
fcx.probe(|_| {
let ocx = ObligationCtxt::new(fcx);
ocx.register_obligations(
fcx.tcx.item_super_predicates(rpit_def_id).iter_identity().filter_map(
|clause| {
let predicate = clause
.kind()
.map_bound(|clause| match clause {
ty::ClauseKind::Trait(trait_pred) => Some(
ty::ClauseKind::Trait(trait_pred.with_self_ty(fcx.tcx, ty)),
),
ty::ClauseKind::Projection(proj_pred) => {
Some(ty::ClauseKind::Projection(
proj_pred.with_self_ty(fcx.tcx, ty),
))
}
_ => None,
})
.transpose()?;
Some(Obligation::new(
fcx.tcx,
ObligationCause::dummy(),
fcx.param_env,
predicate,
))
},
),
);
ocx.select_where_possible().is_empty()
})
};
if !compatible(a_ty) || !compatible(b_ty) {
return;
}
let rpid_def_span = fcx.tcx.def_span(rpit_def_id);
err.subdiagnostic(SuggestBoxingForReturnImplTrait::ChangeReturnType {
start_sp: rpid_def_span.with_hi(rpid_def_span.lo() + BytePos(4)),
end_sp: rpid_def_span.shrink_to_hi(),
});
let (starts, ends) =
arm_spans.map(|span| (span.shrink_to_lo(), span.shrink_to_hi())).unzip();
err.subdiagnostic(SuggestBoxingForReturnImplTrait::BoxReturnExpr { starts, ends });
}
fn report_return_mismatched_types<'infcx>(
&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
found: Ty<'tcx>,
ty_err: TypeError<'tcx>,
fcx: &'infcx FnCtxt<'_, 'tcx>,
block_or_return_id: hir::HirId,
expression: Option<&'tcx hir::Expr<'tcx>>,
) -> Diag<'infcx> {
let mut err = fcx.err_ctxt().report_mismatched_types(cause, expected, found, ty_err);
let due_to_block = matches!(fcx.tcx.hir_node(block_or_return_id), hir::Node::Block(..));
let parent_id = fcx.tcx.parent_hir_id(block_or_return_id);
let parent = fcx.tcx.hir_node(parent_id);
if let Some(expr) = expression
&& let hir::Node::Expr(hir::Expr {
kind: hir::ExprKind::Closure(&hir::Closure { body, .. }),
..
}) = parent
&& !matches!(fcx.tcx.hir().body(body).value.kind, hir::ExprKind::Block(..))
{
fcx.suggest_missing_semicolon(&mut err, expr, expected, true);
}
// Verify that this is a tail expression of a function, otherwise the
// label pointing out the cause for the type coercion will be wrong
// as prior return coercions would not be relevant (#57664).
if let Some(expr) = expression
&& due_to_block
{
fcx.suggest_missing_semicolon(&mut err, expr, expected, false);
let pointing_at_return_type = fcx.suggest_mismatched_types_on_tail(
&mut err,
expr,
expected,
found,
block_or_return_id,
);
if let Some(cond_expr) = fcx.tcx.hir().get_if_cause(expr.hir_id)
&& expected.is_unit()
&& !pointing_at_return_type
// If the block is from an external macro or try (`?`) desugaring, then
// do not suggest adding a semicolon, because there's nowhere to put it.
// See issues #81943 and #87051.
&& matches!(
cond_expr.span.desugaring_kind(),
None | Some(DesugaringKind::WhileLoop)
)
&& !in_external_macro(fcx.tcx.sess, cond_expr.span)
&& !matches!(
cond_expr.kind,
hir::ExprKind::Match(.., hir::MatchSource::TryDesugar(_))
)
{
err.span_label(cond_expr.span, "expected this to be `()`");
if expr.can_have_side_effects() {
fcx.suggest_semicolon_at_end(cond_expr.span, &mut err);
}
}
};
// If this is due to an explicit `return`, suggest adding a return type.
if let Some((fn_id, fn_decl)) = fcx.get_fn_decl(block_or_return_id)
&& !due_to_block
{
fcx.suggest_missing_return_type(&mut err, fn_decl, expected, found, fn_id);
}
// If this is due to a block, then maybe we forgot a `return`/`break`.
if due_to_block
&& let Some(expr) = expression
&& let Some(parent_fn_decl) =
fcx.tcx.hir().fn_decl_by_hir_id(fcx.tcx.local_def_id_to_hir_id(fcx.body_id))
{
fcx.suggest_missing_break_or_return_expr(
&mut err,
expr,
parent_fn_decl,
expected,
found,
block_or_return_id,
fcx.body_id,
);
}
let ret_coercion_span = fcx.ret_coercion_span.get();
if let Some(sp) = ret_coercion_span
// If the closure has an explicit return type annotation, or if
// the closure's return type has been inferred from outside
// requirements (such as an Fn* trait bound), then a type error
// may occur at the first return expression we see in the closure
// (if it conflicts with the declared return type). Skip adding a
// note in this case, since it would be incorrect.
&& let Some(fn_sig) = fcx.body_fn_sig()
&& fn_sig.output().is_ty_var()
{
err.span_note(sp, format!("return type inferred to be `{expected}` here"));
}
err
}
/// Checks whether the return type is unsized via an obligation, which makes
/// sure we consider `dyn Trait: Sized` where clauses, which are trivially
/// false but technically valid for typeck.
fn is_return_ty_definitely_unsized(&self, fcx: &FnCtxt<'_, 'tcx>) -> bool {
if let Some(sig) = fcx.body_fn_sig() {
!fcx.predicate_may_hold(&Obligation::new(
fcx.tcx,
ObligationCause::dummy(),
fcx.param_env,
ty::TraitRef::new(
fcx.tcx,
fcx.tcx.require_lang_item(hir::LangItem::Sized, None),
[sig.output()],
),
))
} else {
false
}
}
pub(crate) fn complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx> {
if let Some(final_ty) = self.final_ty {
final_ty
} else {
// If we only had inputs that were of type `!` (or no
// inputs at all), then the final type is `!`.
assert_eq!(self.pushed, 0);
fcx.tcx.types.never
}
}
}
/// Something that can be converted into an expression to which we can
/// apply a coercion.
pub(crate) trait AsCoercionSite {
fn as_coercion_site(&self) -> &hir::Expr<'_>;
}
impl AsCoercionSite for hir::Expr<'_> {
fn as_coercion_site(&self) -> &hir::Expr<'_> {
self
}
}
impl<'a, T> AsCoercionSite for &'a T
where
T: AsCoercionSite,
{
fn as_coercion_site(&self) -> &hir::Expr<'_> {
(**self).as_coercion_site()
}
}
impl AsCoercionSite for ! {
fn as_coercion_site(&self) -> &hir::Expr<'_> {
*self
}
}
impl AsCoercionSite for hir::Arm<'_> {
fn as_coercion_site(&self) -> &hir::Expr<'_> {
self.body
}
}