rustc_hir_typeck/
pat.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
use std::cmp;
use std::collections::hash_map::Entry::{Occupied, Vacant};

use rustc_ast as ast;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::codes::*;
use rustc_errors::{
    Applicability, Diag, ErrorGuaranteed, MultiSpan, pluralize, struct_span_code_err,
};
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::pat_util::EnumerateAndAdjustIterator;
use rustc_hir::{self as hir, BindingMode, ByRef, HirId, LangItem, Mutability, Pat, PatKind};
use rustc_infer::infer;
use rustc_middle::ty::{self, Ty, TypeVisitableExt};
use rustc_middle::{bug, span_bug};
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
use rustc_session::parse::feature_err;
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{Ident, kw, sym};
use rustc_span::{BytePos, DUMMY_SP, Span};
use rustc_target::abi::FieldIdx;
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode};
use tracing::{debug, instrument, trace};
use ty::VariantDef;

use super::report_unexpected_variant_res;
use crate::gather_locals::DeclOrigin;
use crate::{FnCtxt, LoweredTy, errors};

const CANNOT_IMPLICITLY_DEREF_POINTER_TRAIT_OBJ: &str = "\
This error indicates that a pointer to a trait type cannot be implicitly dereferenced by a \
pattern. Every trait defines a type, but because the size of trait implementors isn't fixed, \
this type has no compile-time size. Therefore, all accesses to trait types must be through \
pointers. If you encounter this error you should try to avoid dereferencing the pointer.

You can read more about trait objects in the Trait Objects section of the Reference: \
https://doc.rust-lang.org/reference/types.html#trait-objects";

fn is_number(text: &str) -> bool {
    text.chars().all(|c: char| c.is_digit(10))
}

/// Information about the expected type at the top level of type checking a pattern.
///
/// **NOTE:** This is only for use by diagnostics. Do NOT use for type checking logic!
#[derive(Copy, Clone)]
struct TopInfo<'tcx> {
    /// The `expected` type at the top level of type checking a pattern.
    expected: Ty<'tcx>,
    /// Was the origin of the `span` from a scrutinee expression?
    ///
    /// Otherwise there is no scrutinee and it could be e.g. from the type of a formal parameter.
    origin_expr: Option<&'tcx hir::Expr<'tcx>>,
    /// The span giving rise to the `expected` type, if one could be provided.
    ///
    /// If `origin_expr` is `true`, then this is the span of the scrutinee as in:
    ///
    /// - `match scrutinee { ... }`
    /// - `let _ = scrutinee;`
    ///
    /// This is used to point to add context in type errors.
    /// In the following example, `span` corresponds to the `a + b` expression:
    ///
    /// ```text
    /// error[E0308]: mismatched types
    ///  --> src/main.rs:L:C
    ///   |
    /// L |    let temp: usize = match a + b {
    ///   |                            ----- this expression has type `usize`
    /// L |         Ok(num) => num,
    ///   |         ^^^^^^^ expected `usize`, found enum `std::result::Result`
    ///   |
    ///   = note: expected type `usize`
    ///              found type `std::result::Result<_, _>`
    /// ```
    span: Option<Span>,
    /// The [`HirId`] of the top-level pattern.
    hir_id: HirId,
}

#[derive(Copy, Clone)]
struct PatInfo<'a, 'tcx> {
    binding_mode: ByRef,
    max_ref_mutbl: MutblCap,
    top_info: &'a TopInfo<'tcx>,
    decl_origin: Option<DeclOrigin<'tcx>>,

    /// The depth of current pattern
    current_depth: u32,
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    fn pattern_cause(&self, ti: &TopInfo<'tcx>, cause_span: Span) -> ObligationCause<'tcx> {
        let code = ObligationCauseCode::Pattern {
            span: ti.span,
            root_ty: ti.expected,
            origin_expr: ti.origin_expr.is_some(),
        };
        self.cause(cause_span, code)
    }

    fn demand_eqtype_pat_diag(
        &'a self,
        cause_span: Span,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
        ti: &TopInfo<'tcx>,
    ) -> Result<(), Diag<'a>> {
        self.demand_eqtype_with_origin(&self.pattern_cause(ti, cause_span), expected, actual)
            .map_err(|mut diag| {
                if let Some(expr) = ti.origin_expr {
                    self.suggest_fn_call(&mut diag, expr, expected, |output| {
                        self.can_eq(self.param_env, output, actual)
                    });
                }
                diag
            })
    }

    fn demand_eqtype_pat(
        &self,
        cause_span: Span,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
        ti: &TopInfo<'tcx>,
    ) -> Result<(), ErrorGuaranteed> {
        self.demand_eqtype_pat_diag(cause_span, expected, actual, ti).map_err(|err| err.emit())
    }
}

/// Mode for adjusting the expected type and binding mode.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum AdjustMode {
    /// Peel off all immediate reference types.
    Peel,
    /// Reset binding mode to the initial mode.
    /// Used for destructuring assignment, where we don't want any match ergonomics.
    Reset,
    /// Pass on the input binding mode and expected type.
    Pass,
}

/// `ref mut` patterns (explicit or match-ergonomics)
/// are not allowed behind an `&` reference.
///
/// This includes explicit `ref mut` behind `&` patterns
/// that match against `&mut` references,
/// where the code would have compiled
/// had the pattern been written as `&mut`.
/// However, the borrow checker will not catch
/// this last case, so we need to throw an error ourselves.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum MutblCap {
    /// Mutability restricted to immutable.
    Not,

    /// Mutability restricted to immutable, but only because of the pattern
    /// (not the scrutinee type).
    ///
    /// The contained span, if present, points to an `&` pattern
    /// that is the reason for the restriction,
    /// and which will be reported in a diagnostic.
    WeaklyNot(Option<Span>),

    /// No restriction on mutability
    Mut,
}

impl MutblCap {
    #[must_use]
    fn cap_to_weakly_not(self, span: Option<Span>) -> Self {
        match self {
            MutblCap::Not => MutblCap::Not,
            _ => MutblCap::WeaklyNot(span),
        }
    }

    #[must_use]
    fn as_mutbl(self) -> Mutability {
        match self {
            MutblCap::Not | MutblCap::WeaklyNot(_) => Mutability::Not,
            MutblCap::Mut => Mutability::Mut,
        }
    }
}

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    /// Type check the given top level pattern against the `expected` type.
    ///
    /// If a `Some(span)` is provided and `origin_expr` holds,
    /// then the `span` represents the scrutinee's span.
    /// The scrutinee is found in e.g. `match scrutinee { ... }` and `let pat = scrutinee;`.
    ///
    /// Otherwise, `Some(span)` represents the span of a type expression
    /// which originated the `expected` type.
    pub(crate) fn check_pat_top(
        &self,
        pat: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        span: Option<Span>,
        origin_expr: Option<&'tcx hir::Expr<'tcx>>,
        decl_origin: Option<DeclOrigin<'tcx>>,
    ) {
        let info = TopInfo { expected, origin_expr, span, hir_id: pat.hir_id };
        let pat_info = PatInfo {
            binding_mode: ByRef::No,
            max_ref_mutbl: MutblCap::Mut,
            top_info: &info,
            decl_origin,
            current_depth: 0,
        };
        self.check_pat(pat, expected, pat_info);
    }

    /// Type check the given `pat` against the `expected` type
    /// with the provided `binding_mode` (default binding mode).
    ///
    /// Outside of this module, `check_pat_top` should always be used.
    /// Conversely, inside this module, `check_pat_top` should never be used.
    #[instrument(level = "debug", skip(self, pat_info))]
    fn check_pat(&self, pat: &'tcx Pat<'tcx>, expected: Ty<'tcx>, pat_info: PatInfo<'_, 'tcx>) {
        let PatInfo { binding_mode, max_ref_mutbl, top_info: ti, current_depth, .. } = pat_info;

        let path_res = match &pat.kind {
            PatKind::Path(qpath) => {
                Some(self.resolve_ty_and_res_fully_qualified_call(qpath, pat.hir_id, pat.span))
            }
            _ => None,
        };
        let adjust_mode = self.calc_adjust_mode(pat, path_res.map(|(res, ..)| res));
        let (expected, binding_mode, max_ref_mutbl) =
            self.calc_default_binding_mode(pat, expected, binding_mode, adjust_mode, max_ref_mutbl);
        let pat_info = PatInfo {
            binding_mode,
            max_ref_mutbl,
            top_info: ti,
            decl_origin: pat_info.decl_origin,
            current_depth: current_depth + 1,
        };

        let ty = match pat.kind {
            PatKind::Wild | PatKind::Err(_) => expected,
            // We allow any type here; we ensure that the type is uninhabited during match checking.
            PatKind::Never => expected,
            PatKind::Lit(lt) => self.check_pat_lit(pat.span, lt, expected, ti),
            PatKind::Range(lhs, rhs, _) => self.check_pat_range(pat.span, lhs, rhs, expected, ti),
            PatKind::Binding(ba, var_id, ident, sub) => {
                self.check_pat_ident(pat, ba, var_id, ident, sub, expected, pat_info)
            }
            PatKind::TupleStruct(ref qpath, subpats, ddpos) => {
                self.check_pat_tuple_struct(pat, qpath, subpats, ddpos, expected, pat_info)
            }
            PatKind::Path(ref qpath) => {
                self.check_pat_path(pat, qpath, path_res.unwrap(), expected, ti)
            }
            PatKind::Struct(ref qpath, fields, has_rest_pat) => {
                self.check_pat_struct(pat, qpath, fields, has_rest_pat, expected, pat_info)
            }
            PatKind::Or(pats) => {
                for pat in pats {
                    self.check_pat(pat, expected, pat_info);
                }
                expected
            }
            PatKind::Tuple(elements, ddpos) => {
                self.check_pat_tuple(pat.span, elements, ddpos, expected, pat_info)
            }
            PatKind::Box(inner) => self.check_pat_box(pat.span, inner, expected, pat_info),
            PatKind::Deref(inner) => self.check_pat_deref(pat.span, inner, expected, pat_info),
            PatKind::Ref(inner, mutbl) => self.check_pat_ref(pat, inner, mutbl, expected, pat_info),
            PatKind::Slice(before, slice, after) => {
                self.check_pat_slice(pat.span, before, slice, after, expected, pat_info)
            }
        };

        self.write_ty(pat.hir_id, ty);

        // (note_1): In most of the cases where (note_1) is referenced
        // (literals and constants being the exception), we relate types
        // using strict equality, even though subtyping would be sufficient.
        // There are a few reasons for this, some of which are fairly subtle
        // and which cost me (nmatsakis) an hour or two debugging to remember,
        // so I thought I'd write them down this time.
        //
        // 1. There is no loss of expressiveness here, though it does
        // cause some inconvenience. What we are saying is that the type
        // of `x` becomes *exactly* what is expected. This can cause unnecessary
        // errors in some cases, such as this one:
        //
        // ```
        // fn foo<'x>(x: &'x i32) {
        //    let a = 1;
        //    let mut z = x;
        //    z = &a;
        // }
        // ```
        //
        // The reason we might get an error is that `z` might be
        // assigned a type like `&'x i32`, and then we would have
        // a problem when we try to assign `&a` to `z`, because
        // the lifetime of `&a` (i.e., the enclosing block) is
        // shorter than `'x`.
        //
        // HOWEVER, this code works fine. The reason is that the
        // expected type here is whatever type the user wrote, not
        // the initializer's type. In this case the user wrote
        // nothing, so we are going to create a type variable `Z`.
        // Then we will assign the type of the initializer (`&'x i32`)
        // as a subtype of `Z`: `&'x i32 <: Z`. And hence we
        // will instantiate `Z` as a type `&'0 i32` where `'0` is
        // a fresh region variable, with the constraint that `'x : '0`.
        // So basically we're all set.
        //
        // Note that there are two tests to check that this remains true
        // (`regions-reassign-{match,let}-bound-pointer.rs`).
        //
        // 2. An outdated issue related to the old HIR borrowck. See the test
        // `regions-relate-bound-regions-on-closures-to-inference-variables.rs`,
    }

    /// Compute the new expected type and default binding mode from the old ones
    /// as well as the pattern form we are currently checking.
    fn calc_default_binding_mode(
        &self,
        pat: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        def_br: ByRef,
        adjust_mode: AdjustMode,
        max_ref_mutbl: MutblCap,
    ) -> (Ty<'tcx>, ByRef, MutblCap) {
        #[cfg(debug_assertions)]
        if def_br == ByRef::Yes(Mutability::Mut) && max_ref_mutbl != MutblCap::Mut {
            span_bug!(pat.span, "Pattern mutability cap violated!");
        }
        match adjust_mode {
            AdjustMode::Pass => (expected, def_br, max_ref_mutbl),
            AdjustMode::Reset => (expected, ByRef::No, MutblCap::Mut),
            AdjustMode::Peel => self.peel_off_references(pat, expected, def_br, max_ref_mutbl),
        }
    }

    /// How should the binding mode and expected type be adjusted?
    ///
    /// When the pattern is a path pattern, `opt_path_res` must be `Some(res)`.
    fn calc_adjust_mode(&self, pat: &'tcx Pat<'tcx>, opt_path_res: Option<Res>) -> AdjustMode {
        // When we perform destructuring assignment, we disable default match bindings, which are
        // unintuitive in this context.
        if !pat.default_binding_modes {
            return AdjustMode::Reset;
        }
        match &pat.kind {
            // Type checking these product-like types successfully always require
            // that the expected type be of those types and not reference types.
            PatKind::Struct(..)
            | PatKind::TupleStruct(..)
            | PatKind::Tuple(..)
            | PatKind::Box(_)
            | PatKind::Deref(_)
            | PatKind::Range(..)
            | PatKind::Slice(..) => AdjustMode::Peel,
            // A never pattern behaves somewhat like a literal or unit variant.
            PatKind::Never => AdjustMode::Peel,
            // String and byte-string literals result in types `&str` and `&[u8]` respectively.
            // All other literals result in non-reference types.
            // As a result, we allow `if let 0 = &&0 {}` but not `if let "foo" = &&"foo" {}`.
            //
            // Call `resolve_vars_if_possible` here for inline const blocks.
            PatKind::Lit(lt) => match self.resolve_vars_if_possible(self.check_expr(lt)).kind() {
                ty::Ref(..) => AdjustMode::Pass,
                _ => AdjustMode::Peel,
            },
            PatKind::Path(_) => match opt_path_res.unwrap() {
                // These constants can be of a reference type, e.g. `const X: &u8 = &0;`.
                // Peeling the reference types too early will cause type checking failures.
                // Although it would be possible to *also* peel the types of the constants too.
                Res::Def(DefKind::Const | DefKind::AssocConst, _) => AdjustMode::Pass,
                // In the `ValueNS`, we have `SelfCtor(..) | Ctor(_, Const), _)` remaining which
                // could successfully compile. The former being `Self` requires a unit struct.
                // In either case, and unlike constants, the pattern itself cannot be
                // a reference type wherefore peeling doesn't give up any expressiveness.
                _ => AdjustMode::Peel,
            },
            // Ref patterns are complicated, we handle them in `check_pat_ref`.
            PatKind::Ref(..) => AdjustMode::Pass,
            // A `_` pattern works with any expected type, so there's no need to do anything.
            PatKind::Wild
            // A malformed pattern doesn't have an expected type, so let's just accept any type.
            | PatKind::Err(_)
            // Bindings also work with whatever the expected type is,
            // and moreover if we peel references off, that will give us the wrong binding type.
            // Also, we can have a subpattern `binding @ pat`.
            // Each side of the `@` should be treated independently (like with OR-patterns).
            | PatKind::Binding(..)
            // An OR-pattern just propagates to each individual alternative.
            // This is maximally flexible, allowing e.g., `Some(mut x) | &Some(mut x)`.
            // In that example, `Some(mut x)` results in `Peel` whereas `&Some(mut x)` in `Reset`.
            | PatKind::Or(_) => AdjustMode::Pass,
        }
    }

    /// Peel off as many immediately nested `& mut?` from the expected type as possible
    /// and return the new expected type and binding default binding mode.
    /// The adjustments vector, if non-empty is stored in a table.
    fn peel_off_references(
        &self,
        pat: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        mut def_br: ByRef,
        mut max_ref_mutbl: MutblCap,
    ) -> (Ty<'tcx>, ByRef, MutblCap) {
        let mut expected = self.try_structurally_resolve_type(pat.span, expected);
        // Peel off as many `&` or `&mut` from the scrutinee type as possible. For example,
        // for `match &&&mut Some(5)` the loop runs three times, aborting when it reaches
        // the `Some(5)` which is not of type Ref.
        //
        // For each ampersand peeled off, update the binding mode and push the original
        // type into the adjustments vector.
        //
        // See the examples in `ui/match-defbm*.rs`.
        let mut pat_adjustments = vec![];
        while let ty::Ref(_, inner_ty, inner_mutability) = *expected.kind() {
            debug!("inspecting {:?}", expected);

            debug!("current discriminant is Ref, inserting implicit deref");
            // Preserve the reference type. We'll need it later during THIR lowering.
            pat_adjustments.push(expected);

            expected = self.try_structurally_resolve_type(pat.span, inner_ty);
            def_br = ByRef::Yes(match def_br {
                // If default binding mode is by value, make it `ref` or `ref mut`
                // (depending on whether we observe `&` or `&mut`).
                ByRef::No |
                // When `ref mut`, stay a `ref mut` (on `&mut`) or downgrade to `ref` (on `&`).
                ByRef::Yes(Mutability::Mut) => inner_mutability,
                // Once a `ref`, always a `ref`.
                // This is because a `& &mut` cannot mutate the underlying value.
                ByRef::Yes(Mutability::Not) => Mutability::Not,
            });
        }

        let features = self.tcx.features();
        if features.ref_pat_eat_one_layer_2024 || features.ref_pat_eat_one_layer_2024_structural {
            def_br = def_br.cap_ref_mutability(max_ref_mutbl.as_mutbl());
            if def_br == ByRef::Yes(Mutability::Not) {
                max_ref_mutbl = MutblCap::Not;
            }
        }

        if !pat_adjustments.is_empty() {
            debug!("default binding mode is now {:?}", def_br);
            self.typeck_results
                .borrow_mut()
                .pat_adjustments_mut()
                .insert(pat.hir_id, pat_adjustments);
        }

        (expected, def_br, max_ref_mutbl)
    }

    fn check_pat_lit(
        &self,
        span: Span,
        lt: &hir::Expr<'tcx>,
        expected: Ty<'tcx>,
        ti: &TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        // We've already computed the type above (when checking for a non-ref pat),
        // so avoid computing it again.
        let ty = self.node_ty(lt.hir_id);

        // Byte string patterns behave the same way as array patterns
        // They can denote both statically and dynamically-sized byte arrays.
        let mut pat_ty = ty;
        if let hir::ExprKind::Lit(Spanned { node: ast::LitKind::ByteStr(..), .. }) = lt.kind {
            let expected = self.structurally_resolve_type(span, expected);
            if let ty::Ref(_, inner_ty, _) = *expected.kind()
                && self.try_structurally_resolve_type(span, inner_ty).is_slice()
            {
                let tcx = self.tcx;
                trace!(?lt.hir_id.local_id, "polymorphic byte string lit");
                self.typeck_results
                    .borrow_mut()
                    .treat_byte_string_as_slice
                    .insert(lt.hir_id.local_id);
                pat_ty =
                    Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, Ty::new_slice(tcx, tcx.types.u8));
            }
        }

        if self.tcx.features().string_deref_patterns
            && let hir::ExprKind::Lit(Spanned { node: ast::LitKind::Str(..), .. }) = lt.kind
        {
            let tcx = self.tcx;
            let expected = self.resolve_vars_if_possible(expected);
            pat_ty = match expected.kind() {
                ty::Adt(def, _) if tcx.is_lang_item(def.did(), LangItem::String) => expected,
                ty::Str => Ty::new_static_str(tcx),
                _ => pat_ty,
            };
        }

        // Somewhat surprising: in this case, the subtyping relation goes the
        // opposite way as the other cases. Actually what we really want is not
        // a subtyping relation at all but rather that there exists a LUB
        // (so that they can be compared). However, in practice, constants are
        // always scalars or strings. For scalars subtyping is irrelevant,
        // and for strings `ty` is type is `&'static str`, so if we say that
        //
        //     &'static str <: expected
        //
        // then that's equivalent to there existing a LUB.
        let cause = self.pattern_cause(ti, span);
        if let Err(err) = self.demand_suptype_with_origin(&cause, expected, pat_ty) {
            err.emit_unless(
                ti.span
                    .filter(|&s| {
                        // In the case of `if`- and `while`-expressions we've already checked
                        // that `scrutinee: bool`. We know that the pattern is `true`,
                        // so an error here would be a duplicate and from the wrong POV.
                        s.is_desugaring(DesugaringKind::CondTemporary)
                    })
                    .is_some(),
            );
        }

        pat_ty
    }

    fn check_pat_range(
        &self,
        span: Span,
        lhs: Option<&'tcx hir::Expr<'tcx>>,
        rhs: Option<&'tcx hir::Expr<'tcx>>,
        expected: Ty<'tcx>,
        ti: &TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let calc_side = |opt_expr: Option<&'tcx hir::Expr<'tcx>>| match opt_expr {
            None => None,
            Some(expr) => {
                let ty = self.check_expr(expr);
                // Check that the end-point is possibly of numeric or char type.
                // The early check here is not for correctness, but rather better
                // diagnostics (e.g. when `&str` is being matched, `expected` will
                // be peeled to `str` while ty here is still `&str`, if we don't
                // err early here, a rather confusing unification error will be
                // emitted instead).
                let fail =
                    !(ty.is_numeric() || ty.is_char() || ty.is_ty_var() || ty.references_error());
                Some((fail, ty, expr.span))
            }
        };
        let mut lhs = calc_side(lhs);
        let mut rhs = calc_side(rhs);

        if let (Some((true, ..)), _) | (_, Some((true, ..))) = (lhs, rhs) {
            // There exists a side that didn't meet our criteria that the end-point
            // be of a numeric or char type, as checked in `calc_side` above.
            let guar = self.emit_err_pat_range(span, lhs, rhs);
            return Ty::new_error(self.tcx, guar);
        }

        // Unify each side with `expected`.
        // Subtyping doesn't matter here, as the value is some kind of scalar.
        let demand_eqtype = |x: &mut _, y| {
            if let Some((ref mut fail, x_ty, x_span)) = *x
                && let Err(mut err) = self.demand_eqtype_pat_diag(x_span, expected, x_ty, ti)
            {
                if let Some((_, y_ty, y_span)) = y {
                    self.endpoint_has_type(&mut err, y_span, y_ty);
                }
                err.emit();
                *fail = true;
            }
        };
        demand_eqtype(&mut lhs, rhs);
        demand_eqtype(&mut rhs, lhs);

        if let (Some((true, ..)), _) | (_, Some((true, ..))) = (lhs, rhs) {
            return Ty::new_misc_error(self.tcx);
        }

        // Find the unified type and check if it's of numeric or char type again.
        // This check is needed if both sides are inference variables.
        // We require types to be resolved here so that we emit inference failure
        // rather than "_ is not a char or numeric".
        let ty = self.structurally_resolve_type(span, expected);
        if !(ty.is_numeric() || ty.is_char() || ty.references_error()) {
            if let Some((ref mut fail, _, _)) = lhs {
                *fail = true;
            }
            if let Some((ref mut fail, _, _)) = rhs {
                *fail = true;
            }
            let guar = self.emit_err_pat_range(span, lhs, rhs);
            return Ty::new_error(self.tcx, guar);
        }
        ty
    }

    fn endpoint_has_type(&self, err: &mut Diag<'_>, span: Span, ty: Ty<'_>) {
        if !ty.references_error() {
            err.span_label(span, format!("this is of type `{ty}`"));
        }
    }

    fn emit_err_pat_range(
        &self,
        span: Span,
        lhs: Option<(bool, Ty<'tcx>, Span)>,
        rhs: Option<(bool, Ty<'tcx>, Span)>,
    ) -> ErrorGuaranteed {
        let span = match (lhs, rhs) {
            (Some((true, ..)), Some((true, ..))) => span,
            (Some((true, _, sp)), _) => sp,
            (_, Some((true, _, sp))) => sp,
            _ => span_bug!(span, "emit_err_pat_range: no side failed or exists but still error?"),
        };
        let mut err = struct_span_code_err!(
            self.dcx(),
            span,
            E0029,
            "only `char` and numeric types are allowed in range patterns"
        );
        let msg = |ty| {
            let ty = self.resolve_vars_if_possible(ty);
            format!("this is of type `{ty}` but it should be `char` or numeric")
        };
        let mut one_side_err = |first_span, first_ty, second: Option<(bool, Ty<'tcx>, Span)>| {
            err.span_label(first_span, msg(first_ty));
            if let Some((_, ty, sp)) = second {
                let ty = self.resolve_vars_if_possible(ty);
                self.endpoint_has_type(&mut err, sp, ty);
            }
        };
        match (lhs, rhs) {
            (Some((true, lhs_ty, lhs_sp)), Some((true, rhs_ty, rhs_sp))) => {
                err.span_label(lhs_sp, msg(lhs_ty));
                err.span_label(rhs_sp, msg(rhs_ty));
            }
            (Some((true, lhs_ty, lhs_sp)), rhs) => one_side_err(lhs_sp, lhs_ty, rhs),
            (lhs, Some((true, rhs_ty, rhs_sp))) => one_side_err(rhs_sp, rhs_ty, lhs),
            _ => span_bug!(span, "Impossible, verified above."),
        }
        if (lhs, rhs).references_error() {
            err.downgrade_to_delayed_bug();
        }
        if self.tcx.sess.teach(err.code.unwrap()) {
            err.note(
                "In a match expression, only numbers and characters can be matched \
                    against a range. This is because the compiler checks that the range \
                    is non-empty at compile-time, and is unable to evaluate arbitrary \
                    comparison functions. If you want to capture values of an orderable \
                    type between two end-points, you can use a guard.",
            );
        }
        err.emit()
    }

    fn check_pat_ident(
        &self,
        pat: &'tcx Pat<'tcx>,
        user_bind_annot: BindingMode,
        var_id: HirId,
        ident: Ident,
        sub: Option<&'tcx Pat<'tcx>>,
        expected: Ty<'tcx>,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> Ty<'tcx> {
        let PatInfo { binding_mode: def_br, top_info: ti, .. } = pat_info;

        // Determine the binding mode...
        let bm = match user_bind_annot {
            BindingMode(ByRef::No, Mutability::Mut) if matches!(def_br, ByRef::Yes(_)) => {
                if pat.span.at_least_rust_2024()
                    && (self.tcx.features().ref_pat_eat_one_layer_2024
                        || self.tcx.features().ref_pat_eat_one_layer_2024_structural)
                {
                    if !self.tcx.features().mut_ref {
                        feature_err(
                            &self.tcx.sess,
                            sym::mut_ref,
                            pat.span.until(ident.span),
                            "binding cannot be both mutable and by-reference",
                        )
                        .emit();
                    }

                    BindingMode(def_br, Mutability::Mut)
                } else {
                    // `mut` resets the binding mode on edition <= 2021
                    *self
                        .typeck_results
                        .borrow_mut()
                        .rust_2024_migration_desugared_pats_mut()
                        .entry(pat_info.top_info.hir_id)
                        .or_default() |= pat.span.at_least_rust_2024();
                    BindingMode(ByRef::No, Mutability::Mut)
                }
            }
            BindingMode(ByRef::No, mutbl) => BindingMode(def_br, mutbl),
            BindingMode(ByRef::Yes(_), _) => {
                if matches!(def_br, ByRef::Yes(_)) {
                    // `ref`/`ref mut` overrides the binding mode on edition <= 2021
                    *self
                        .typeck_results
                        .borrow_mut()
                        .rust_2024_migration_desugared_pats_mut()
                        .entry(pat_info.top_info.hir_id)
                        .or_default() |= pat.span.at_least_rust_2024();
                }
                user_bind_annot
            }
        };

        if bm.0 == ByRef::Yes(Mutability::Mut)
            && let MutblCap::WeaklyNot(and_pat_span) = pat_info.max_ref_mutbl
        {
            let mut err = struct_span_code_err!(
                self.dcx(),
                ident.span,
                E0596,
                "cannot borrow as mutable inside an `&` pattern"
            );

            if let Some(span) = and_pat_span {
                err.span_suggestion(
                    span,
                    "replace this `&` with `&mut`",
                    "&mut ",
                    Applicability::MachineApplicable,
                );
            }
            err.emit();
        }

        // ...and store it in a side table:
        self.typeck_results.borrow_mut().pat_binding_modes_mut().insert(pat.hir_id, bm);

        debug!("check_pat_ident: pat.hir_id={:?} bm={:?}", pat.hir_id, bm);

        let local_ty = self.local_ty(pat.span, pat.hir_id);
        let eq_ty = match bm.0 {
            ByRef::Yes(mutbl) => {
                // If the binding is like `ref x | ref mut x`,
                // then `x` is assigned a value of type `&M T` where M is the
                // mutability and T is the expected type.
                //
                // `x` is assigned a value of type `&M T`, hence `&M T <: typeof(x)`
                // is required. However, we use equality, which is stronger.
                // See (note_1) for an explanation.
                self.new_ref_ty(pat.span, mutbl, expected)
            }
            // Otherwise, the type of x is the expected type `T`.
            ByRef::No => expected, // As above, `T <: typeof(x)` is required, but we use equality, see (note_1).
        };

        // We have a concrete type for the local, so we do not need to taint it and hide follow up errors *using* the local.
        let _ = self.demand_eqtype_pat(pat.span, eq_ty, local_ty, ti);

        // If there are multiple arms, make sure they all agree on
        // what the type of the binding `x` ought to be.
        if var_id != pat.hir_id {
            self.check_binding_alt_eq_ty(user_bind_annot, pat.span, var_id, local_ty, ti);
        }

        if let Some(p) = sub {
            self.check_pat(p, expected, pat_info);
        }

        local_ty
    }

    /// When a variable is bound several times in a `PatKind::Or`, it'll resolve all of the
    /// subsequent bindings of the same name to the first usage. Verify that all of these
    /// bindings have the same type by comparing them all against the type of that first pat.
    fn check_binding_alt_eq_ty(
        &self,
        ba: BindingMode,
        span: Span,
        var_id: HirId,
        ty: Ty<'tcx>,
        ti: &TopInfo<'tcx>,
    ) {
        let var_ty = self.local_ty(span, var_id);
        if let Err(mut err) = self.demand_eqtype_pat_diag(span, var_ty, ty, ti) {
            let hir = self.tcx.hir();
            let var_ty = self.resolve_vars_if_possible(var_ty);
            let msg = format!("first introduced with type `{var_ty}` here");
            err.span_label(hir.span(var_id), msg);
            let in_match = hir.parent_iter(var_id).any(|(_, n)| {
                matches!(
                    n,
                    hir::Node::Expr(hir::Expr {
                        kind: hir::ExprKind::Match(.., hir::MatchSource::Normal),
                        ..
                    })
                )
            });
            let pre = if in_match { "in the same arm, " } else { "" };
            err.note(format!("{pre}a binding must have the same type in all alternatives"));
            self.suggest_adding_missing_ref_or_removing_ref(
                &mut err,
                span,
                var_ty,
                self.resolve_vars_if_possible(ty),
                ba,
            );
            err.emit();
        }
    }

    fn suggest_adding_missing_ref_or_removing_ref(
        &self,
        err: &mut Diag<'_>,
        span: Span,
        expected: Ty<'tcx>,
        actual: Ty<'tcx>,
        ba: BindingMode,
    ) {
        match (expected.kind(), actual.kind(), ba) {
            (ty::Ref(_, inner_ty, _), _, BindingMode::NONE)
                if self.can_eq(self.param_env, *inner_ty, actual) =>
            {
                err.span_suggestion_verbose(
                    span.shrink_to_lo(),
                    "consider adding `ref`",
                    "ref ",
                    Applicability::MaybeIncorrect,
                );
            }
            (_, ty::Ref(_, inner_ty, _), BindingMode::REF)
                if self.can_eq(self.param_env, expected, *inner_ty) =>
            {
                err.span_suggestion_verbose(
                    span.with_hi(span.lo() + BytePos(4)),
                    "consider removing `ref`",
                    "",
                    Applicability::MaybeIncorrect,
                );
            }
            _ => (),
        }
    }

    /// Precondition: pat is a `Ref(_)` pattern
    fn borrow_pat_suggestion(&self, err: &mut Diag<'_>, pat: &Pat<'_>) {
        let tcx = self.tcx;
        if let PatKind::Ref(inner, mutbl) = pat.kind
            && let PatKind::Binding(_, _, binding, ..) = inner.kind
        {
            let binding_parent = tcx.parent_hir_node(pat.hir_id);
            debug!(?inner, ?pat, ?binding_parent);

            let mutability = match mutbl {
                ast::Mutability::Mut => "mut",
                ast::Mutability::Not => "",
            };

            let mut_var_suggestion = 'block: {
                if mutbl.is_not() {
                    break 'block None;
                }

                let ident_kind = match binding_parent {
                    hir::Node::Param(_) => "parameter",
                    hir::Node::LetStmt(_) => "variable",
                    hir::Node::Arm(_) => "binding",

                    // Provide diagnostics only if the parent pattern is struct-like,
                    // i.e. where `mut binding` makes sense
                    hir::Node::Pat(Pat { kind, .. }) => match kind {
                        PatKind::Struct(..)
                        | PatKind::TupleStruct(..)
                        | PatKind::Or(..)
                        | PatKind::Tuple(..)
                        | PatKind::Slice(..) => "binding",

                        PatKind::Wild
                        | PatKind::Never
                        | PatKind::Binding(..)
                        | PatKind::Path(..)
                        | PatKind::Box(..)
                        | PatKind::Deref(_)
                        | PatKind::Ref(..)
                        | PatKind::Lit(..)
                        | PatKind::Range(..)
                        | PatKind::Err(_) => break 'block None,
                    },

                    // Don't provide suggestions in other cases
                    _ => break 'block None,
                };

                Some((
                    pat.span,
                    format!("to declare a mutable {ident_kind} use"),
                    format!("mut {binding}"),
                ))
            };

            match binding_parent {
                // Check that there is explicit type (ie this is not a closure param with inferred type)
                // so we don't suggest moving something to the type that does not exist
                hir::Node::Param(hir::Param { ty_span, pat, .. }) if pat.span != *ty_span => {
                    err.multipart_suggestion_verbose(
                        format!("to take parameter `{binding}` by reference, move `&{mutability}` to the type"),
                        vec![
                            (pat.span.until(inner.span), "".to_owned()),
                            (ty_span.shrink_to_lo(), mutbl.ref_prefix_str().to_owned()),
                        ],
                        Applicability::MachineApplicable
                    );

                    if let Some((sp, msg, sugg)) = mut_var_suggestion {
                        err.span_note(sp, format!("{msg}: `{sugg}`"));
                    }
                }
                hir::Node::Pat(pt) if let PatKind::TupleStruct(_, pat_arr, _) = pt.kind => {
                    for i in pat_arr.iter() {
                        if let PatKind::Ref(the_ref, _) = i.kind
                            && let PatKind::Binding(mt, _, ident, _) = the_ref.kind
                        {
                            let BindingMode(_, mtblty) = mt;
                            err.span_suggestion_verbose(
                                i.span,
                                format!("consider removing `&{mutability}` from the pattern"),
                                mtblty.prefix_str().to_string() + &ident.name.to_string(),
                                Applicability::MaybeIncorrect,
                            );
                        }
                    }
                    if let Some((sp, msg, sugg)) = mut_var_suggestion {
                        err.span_note(sp, format!("{msg}: `{sugg}`"));
                    }
                }
                hir::Node::Param(_) | hir::Node::Arm(_) | hir::Node::Pat(_) => {
                    // rely on match ergonomics or it might be nested `&&pat`
                    err.span_suggestion_verbose(
                        pat.span.until(inner.span),
                        format!("consider removing `&{mutability}` from the pattern"),
                        "",
                        Applicability::MaybeIncorrect,
                    );

                    if let Some((sp, msg, sugg)) = mut_var_suggestion {
                        err.span_note(sp, format!("{msg}: `{sugg}`"));
                    }
                }
                _ if let Some((sp, msg, sugg)) = mut_var_suggestion => {
                    err.span_suggestion(sp, msg, sugg, Applicability::MachineApplicable);
                }
                _ => {} // don't provide suggestions in other cases #55175
            }
        }
    }

    fn check_dereferenceable(
        &self,
        span: Span,
        expected: Ty<'tcx>,
        inner: &Pat<'_>,
    ) -> Result<(), ErrorGuaranteed> {
        if let PatKind::Binding(..) = inner.kind
            && let Some(pointee_ty) = self.shallow_resolve(expected).builtin_deref(true)
            && let ty::Dynamic(..) = pointee_ty.kind()
        {
            // This is "x = dyn SomeTrait" being reduced from
            // "let &x = &dyn SomeTrait" or "let box x = Box<dyn SomeTrait>", an error.
            let type_str = self.ty_to_string(expected);
            let mut err = struct_span_code_err!(
                self.dcx(),
                span,
                E0033,
                "type `{}` cannot be dereferenced",
                type_str
            );
            err.span_label(span, format!("type `{type_str}` cannot be dereferenced"));
            if self.tcx.sess.teach(err.code.unwrap()) {
                err.note(CANNOT_IMPLICITLY_DEREF_POINTER_TRAIT_OBJ);
            }
            return Err(err.emit());
        }
        Ok(())
    }

    fn check_pat_struct(
        &self,
        pat: &'tcx Pat<'tcx>,
        qpath: &hir::QPath<'tcx>,
        fields: &'tcx [hir::PatField<'tcx>],
        has_rest_pat: bool,
        expected: Ty<'tcx>,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> Ty<'tcx> {
        // Resolve the path and check the definition for errors.
        let (variant, pat_ty) = match self.check_struct_path(qpath, pat.hir_id) {
            Ok(data) => data,
            Err(guar) => {
                let err = Ty::new_error(self.tcx, guar);
                for field in fields {
                    self.check_pat(field.pat, err, pat_info);
                }
                return err;
            }
        };

        // Type-check the path.
        let _ = self.demand_eqtype_pat(pat.span, expected, pat_ty, pat_info.top_info);

        // Type-check subpatterns.
        match self.check_struct_pat_fields(pat_ty, pat, variant, fields, has_rest_pat, pat_info) {
            Ok(()) => pat_ty,
            Err(guar) => Ty::new_error(self.tcx, guar),
        }
    }

    fn check_pat_path(
        &self,
        pat: &Pat<'tcx>,
        qpath: &hir::QPath<'_>,
        path_resolution: (Res, Option<LoweredTy<'tcx>>, &'tcx [hir::PathSegment<'tcx>]),
        expected: Ty<'tcx>,
        ti: &TopInfo<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;

        // We have already resolved the path.
        let (res, opt_ty, segments) = path_resolution;
        match res {
            Res::Err => {
                let e =
                    self.dcx().span_delayed_bug(qpath.span(), "`Res::Err` but no error emitted");
                self.set_tainted_by_errors(e);
                return Ty::new_error(tcx, e);
            }
            Res::Def(DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Variant, _) => {
                let expected = "unit struct, unit variant or constant";
                let e =
                    report_unexpected_variant_res(tcx, res, None, qpath, pat.span, E0533, expected);
                return Ty::new_error(tcx, e);
            }
            Res::SelfCtor(def_id) => {
                if let ty::Adt(adt_def, _) = *tcx.type_of(def_id).skip_binder().kind()
                    && adt_def.is_struct()
                    && let Some((CtorKind::Const, _)) = adt_def.non_enum_variant().ctor
                {
                    // Ok, we allow unit struct ctors in patterns only.
                } else {
                    let e = report_unexpected_variant_res(
                        tcx,
                        res,
                        None,
                        qpath,
                        pat.span,
                        E0533,
                        "unit struct",
                    );
                    return Ty::new_error(tcx, e);
                }
            }
            Res::Def(
                DefKind::Ctor(_, CtorKind::Const)
                | DefKind::Const
                | DefKind::AssocConst
                | DefKind::ConstParam,
                _,
            ) => {} // OK
            _ => bug!("unexpected pattern resolution: {:?}", res),
        }

        // Type-check the path.
        let (pat_ty, pat_res) =
            self.instantiate_value_path(segments, opt_ty, res, pat.span, pat.span, pat.hir_id);
        if let Err(err) =
            self.demand_suptype_with_origin(&self.pattern_cause(ti, pat.span), expected, pat_ty)
        {
            self.emit_bad_pat_path(err, pat, res, pat_res, pat_ty, segments);
        }
        pat_ty
    }

    fn maybe_suggest_range_literal(
        &self,
        e: &mut Diag<'_>,
        opt_def_id: Option<hir::def_id::DefId>,
        ident: Ident,
    ) -> bool {
        match opt_def_id {
            Some(def_id) => match self.tcx.hir().get_if_local(def_id) {
                Some(hir::Node::Item(hir::Item {
                    kind: hir::ItemKind::Const(_, _, body_id),
                    ..
                })) => match self.tcx.hir_node(body_id.hir_id) {
                    hir::Node::Expr(expr) => {
                        if hir::is_range_literal(expr) {
                            let span = self.tcx.hir().span(body_id.hir_id);
                            if let Ok(snip) = self.tcx.sess.source_map().span_to_snippet(span) {
                                e.span_suggestion_verbose(
                                    ident.span,
                                    "you may want to move the range into the match block",
                                    snip,
                                    Applicability::MachineApplicable,
                                );
                                return true;
                            }
                        }
                    }
                    _ => (),
                },
                _ => (),
            },
            _ => (),
        }
        false
    }

    fn emit_bad_pat_path(
        &self,
        mut e: Diag<'_>,
        pat: &hir::Pat<'tcx>,
        res: Res,
        pat_res: Res,
        pat_ty: Ty<'tcx>,
        segments: &'tcx [hir::PathSegment<'tcx>],
    ) {
        let pat_span = pat.span;
        if let Some(span) = self.tcx.hir().res_span(pat_res) {
            e.span_label(span, format!("{} defined here", res.descr()));
            if let [hir::PathSegment { ident, .. }] = &*segments {
                e.span_label(
                    pat_span,
                    format!(
                        "`{}` is interpreted as {} {}, not a new binding",
                        ident,
                        res.article(),
                        res.descr(),
                    ),
                );
                match self.tcx.parent_hir_node(pat.hir_id) {
                    hir::Node::PatField(..) => {
                        e.span_suggestion_verbose(
                            ident.span.shrink_to_hi(),
                            "bind the struct field to a different name instead",
                            format!(": other_{}", ident.as_str().to_lowercase()),
                            Applicability::HasPlaceholders,
                        );
                    }
                    _ => {
                        let (type_def_id, item_def_id) = match pat_ty.kind() {
                            ty::Adt(def, _) => match res {
                                Res::Def(DefKind::Const, def_id) => (Some(def.did()), Some(def_id)),
                                _ => (None, None),
                            },
                            _ => (None, None),
                        };

                        let ranges = &[
                            self.tcx.lang_items().range_struct(),
                            self.tcx.lang_items().range_from_struct(),
                            self.tcx.lang_items().range_to_struct(),
                            self.tcx.lang_items().range_full_struct(),
                            self.tcx.lang_items().range_inclusive_struct(),
                            self.tcx.lang_items().range_to_inclusive_struct(),
                        ];
                        if type_def_id != None && ranges.contains(&type_def_id) {
                            if !self.maybe_suggest_range_literal(&mut e, item_def_id, *ident) {
                                let msg = "constants only support matching by type, \
                                    if you meant to match against a range of values, \
                                    consider using a range pattern like `min ..= max` in the match block";
                                e.note(msg);
                            }
                        } else {
                            let msg = "introduce a new binding instead";
                            let sugg = format!("other_{}", ident.as_str().to_lowercase());
                            e.span_suggestion(
                                ident.span,
                                msg,
                                sugg,
                                Applicability::HasPlaceholders,
                            );
                        }
                    }
                };
            }
        }
        e.emit();
    }

    fn check_pat_tuple_struct(
        &self,
        pat: &'tcx Pat<'tcx>,
        qpath: &'tcx hir::QPath<'tcx>,
        subpats: &'tcx [Pat<'tcx>],
        ddpos: hir::DotDotPos,
        expected: Ty<'tcx>,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let on_error = |e| {
            for pat in subpats {
                self.check_pat(pat, Ty::new_error(tcx, e), pat_info);
            }
        };
        let report_unexpected_res = |res: Res| {
            let expected = "tuple struct or tuple variant";
            let e = report_unexpected_variant_res(tcx, res, None, qpath, pat.span, E0164, expected);
            on_error(e);
            e
        };

        // Resolve the path and check the definition for errors.
        let (res, opt_ty, segments) =
            self.resolve_ty_and_res_fully_qualified_call(qpath, pat.hir_id, pat.span);
        if res == Res::Err {
            let e = self.dcx().span_delayed_bug(pat.span, "`Res::Err` but no error emitted");
            self.set_tainted_by_errors(e);
            on_error(e);
            return Ty::new_error(tcx, e);
        }

        // Type-check the path.
        let (pat_ty, res) =
            self.instantiate_value_path(segments, opt_ty, res, pat.span, pat.span, pat.hir_id);
        if !pat_ty.is_fn() {
            let e = report_unexpected_res(res);
            return Ty::new_error(tcx, e);
        }

        let variant = match res {
            Res::Err => {
                self.dcx().span_bug(pat.span, "`Res::Err` but no error emitted");
            }
            Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) => {
                let e = report_unexpected_res(res);
                return Ty::new_error(tcx, e);
            }
            Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) => tcx.expect_variant_res(res),
            _ => bug!("unexpected pattern resolution: {:?}", res),
        };

        // Replace constructor type with constructed type for tuple struct patterns.
        let pat_ty = pat_ty.fn_sig(tcx).output();
        let pat_ty = pat_ty.no_bound_vars().expect("expected fn type");

        // Type-check the tuple struct pattern against the expected type.
        let diag = self.demand_eqtype_pat_diag(pat.span, expected, pat_ty, pat_info.top_info);
        let had_err = diag.map_err(|diag| diag.emit());

        // Type-check subpatterns.
        if subpats.len() == variant.fields.len()
            || subpats.len() < variant.fields.len() && ddpos.as_opt_usize().is_some()
        {
            let ty::Adt(_, args) = pat_ty.kind() else {
                bug!("unexpected pattern type {:?}", pat_ty);
            };
            for (i, subpat) in subpats.iter().enumerate_and_adjust(variant.fields.len(), ddpos) {
                let field = &variant.fields[FieldIdx::from_usize(i)];
                let field_ty = self.field_ty(subpat.span, field, args);
                self.check_pat(subpat, field_ty, pat_info);

                self.tcx.check_stability(
                    variant.fields[FieldIdx::from_usize(i)].did,
                    Some(pat.hir_id),
                    subpat.span,
                    None,
                );
            }
            if let Err(e) = had_err {
                on_error(e);
                return Ty::new_error(tcx, e);
            }
        } else {
            let e = self.emit_err_pat_wrong_number_of_fields(
                pat.span,
                res,
                qpath,
                subpats,
                &variant.fields.raw,
                expected,
                had_err,
            );
            on_error(e);
            return Ty::new_error(tcx, e);
        }
        pat_ty
    }

    fn emit_err_pat_wrong_number_of_fields(
        &self,
        pat_span: Span,
        res: Res,
        qpath: &hir::QPath<'_>,
        subpats: &'tcx [Pat<'tcx>],
        fields: &'tcx [ty::FieldDef],
        expected: Ty<'tcx>,
        had_err: Result<(), ErrorGuaranteed>,
    ) -> ErrorGuaranteed {
        let subpats_ending = pluralize!(subpats.len());
        let fields_ending = pluralize!(fields.len());

        let subpat_spans = if subpats.is_empty() {
            vec![pat_span]
        } else {
            subpats.iter().map(|p| p.span).collect()
        };
        let last_subpat_span = *subpat_spans.last().unwrap();
        let res_span = self.tcx.def_span(res.def_id());
        let def_ident_span = self.tcx.def_ident_span(res.def_id()).unwrap_or(res_span);
        let field_def_spans = if fields.is_empty() {
            vec![res_span]
        } else {
            fields.iter().map(|f| f.ident(self.tcx).span).collect()
        };
        let last_field_def_span = *field_def_spans.last().unwrap();

        let mut err = struct_span_code_err!(
            self.dcx(),
            MultiSpan::from_spans(subpat_spans),
            E0023,
            "this pattern has {} field{}, but the corresponding {} has {} field{}",
            subpats.len(),
            subpats_ending,
            res.descr(),
            fields.len(),
            fields_ending,
        );
        err.span_label(
            last_subpat_span,
            format!("expected {} field{}, found {}", fields.len(), fields_ending, subpats.len()),
        );
        if self.tcx.sess.source_map().is_multiline(qpath.span().between(last_subpat_span)) {
            err.span_label(qpath.span(), "");
        }
        if self.tcx.sess.source_map().is_multiline(def_ident_span.between(last_field_def_span)) {
            err.span_label(def_ident_span, format!("{} defined here", res.descr()));
        }
        for span in &field_def_spans[..field_def_spans.len() - 1] {
            err.span_label(*span, "");
        }
        err.span_label(
            last_field_def_span,
            format!("{} has {} field{}", res.descr(), fields.len(), fields_ending),
        );

        // Identify the case `Some(x, y)` where the expected type is e.g. `Option<(T, U)>`.
        // More generally, the expected type wants a tuple variant with one field of an
        // N-arity-tuple, e.g., `V_i((p_0, .., p_N))`. Meanwhile, the user supplied a pattern
        // with the subpatterns directly in the tuple variant pattern, e.g., `V_i(p_0, .., p_N)`.
        let missing_parentheses = match (expected.kind(), fields, had_err) {
            // #67037: only do this if we could successfully type-check the expected type against
            // the tuple struct pattern. Otherwise the args could get out of range on e.g.,
            // `let P() = U;` where `P != U` with `struct P<T>(T);`.
            (ty::Adt(_, args), [field], Ok(())) => {
                let field_ty = self.field_ty(pat_span, field, args);
                match field_ty.kind() {
                    ty::Tuple(fields) => fields.len() == subpats.len(),
                    _ => false,
                }
            }
            _ => false,
        };
        if missing_parentheses {
            let (left, right) = match subpats {
                // This is the zero case; we aim to get the "hi" part of the `QPath`'s
                // span as the "lo" and then the "hi" part of the pattern's span as the "hi".
                // This looks like:
                //
                // help: missing parentheses
                //   |
                // L |     let A(()) = A(());
                //   |          ^  ^
                [] => (qpath.span().shrink_to_hi(), pat_span),
                // Easy case. Just take the "lo" of the first sub-pattern and the "hi" of the
                // last sub-pattern. In the case of `A(x)` the first and last may coincide.
                // This looks like:
                //
                // help: missing parentheses
                //   |
                // L |     let A((x, y)) = A((1, 2));
                //   |           ^    ^
                [first, ..] => (first.span.shrink_to_lo(), subpats.last().unwrap().span),
            };
            err.multipart_suggestion(
                "missing parentheses",
                vec![(left, "(".to_string()), (right.shrink_to_hi(), ")".to_string())],
                Applicability::MachineApplicable,
            );
        } else if fields.len() > subpats.len() && pat_span != DUMMY_SP {
            let after_fields_span = pat_span.with_hi(pat_span.hi() - BytePos(1)).shrink_to_hi();
            let all_fields_span = match subpats {
                [] => after_fields_span,
                [field] => field.span,
                [first, .., last] => first.span.to(last.span),
            };

            // Check if all the fields in the pattern are wildcards.
            let all_wildcards = subpats.iter().all(|pat| matches!(pat.kind, PatKind::Wild));
            let first_tail_wildcard =
                subpats.iter().enumerate().fold(None, |acc, (pos, pat)| match (acc, &pat.kind) {
                    (None, PatKind::Wild) => Some(pos),
                    (Some(_), PatKind::Wild) => acc,
                    _ => None,
                });
            let tail_span = match first_tail_wildcard {
                None => after_fields_span,
                Some(0) => subpats[0].span.to(after_fields_span),
                Some(pos) => subpats[pos - 1].span.shrink_to_hi().to(after_fields_span),
            };

            // FIXME: heuristic-based suggestion to check current types for where to add `_`.
            let mut wildcard_sugg = vec!["_"; fields.len() - subpats.len()].join(", ");
            if !subpats.is_empty() {
                wildcard_sugg = String::from(", ") + &wildcard_sugg;
            }

            err.span_suggestion_verbose(
                after_fields_span,
                "use `_` to explicitly ignore each field",
                wildcard_sugg,
                Applicability::MaybeIncorrect,
            );

            // Only suggest `..` if more than one field is missing
            // or the pattern consists of all wildcards.
            if fields.len() - subpats.len() > 1 || all_wildcards {
                if subpats.is_empty() || all_wildcards {
                    err.span_suggestion_verbose(
                        all_fields_span,
                        "use `..` to ignore all fields",
                        "..",
                        Applicability::MaybeIncorrect,
                    );
                } else {
                    err.span_suggestion_verbose(
                        tail_span,
                        "use `..` to ignore the rest of the fields",
                        ", ..",
                        Applicability::MaybeIncorrect,
                    );
                }
            }
        }

        err.emit()
    }

    fn check_pat_tuple(
        &self,
        span: Span,
        elements: &'tcx [Pat<'tcx>],
        ddpos: hir::DotDotPos,
        expected: Ty<'tcx>,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let mut expected_len = elements.len();
        if ddpos.as_opt_usize().is_some() {
            // Require known type only when `..` is present.
            if let ty::Tuple(tys) = self.structurally_resolve_type(span, expected).kind() {
                expected_len = tys.len();
            }
        }
        let max_len = cmp::max(expected_len, elements.len());

        let element_tys_iter = (0..max_len).map(|_| self.next_ty_var(span));
        let element_tys = tcx.mk_type_list_from_iter(element_tys_iter);
        let pat_ty = Ty::new_tup(tcx, element_tys);
        if let Err(reported) = self.demand_eqtype_pat(span, expected, pat_ty, pat_info.top_info) {
            // Walk subpatterns with an expected type of `err` in this case to silence
            // further errors being emitted when using the bindings. #50333
            let element_tys_iter = (0..max_len).map(|_| Ty::new_error(tcx, reported));
            for (_, elem) in elements.iter().enumerate_and_adjust(max_len, ddpos) {
                self.check_pat(elem, Ty::new_error(tcx, reported), pat_info);
            }
            Ty::new_tup_from_iter(tcx, element_tys_iter)
        } else {
            for (i, elem) in elements.iter().enumerate_and_adjust(max_len, ddpos) {
                self.check_pat(elem, element_tys[i], pat_info);
            }
            pat_ty
        }
    }

    fn check_struct_pat_fields(
        &self,
        adt_ty: Ty<'tcx>,
        pat: &'tcx Pat<'tcx>,
        variant: &'tcx ty::VariantDef,
        fields: &'tcx [hir::PatField<'tcx>],
        has_rest_pat: bool,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> Result<(), ErrorGuaranteed> {
        let tcx = self.tcx;

        let ty::Adt(adt, args) = adt_ty.kind() else {
            span_bug!(pat.span, "struct pattern is not an ADT");
        };

        // Index the struct fields' types.
        let field_map = variant
            .fields
            .iter_enumerated()
            .map(|(i, field)| (field.ident(self.tcx).normalize_to_macros_2_0(), (i, field)))
            .collect::<FxHashMap<_, _>>();

        // Keep track of which fields have already appeared in the pattern.
        let mut used_fields = FxHashMap::default();
        let mut result = Ok(());

        let mut inexistent_fields = vec![];
        // Typecheck each field.
        for field in fields {
            let span = field.span;
            let ident = tcx.adjust_ident(field.ident, variant.def_id);
            let field_ty = match used_fields.entry(ident) {
                Occupied(occupied) => {
                    let guar = self.error_field_already_bound(span, field.ident, *occupied.get());
                    result = Err(guar);
                    Ty::new_error(tcx, guar)
                }
                Vacant(vacant) => {
                    vacant.insert(span);
                    field_map
                        .get(&ident)
                        .map(|(i, f)| {
                            self.write_field_index(field.hir_id, *i);
                            self.tcx.check_stability(f.did, Some(pat.hir_id), span, None);
                            self.field_ty(span, f, args)
                        })
                        .unwrap_or_else(|| {
                            inexistent_fields.push(field);
                            Ty::new_misc_error(tcx)
                        })
                }
            };

            self.check_pat(field.pat, field_ty, pat_info);
        }

        let mut unmentioned_fields = variant
            .fields
            .iter()
            .map(|field| (field, field.ident(self.tcx).normalize_to_macros_2_0()))
            .filter(|(_, ident)| !used_fields.contains_key(ident))
            .collect::<Vec<_>>();

        let inexistent_fields_err = if !inexistent_fields.is_empty()
            && !inexistent_fields.iter().any(|field| field.ident.name == kw::Underscore)
        {
            // we don't care to report errors for a struct if the struct itself is tainted
            variant.has_errors()?;
            Some(self.error_inexistent_fields(
                adt.variant_descr(),
                &inexistent_fields,
                &mut unmentioned_fields,
                pat,
                variant,
                args,
            ))
        } else {
            None
        };

        // Require `..` if struct has non_exhaustive attribute.
        let non_exhaustive = variant.is_field_list_non_exhaustive() && !adt.did().is_local();
        if non_exhaustive && !has_rest_pat {
            self.error_foreign_non_exhaustive_spat(pat, adt.variant_descr(), fields.is_empty());
        }

        let mut unmentioned_err = None;
        // Report an error if an incorrect number of fields was specified.
        if adt.is_union() {
            if fields.len() != 1 {
                self.dcx().emit_err(errors::UnionPatMultipleFields { span: pat.span });
            }
            if has_rest_pat {
                self.dcx().emit_err(errors::UnionPatDotDot { span: pat.span });
            }
        } else if !unmentioned_fields.is_empty() {
            let accessible_unmentioned_fields: Vec<_> = unmentioned_fields
                .iter()
                .copied()
                .filter(|(field, _)| self.is_field_suggestable(field, pat.hir_id, pat.span))
                .collect();

            if !has_rest_pat {
                if accessible_unmentioned_fields.is_empty() {
                    unmentioned_err = Some(self.error_no_accessible_fields(pat, fields));
                } else {
                    unmentioned_err = Some(self.error_unmentioned_fields(
                        pat,
                        &accessible_unmentioned_fields,
                        accessible_unmentioned_fields.len() != unmentioned_fields.len(),
                        fields,
                    ));
                }
            } else if non_exhaustive && !accessible_unmentioned_fields.is_empty() {
                self.lint_non_exhaustive_omitted_patterns(
                    pat,
                    &accessible_unmentioned_fields,
                    adt_ty,
                )
            }
        }
        match (inexistent_fields_err, unmentioned_err) {
            (Some(i), Some(u)) => {
                if let Err(e) = self.error_tuple_variant_as_struct_pat(pat, fields, variant) {
                    // We don't want to show the nonexistent fields error when this was
                    // `Foo { a, b }` when it should have been `Foo(a, b)`.
                    i.delay_as_bug();
                    u.delay_as_bug();
                    Err(e)
                } else {
                    i.emit();
                    Err(u.emit())
                }
            }
            (None, Some(u)) => {
                if let Err(e) = self.error_tuple_variant_as_struct_pat(pat, fields, variant) {
                    u.delay_as_bug();
                    Err(e)
                } else {
                    Err(u.emit())
                }
            }
            (Some(err), None) => Err(err.emit()),
            (None, None) => {
                self.error_tuple_variant_index_shorthand(variant, pat, fields)?;
                result
            }
        }
    }

    fn error_tuple_variant_index_shorthand(
        &self,
        variant: &VariantDef,
        pat: &'_ Pat<'_>,
        fields: &[hir::PatField<'_>],
    ) -> Result<(), ErrorGuaranteed> {
        // if this is a tuple struct, then all field names will be numbers
        // so if any fields in a struct pattern use shorthand syntax, they will
        // be invalid identifiers (for example, Foo { 0, 1 }).
        if let (Some(CtorKind::Fn), PatKind::Struct(qpath, field_patterns, ..)) =
            (variant.ctor_kind(), &pat.kind)
        {
            let has_shorthand_field_name = field_patterns.iter().any(|field| field.is_shorthand);
            if has_shorthand_field_name {
                let path = rustc_hir_pretty::qpath_to_string(&self.tcx, qpath);
                let mut err = struct_span_code_err!(
                    self.dcx(),
                    pat.span,
                    E0769,
                    "tuple variant `{path}` written as struct variant",
                );
                err.span_suggestion_verbose(
                    qpath.span().shrink_to_hi().to(pat.span.shrink_to_hi()),
                    "use the tuple variant pattern syntax instead",
                    format!("({})", self.get_suggested_tuple_struct_pattern(fields, variant)),
                    Applicability::MaybeIncorrect,
                );
                return Err(err.emit());
            }
        }
        Ok(())
    }

    fn error_foreign_non_exhaustive_spat(&self, pat: &Pat<'_>, descr: &str, no_fields: bool) {
        let sess = self.tcx.sess;
        let sm = sess.source_map();
        let sp_brace = sm.end_point(pat.span);
        let sp_comma = sm.end_point(pat.span.with_hi(sp_brace.hi()));
        let sugg = if no_fields || sp_brace != sp_comma { ".. }" } else { ", .. }" };

        struct_span_code_err!(
            self.dcx(),
            pat.span,
            E0638,
            "`..` required with {descr} marked as non-exhaustive",
        )
        .with_span_suggestion_verbose(
            sp_comma,
            "add `..` at the end of the field list to ignore all other fields",
            sugg,
            Applicability::MachineApplicable,
        )
        .emit();
    }

    fn error_field_already_bound(
        &self,
        span: Span,
        ident: Ident,
        other_field: Span,
    ) -> ErrorGuaranteed {
        struct_span_code_err!(
            self.dcx(),
            span,
            E0025,
            "field `{}` bound multiple times in the pattern",
            ident
        )
        .with_span_label(span, format!("multiple uses of `{ident}` in pattern"))
        .with_span_label(other_field, format!("first use of `{ident}`"))
        .emit()
    }

    fn error_inexistent_fields(
        &self,
        kind_name: &str,
        inexistent_fields: &[&hir::PatField<'tcx>],
        unmentioned_fields: &mut Vec<(&'tcx ty::FieldDef, Ident)>,
        pat: &'tcx Pat<'tcx>,
        variant: &ty::VariantDef,
        args: ty::GenericArgsRef<'tcx>,
    ) -> Diag<'a> {
        let tcx = self.tcx;
        let (field_names, t, plural) = if let [field] = inexistent_fields {
            (format!("a field named `{}`", field.ident), "this", "")
        } else {
            (
                format!(
                    "fields named {}",
                    inexistent_fields
                        .iter()
                        .map(|field| format!("`{}`", field.ident))
                        .collect::<Vec<String>>()
                        .join(", ")
                ),
                "these",
                "s",
            )
        };
        let spans = inexistent_fields.iter().map(|field| field.ident.span).collect::<Vec<_>>();
        let mut err = struct_span_code_err!(
            self.dcx(),
            spans,
            E0026,
            "{} `{}` does not have {}",
            kind_name,
            tcx.def_path_str(variant.def_id),
            field_names
        );
        if let Some(pat_field) = inexistent_fields.last() {
            err.span_label(
                pat_field.ident.span,
                format!(
                    "{} `{}` does not have {} field{}",
                    kind_name,
                    tcx.def_path_str(variant.def_id),
                    t,
                    plural
                ),
            );

            if let [(field_def, field)] = unmentioned_fields.as_slice()
                && self.is_field_suggestable(field_def, pat.hir_id, pat.span)
            {
                let suggested_name =
                    find_best_match_for_name(&[field.name], pat_field.ident.name, None);
                if let Some(suggested_name) = suggested_name {
                    err.span_suggestion(
                        pat_field.ident.span,
                        "a field with a similar name exists",
                        suggested_name,
                        Applicability::MaybeIncorrect,
                    );

                    // When we have a tuple struct used with struct we don't want to suggest using
                    // the (valid) struct syntax with numeric field names. Instead we want to
                    // suggest the expected syntax. We infer that this is the case by parsing the
                    // `Ident` into an unsized integer. The suggestion will be emitted elsewhere in
                    // `smart_resolve_context_dependent_help`.
                    if suggested_name.to_ident_string().parse::<usize>().is_err() {
                        // We don't want to throw `E0027` in case we have thrown `E0026` for them.
                        unmentioned_fields.retain(|&(_, x)| x.name != suggested_name);
                    }
                } else if inexistent_fields.len() == 1 {
                    match pat_field.pat.kind {
                        PatKind::Lit(expr)
                            if !self.may_coerce(
                                self.typeck_results.borrow().expr_ty(expr),
                                self.field_ty(field.span, field_def, args),
                            ) => {}
                        _ => {
                            err.span_suggestion_short(
                                pat_field.ident.span,
                                format!(
                                    "`{}` has a field named `{}`",
                                    tcx.def_path_str(variant.def_id),
                                    field.name,
                                ),
                                field.name,
                                Applicability::MaybeIncorrect,
                            );
                        }
                    }
                }
            }
        }
        if tcx.sess.teach(err.code.unwrap()) {
            err.note(
                "This error indicates that a struct pattern attempted to \
                 extract a nonexistent field from a struct. Struct fields \
                 are identified by the name used before the colon : so struct \
                 patterns should resemble the declaration of the struct type \
                 being matched.\n\n\
                 If you are using shorthand field patterns but want to refer \
                 to the struct field by a different name, you should rename \
                 it explicitly.",
            );
        }
        err
    }

    fn error_tuple_variant_as_struct_pat(
        &self,
        pat: &Pat<'_>,
        fields: &'tcx [hir::PatField<'tcx>],
        variant: &ty::VariantDef,
    ) -> Result<(), ErrorGuaranteed> {
        if let (Some(CtorKind::Fn), PatKind::Struct(qpath, pattern_fields, ..)) =
            (variant.ctor_kind(), &pat.kind)
        {
            let is_tuple_struct_match = !pattern_fields.is_empty()
                && pattern_fields.iter().map(|field| field.ident.name.as_str()).all(is_number);
            if is_tuple_struct_match {
                return Ok(());
            }

            // we don't care to report errors for a struct if the struct itself is tainted
            variant.has_errors()?;

            let path = rustc_hir_pretty::qpath_to_string(&self.tcx, qpath);
            let mut err = struct_span_code_err!(
                self.dcx(),
                pat.span,
                E0769,
                "tuple variant `{}` written as struct variant",
                path
            );
            let (sugg, appl) = if fields.len() == variant.fields.len() {
                (
                    self.get_suggested_tuple_struct_pattern(fields, variant),
                    Applicability::MachineApplicable,
                )
            } else {
                (
                    variant.fields.iter().map(|_| "_").collect::<Vec<&str>>().join(", "),
                    Applicability::MaybeIncorrect,
                )
            };
            err.span_suggestion_verbose(
                qpath.span().shrink_to_hi().to(pat.span.shrink_to_hi()),
                "use the tuple variant pattern syntax instead",
                format!("({sugg})"),
                appl,
            );
            return Err(err.emit());
        }
        Ok(())
    }

    fn get_suggested_tuple_struct_pattern(
        &self,
        fields: &[hir::PatField<'_>],
        variant: &VariantDef,
    ) -> String {
        let variant_field_idents =
            variant.fields.iter().map(|f| f.ident(self.tcx)).collect::<Vec<Ident>>();
        fields
            .iter()
            .map(|field| {
                match self.tcx.sess.source_map().span_to_snippet(field.pat.span) {
                    Ok(f) => {
                        // Field names are numbers, but numbers
                        // are not valid identifiers
                        if variant_field_idents.contains(&field.ident) {
                            String::from("_")
                        } else {
                            f
                        }
                    }
                    Err(_) => rustc_hir_pretty::pat_to_string(&self.tcx, field.pat),
                }
            })
            .collect::<Vec<String>>()
            .join(", ")
    }

    /// Returns a diagnostic reporting a struct pattern which is missing an `..` due to
    /// inaccessible fields.
    ///
    /// ```text
    /// error: pattern requires `..` due to inaccessible fields
    ///   --> src/main.rs:10:9
    ///    |
    /// LL |     let foo::Foo {} = foo::Foo::default();
    ///    |         ^^^^^^^^^^^
    ///    |
    /// help: add a `..`
    ///    |
    /// LL |     let foo::Foo { .. } = foo::Foo::default();
    ///    |                  ^^^^^^
    /// ```
    fn error_no_accessible_fields(
        &self,
        pat: &Pat<'_>,
        fields: &'tcx [hir::PatField<'tcx>],
    ) -> Diag<'a> {
        let mut err = self
            .dcx()
            .struct_span_err(pat.span, "pattern requires `..` due to inaccessible fields");

        if let Some(field) = fields.last() {
            err.span_suggestion_verbose(
                field.span.shrink_to_hi(),
                "ignore the inaccessible and unused fields",
                ", ..",
                Applicability::MachineApplicable,
            );
        } else {
            let qpath_span = if let PatKind::Struct(qpath, ..) = &pat.kind {
                qpath.span()
            } else {
                bug!("`error_no_accessible_fields` called on non-struct pattern");
            };

            // Shrink the span to exclude the `foo:Foo` in `foo::Foo { }`.
            let span = pat.span.with_lo(qpath_span.shrink_to_hi().hi());
            err.span_suggestion_verbose(
                span,
                "ignore the inaccessible and unused fields",
                " { .. }",
                Applicability::MachineApplicable,
            );
        }
        err
    }

    /// Report that a pattern for a `#[non_exhaustive]` struct marked with `non_exhaustive_omitted_patterns`
    /// is not exhaustive enough.
    ///
    /// Nb: the partner lint for enums lives in `compiler/rustc_mir_build/src/thir/pattern/usefulness.rs`.
    fn lint_non_exhaustive_omitted_patterns(
        &self,
        pat: &Pat<'_>,
        unmentioned_fields: &[(&ty::FieldDef, Ident)],
        ty: Ty<'tcx>,
    ) {
        fn joined_uncovered_patterns(witnesses: &[&Ident]) -> String {
            const LIMIT: usize = 3;
            match witnesses {
                [] => {
                    unreachable!(
                        "expected an uncovered pattern, otherwise why are we emitting an error?"
                    )
                }
                [witness] => format!("`{witness}`"),
                [head @ .., tail] if head.len() < LIMIT => {
                    let head: Vec<_> = head.iter().map(<_>::to_string).collect();
                    format!("`{}` and `{}`", head.join("`, `"), tail)
                }
                _ => {
                    let (head, tail) = witnesses.split_at(LIMIT);
                    let head: Vec<_> = head.iter().map(<_>::to_string).collect();
                    format!("`{}` and {} more", head.join("`, `"), tail.len())
                }
            }
        }
        let joined_patterns = joined_uncovered_patterns(
            &unmentioned_fields.iter().map(|(_, i)| i).collect::<Vec<_>>(),
        );

        self.tcx.node_span_lint(NON_EXHAUSTIVE_OMITTED_PATTERNS, pat.hir_id, pat.span, |lint| {
            lint.primary_message("some fields are not explicitly listed");
            lint.span_label(pat.span, format!("field{} {} not listed", rustc_errors::pluralize!(unmentioned_fields.len()), joined_patterns));
            lint.help(
                "ensure that all fields are mentioned explicitly by adding the suggested fields",
            );
            lint.note(format!(
                "the pattern is of type `{ty}` and the `non_exhaustive_omitted_patterns` attribute was found",
            ));
        });
    }

    /// Returns a diagnostic reporting a struct pattern which does not mention some fields.
    ///
    /// ```text
    /// error[E0027]: pattern does not mention field `bar`
    ///   --> src/main.rs:15:9
    ///    |
    /// LL |     let foo::Foo {} = foo::Foo::new();
    ///    |         ^^^^^^^^^^^ missing field `bar`
    /// ```
    fn error_unmentioned_fields(
        &self,
        pat: &Pat<'_>,
        unmentioned_fields: &[(&ty::FieldDef, Ident)],
        have_inaccessible_fields: bool,
        fields: &'tcx [hir::PatField<'tcx>],
    ) -> Diag<'a> {
        let inaccessible = if have_inaccessible_fields { " and inaccessible fields" } else { "" };
        let field_names = if let [(_, field)] = unmentioned_fields {
            format!("field `{field}`{inaccessible}")
        } else {
            let fields = unmentioned_fields
                .iter()
                .map(|(_, name)| format!("`{name}`"))
                .collect::<Vec<String>>()
                .join(", ");
            format!("fields {fields}{inaccessible}")
        };
        let mut err = struct_span_code_err!(
            self.dcx(),
            pat.span,
            E0027,
            "pattern does not mention {}",
            field_names
        );
        err.span_label(pat.span, format!("missing {field_names}"));
        let len = unmentioned_fields.len();
        let (prefix, postfix, sp) = match fields {
            [] => match &pat.kind {
                PatKind::Struct(path, [], false) => {
                    (" { ", " }", path.span().shrink_to_hi().until(pat.span.shrink_to_hi()))
                }
                _ => return err,
            },
            [.., field] => {
                // Account for last field having a trailing comma or parse recovery at the tail of
                // the pattern to avoid invalid suggestion (#78511).
                let tail = field.span.shrink_to_hi().with_hi(pat.span.hi());
                match &pat.kind {
                    PatKind::Struct(..) => (", ", " }", tail),
                    _ => return err,
                }
            }
        };
        err.span_suggestion(
            sp,
            format!(
                "include the missing field{} in the pattern{}",
                pluralize!(len),
                if have_inaccessible_fields { " and ignore the inaccessible fields" } else { "" }
            ),
            format!(
                "{}{}{}{}",
                prefix,
                unmentioned_fields
                    .iter()
                    .map(|(_, name)| {
                        let field_name = name.to_string();
                        if is_number(&field_name) { format!("{field_name}: _") } else { field_name }
                    })
                    .collect::<Vec<_>>()
                    .join(", "),
                if have_inaccessible_fields { ", .." } else { "" },
                postfix,
            ),
            Applicability::MachineApplicable,
        );
        err.span_suggestion(
            sp,
            format!(
                "if you don't care about {these} missing field{s}, you can explicitly ignore {them}",
                these = pluralize!("this", len),
                s = pluralize!(len),
                them = if len == 1 { "it" } else { "them" },
            ),
            format!("{prefix}..{postfix}"),
            Applicability::MachineApplicable,
        );
        err
    }

    fn check_pat_box(
        &self,
        span: Span,
        inner: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let (box_ty, inner_ty) = self
            .check_dereferenceable(span, expected, inner)
            .and_then(|()| {
                // Here, `demand::subtype` is good enough, but I don't
                // think any errors can be introduced by using `demand::eqtype`.
                let inner_ty = self.next_ty_var(inner.span);
                let box_ty = Ty::new_box(tcx, inner_ty);
                self.demand_eqtype_pat(span, expected, box_ty, pat_info.top_info)?;
                Ok((box_ty, inner_ty))
            })
            .unwrap_or_else(|guar| {
                let err = Ty::new_error(tcx, guar);
                (err, err)
            });
        self.check_pat(inner, inner_ty, pat_info);
        box_ty
    }

    fn check_pat_deref(
        &self,
        span: Span,
        inner: &'tcx Pat<'tcx>,
        expected: Ty<'tcx>,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        // Register a `DerefPure` bound, which is required by all `deref!()` pats.
        self.register_bound(
            expected,
            tcx.require_lang_item(hir::LangItem::DerefPure, Some(span)),
            self.misc(span),
        );
        // <expected as Deref>::Target
        let ty = Ty::new_projection(
            tcx,
            tcx.require_lang_item(hir::LangItem::DerefTarget, Some(span)),
            [expected],
        );
        let ty = self.normalize(span, ty);
        let ty = self.try_structurally_resolve_type(span, ty);
        self.check_pat(inner, ty, pat_info);

        // Check if the pattern has any `ref mut` bindings, which would require
        // `DerefMut` to be emitted in MIR building instead of just `Deref`.
        // We do this *after* checking the inner pattern, since we want to make
        // sure to apply any match-ergonomics adjustments.
        if self.typeck_results.borrow().pat_has_ref_mut_binding(inner) {
            self.register_bound(
                expected,
                tcx.require_lang_item(hir::LangItem::DerefMut, Some(span)),
                self.misc(span),
            );
        }

        expected
    }

    // Precondition: Pat is Ref(inner)
    fn check_pat_ref(
        &self,
        pat: &'tcx Pat<'tcx>,
        inner: &'tcx Pat<'tcx>,
        pat_mutbl: Mutability,
        mut expected: Ty<'tcx>,
        mut pat_info: PatInfo<'_, 'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let features = tcx.features();
        let ref_pat_eat_one_layer_2024 = features.ref_pat_eat_one_layer_2024;
        let ref_pat_eat_one_layer_2024_structural = features.ref_pat_eat_one_layer_2024_structural;

        let no_ref_mut_behind_and =
            ref_pat_eat_one_layer_2024 || ref_pat_eat_one_layer_2024_structural;
        let new_match_ergonomics = pat.span.at_least_rust_2024() && no_ref_mut_behind_and;

        let pat_prefix_span =
            inner.span.find_ancestor_inside(pat.span).map(|end| pat.span.until(end));

        if no_ref_mut_behind_and {
            if pat_mutbl == Mutability::Not {
                // Prevent the inner pattern from binding with `ref mut`.
                pat_info.max_ref_mutbl = pat_info.max_ref_mutbl.cap_to_weakly_not(pat_prefix_span);
            }
        } else {
            pat_info.max_ref_mutbl = MutblCap::Mut;
        }

        expected = self.try_structurally_resolve_type(pat.span, expected);
        if new_match_ergonomics {
            if let ByRef::Yes(inh_mut) = pat_info.binding_mode {
                if !ref_pat_eat_one_layer_2024 && let ty::Ref(_, _, r_mutbl) = *expected.kind() {
                    // Don't attempt to consume inherited reference
                    pat_info.binding_mode = pat_info.binding_mode.cap_ref_mutability(r_mutbl);
                } else {
                    // ref pattern attempts to consume inherited reference
                    if pat_mutbl > inh_mut {
                        // Tried to match inherited `ref` with `&mut`
                        if !ref_pat_eat_one_layer_2024_structural {
                            let err_msg = "mismatched types";
                            let err = if let Some(span) = pat_prefix_span {
                                let mut err = self.dcx().struct_span_err(span, err_msg);
                                err.code(E0308);
                                err.note("cannot match inherited `&` with `&mut` pattern");
                                err.span_suggestion_verbose(
                                    span,
                                    "replace this `&mut` pattern with `&`",
                                    "&",
                                    Applicability::MachineApplicable,
                                );
                                err
                            } else {
                                self.dcx().struct_span_err(pat.span, err_msg)
                            };
                            err.emit();

                            pat_info.binding_mode = ByRef::No;
                            self.typeck_results
                                .borrow_mut()
                                .skipped_ref_pats_mut()
                                .insert(pat.hir_id);
                            self.check_pat(inner, expected, pat_info);
                            return expected;
                        }
                    } else {
                        pat_info.binding_mode = ByRef::No;
                        self.typeck_results.borrow_mut().skipped_ref_pats_mut().insert(pat.hir_id);
                        self.check_pat(inner, expected, pat_info);
                        return expected;
                    }
                }
            }
        } else {
            // Reset binding mode on old editions
            if pat_info.binding_mode != ByRef::No {
                pat_info.binding_mode = ByRef::No;
                *self
                    .typeck_results
                    .borrow_mut()
                    .rust_2024_migration_desugared_pats_mut()
                    .entry(pat_info.top_info.hir_id)
                    .or_default() |= pat.span.at_least_rust_2024();
            }
        }

        let (ref_ty, inner_ty) = match self.check_dereferenceable(pat.span, expected, inner) {
            Ok(()) => {
                // `demand::subtype` would be good enough, but using `eqtype` turns
                // out to be equally general. See (note_1) for details.

                // Take region, inner-type from expected type if we can,
                // to avoid creating needless variables. This also helps with
                // the bad interactions of the given hack detailed in (note_1).
                debug!("check_pat_ref: expected={:?}", expected);
                match *expected.kind() {
                    ty::Ref(_, r_ty, r_mutbl)
                        if (no_ref_mut_behind_and && r_mutbl >= pat_mutbl)
                            || r_mutbl == pat_mutbl =>
                    {
                        if no_ref_mut_behind_and && r_mutbl == Mutability::Not {
                            pat_info.max_ref_mutbl = MutblCap::Not;
                        }

                        (expected, r_ty)
                    }

                    _ => {
                        let inner_ty = self.next_ty_var(inner.span);
                        let ref_ty = self.new_ref_ty(pat.span, pat_mutbl, inner_ty);
                        debug!("check_pat_ref: demanding {:?} = {:?}", expected, ref_ty);
                        let err = self.demand_eqtype_pat_diag(
                            pat.span,
                            expected,
                            ref_ty,
                            pat_info.top_info,
                        );

                        // Look for a case like `fn foo(&foo: u32)` and suggest
                        // `fn foo(foo: &u32)`
                        if let Err(mut err) = err {
                            self.borrow_pat_suggestion(&mut err, pat);
                            err.emit();
                        }
                        (ref_ty, inner_ty)
                    }
                }
            }
            Err(guar) => {
                let err = Ty::new_error(tcx, guar);
                (err, err)
            }
        };

        self.check_pat(inner, inner_ty, pat_info);
        ref_ty
    }

    /// Create a reference type with a fresh region variable.
    fn new_ref_ty(&self, span: Span, mutbl: Mutability, ty: Ty<'tcx>) -> Ty<'tcx> {
        let region = self.next_region_var(infer::PatternRegion(span));
        Ty::new_ref(self.tcx, region, ty, mutbl)
    }

    fn try_resolve_slice_ty_to_array_ty(
        &self,
        before: &'tcx [Pat<'tcx>],
        slice: Option<&'tcx Pat<'tcx>>,
        span: Span,
    ) -> Option<Ty<'tcx>> {
        if slice.is_some() {
            return None;
        }

        let tcx = self.tcx;
        let len = before.len();
        let inner_ty = self.next_ty_var(span);

        Some(Ty::new_array(tcx, inner_ty, len.try_into().unwrap()))
    }

    /// Used to determines whether we can infer the expected type in the slice pattern to be of type array.
    /// This is only possible if we're in an irrefutable pattern. If we were to allow this in refutable
    /// patterns we wouldn't e.g. report ambiguity in the following situation:
    ///
    /// ```ignore(rust)
    /// struct Zeroes;
    ///    const ARR: [usize; 2] = [0; 2];
    ///    const ARR2: [usize; 2] = [2; 2];
    ///
    ///    impl Into<&'static [usize; 2]> for Zeroes {
    ///        fn into(self) -> &'static [usize; 2] {
    ///            &ARR
    ///        }
    ///    }
    ///
    ///    impl Into<&'static [usize]> for Zeroes {
    ///        fn into(self) -> &'static [usize] {
    ///            &ARR2
    ///        }
    ///    }
    ///
    ///    fn main() {
    ///        let &[a, b]: &[usize] = Zeroes.into() else {
    ///           ..
    ///        };
    ///    }
    /// ```
    ///
    /// If we're in an irrefutable pattern we prefer the array impl candidate given that
    /// the slice impl candidate would be rejected anyway (if no ambiguity existed).
    fn pat_is_irrefutable(&self, decl_origin: Option<DeclOrigin<'_>>) -> bool {
        match decl_origin {
            Some(DeclOrigin::LocalDecl { els: None }) => true,
            Some(DeclOrigin::LocalDecl { els: Some(_) } | DeclOrigin::LetExpr) | None => false,
        }
    }

    /// Type check a slice pattern.
    ///
    /// Syntactically, these look like `[pat_0, ..., pat_n]`.
    /// Semantically, we are type checking a pattern with structure:
    /// ```ignore (not-rust)
    /// [before_0, ..., before_n, (slice, after_0, ... after_n)?]
    /// ```
    /// The type of `slice`, if it is present, depends on the `expected` type.
    /// If `slice` is missing, then so is `after_i`.
    /// If `slice` is present, it can still represent 0 elements.
    fn check_pat_slice(
        &self,
        span: Span,
        before: &'tcx [Pat<'tcx>],
        slice: Option<&'tcx Pat<'tcx>>,
        after: &'tcx [Pat<'tcx>],
        expected: Ty<'tcx>,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> Ty<'tcx> {
        let expected = self.try_structurally_resolve_type(span, expected);

        // If the pattern is irrefutable and `expected` is an infer ty, we try to equate it
        // to an array if the given pattern allows it. See issue #76342
        if self.pat_is_irrefutable(pat_info.decl_origin) && expected.is_ty_var() {
            if let Some(resolved_arr_ty) =
                self.try_resolve_slice_ty_to_array_ty(before, slice, span)
            {
                debug!(?resolved_arr_ty);
                let _ = self.demand_eqtype(span, expected, resolved_arr_ty);
            }
        }

        let expected = self.structurally_resolve_type(span, expected);
        debug!(?expected);

        let (element_ty, opt_slice_ty, inferred) = match *expected.kind() {
            // An array, so we might have something like `let [a, b, c] = [0, 1, 2];`.
            ty::Array(element_ty, len) => {
                let min = before.len() as u64 + after.len() as u64;
                let (opt_slice_ty, expected) =
                    self.check_array_pat_len(span, element_ty, expected, slice, len, min);
                // `opt_slice_ty.is_none()` => `slice.is_none()`.
                // Note, though, that opt_slice_ty could be `Some(error_ty)`.
                assert!(opt_slice_ty.is_some() || slice.is_none());
                (element_ty, opt_slice_ty, expected)
            }
            ty::Slice(element_ty) => (element_ty, Some(expected), expected),
            // The expected type must be an array or slice, but was neither, so error.
            _ => {
                let guar = expected.error_reported().err().unwrap_or_else(|| {
                    self.error_expected_array_or_slice(span, expected, pat_info)
                });
                let err = Ty::new_error(self.tcx, guar);
                (err, Some(err), err)
            }
        };

        // Type check all the patterns before `slice`.
        for elt in before {
            self.check_pat(elt, element_ty, pat_info);
        }
        // Type check the `slice`, if present, against its expected type.
        if let Some(slice) = slice {
            self.check_pat(slice, opt_slice_ty.unwrap(), pat_info);
        }
        // Type check the elements after `slice`, if present.
        for elt in after {
            self.check_pat(elt, element_ty, pat_info);
        }
        inferred
    }

    /// Type check the length of an array pattern.
    ///
    /// Returns both the type of the variable length pattern (or `None`), and the potentially
    /// inferred array type. We only return `None` for the slice type if `slice.is_none()`.
    fn check_array_pat_len(
        &self,
        span: Span,
        element_ty: Ty<'tcx>,
        arr_ty: Ty<'tcx>,
        slice: Option<&'tcx Pat<'tcx>>,
        len: ty::Const<'tcx>,
        min_len: u64,
    ) -> (Option<Ty<'tcx>>, Ty<'tcx>) {
        let len = self.try_structurally_resolve_const(span, len).try_to_target_usize(self.tcx);

        let guar = if let Some(len) = len {
            // Now we know the length...
            if slice.is_none() {
                // ...and since there is no variable-length pattern,
                // we require an exact match between the number of elements
                // in the array pattern and as provided by the matched type.
                if min_len == len {
                    return (None, arr_ty);
                }

                self.error_scrutinee_inconsistent_length(span, min_len, len)
            } else if let Some(pat_len) = len.checked_sub(min_len) {
                // The variable-length pattern was there,
                // so it has an array type with the remaining elements left as its size...
                return (Some(Ty::new_array(self.tcx, element_ty, pat_len)), arr_ty);
            } else {
                // ...however, in this case, there were no remaining elements.
                // That is, the slice pattern requires more than the array type offers.
                self.error_scrutinee_with_rest_inconsistent_length(span, min_len, len)
            }
        } else if slice.is_none() {
            // We have a pattern with a fixed length,
            // which we can use to infer the length of the array.
            let updated_arr_ty = Ty::new_array(self.tcx, element_ty, min_len);
            self.demand_eqtype(span, updated_arr_ty, arr_ty);
            return (None, updated_arr_ty);
        } else {
            // We have a variable-length pattern and don't know the array length.
            // This happens if we have e.g.,
            // `let [a, b, ..] = arr` where `arr: [T; N]` where `const N: usize`.
            self.error_scrutinee_unfixed_length(span)
        };

        // If we get here, we must have emitted an error.
        (Some(Ty::new_error(self.tcx, guar)), arr_ty)
    }

    fn error_scrutinee_inconsistent_length(
        &self,
        span: Span,
        min_len: u64,
        size: u64,
    ) -> ErrorGuaranteed {
        struct_span_code_err!(
            self.dcx(),
            span,
            E0527,
            "pattern requires {} element{} but array has {}",
            min_len,
            pluralize!(min_len),
            size,
        )
        .with_span_label(span, format!("expected {} element{}", size, pluralize!(size)))
        .emit()
    }

    fn error_scrutinee_with_rest_inconsistent_length(
        &self,
        span: Span,
        min_len: u64,
        size: u64,
    ) -> ErrorGuaranteed {
        struct_span_code_err!(
            self.dcx(),
            span,
            E0528,
            "pattern requires at least {} element{} but array has {}",
            min_len,
            pluralize!(min_len),
            size,
        )
        .with_span_label(
            span,
            format!("pattern cannot match array of {} element{}", size, pluralize!(size),),
        )
        .emit()
    }

    fn error_scrutinee_unfixed_length(&self, span: Span) -> ErrorGuaranteed {
        struct_span_code_err!(
            self.dcx(),
            span,
            E0730,
            "cannot pattern-match on an array without a fixed length",
        )
        .emit()
    }

    fn error_expected_array_or_slice(
        &self,
        span: Span,
        expected_ty: Ty<'tcx>,
        pat_info: PatInfo<'_, 'tcx>,
    ) -> ErrorGuaranteed {
        let PatInfo { top_info: ti, current_depth, .. } = pat_info;

        let mut err = struct_span_code_err!(
            self.dcx(),
            span,
            E0529,
            "expected an array or slice, found `{expected_ty}`"
        );
        if let ty::Ref(_, ty, _) = expected_ty.kind()
            && let ty::Array(..) | ty::Slice(..) = ty.kind()
        {
            err.help("the semantics of slice patterns changed recently; see issue #62254");
        } else if self
            .autoderef(span, expected_ty)
            .silence_errors()
            .any(|(ty, _)| matches!(ty.kind(), ty::Slice(..) | ty::Array(..)))
            && let Some(span) = ti.span
            && let Some(_) = ti.origin_expr
        {
            let resolved_ty = self.resolve_vars_if_possible(ti.expected);
            let (is_slice_or_array_or_vector, resolved_ty) =
                self.is_slice_or_array_or_vector(resolved_ty);
            match resolved_ty.kind() {
                ty::Adt(adt_def, _)
                    if self.tcx.is_diagnostic_item(sym::Option, adt_def.did())
                        || self.tcx.is_diagnostic_item(sym::Result, adt_def.did()) =>
                {
                    // Slicing won't work here, but `.as_deref()` might (issue #91328).
                    err.span_suggestion_verbose(
                        span.shrink_to_hi(),
                        "consider using `as_deref` here",
                        ".as_deref()",
                        Applicability::MaybeIncorrect,
                    );
                }
                _ => (),
            }

            let is_top_level = current_depth <= 1;
            if is_slice_or_array_or_vector && is_top_level {
                err.span_suggestion_verbose(
                    span.shrink_to_hi(),
                    "consider slicing here",
                    "[..]",
                    Applicability::MachineApplicable,
                );
            }
        }
        err.span_label(span, format!("pattern cannot match with input type `{expected_ty}`"));
        err.emit()
    }

    fn is_slice_or_array_or_vector(&self, ty: Ty<'tcx>) -> (bool, Ty<'tcx>) {
        match ty.kind() {
            ty::Adt(adt_def, _) if self.tcx.is_diagnostic_item(sym::Vec, adt_def.did()) => {
                (true, ty)
            }
            ty::Ref(_, ty, _) => self.is_slice_or_array_or_vector(*ty),
            ty::Slice(..) | ty::Array(..) => (true, ty),
            _ => (false, ty),
        }
    }
}