rustc_lint/
if_let_rescope.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
use std::iter::repeat;
use std::ops::ControlFlow;

use hir::intravisit::Visitor;
use rustc_ast::Recovered;
use rustc_errors::{
    Applicability, Diag, EmissionGuarantee, SubdiagMessageOp, Subdiagnostic, SuggestionStyle,
};
use rustc_hir::{self as hir, HirIdSet};
use rustc_macros::LintDiagnostic;
use rustc_middle::ty::TyCtxt;
use rustc_session::lint::{FutureIncompatibilityReason, Level};
use rustc_session::{declare_lint, impl_lint_pass};
use rustc_span::Span;
use rustc_span::edition::Edition;

use crate::{LateContext, LateLintPass};

declare_lint! {
    /// The `if_let_rescope` lint detects cases where a temporary value with
    /// significant drop is generated on the right hand side of `if let`
    /// and suggests a rewrite into `match` when possible.
    ///
    /// ### Example
    ///
    /// ```rust,edition2021
    /// #![feature(if_let_rescope)]
    /// #![warn(if_let_rescope)]
    /// #![allow(unused_variables)]
    ///
    /// struct Droppy;
    /// impl Drop for Droppy {
    ///     fn drop(&mut self) {
    ///         // Custom destructor, including this `drop` implementation, is considered
    ///         // significant.
    ///         // Rust does not check whether this destructor emits side-effects that can
    ///         // lead to observable change in program semantics, when the drop order changes.
    ///         // Rust biases to be on the safe side, so that you can apply discretion whether
    ///         // this change indeed breaches any contract or specification that your code needs
    ///         // to honour.
    ///         println!("dropped");
    ///     }
    /// }
    /// impl Droppy {
    ///     fn get(&self) -> Option<u8> {
    ///         None
    ///     }
    /// }
    ///
    /// fn main() {
    ///     if let Some(value) = Droppy.get() {
    ///         // do something
    ///     } else {
    ///         // do something else
    ///     }
    /// }
    /// ```
    ///
    /// {{produces}}
    ///
    /// ### Explanation
    ///
    /// With Edition 2024, temporaries generated while evaluating `if let`s
    /// will be dropped before the `else` block.
    /// This lint captures a possible change in runtime behaviour due to
    /// a change in sequence of calls to significant `Drop::drop` destructors.
    ///
    /// A significant [`Drop::drop`](https://doc.rust-lang.org/std/ops/trait.Drop.html)
    /// destructor here refers to an explicit, arbitrary implementation of the `Drop` trait on the type
    /// with exceptions including `Vec`, `Box`, `Rc`, `BTreeMap` and `HashMap`
    /// that are marked by the compiler otherwise so long that the generic types have
    /// no significant destructor recursively.
    /// In other words, a type has a significant drop destructor when it has a `Drop` implementation
    /// or its destructor invokes a significant destructor on a type.
    /// Since we cannot completely reason about the change by just inspecting the existence of
    /// a significant destructor, this lint remains only a suggestion and is set to `allow` by default.
    ///
    /// Whenever possible, a rewrite into an equivalent `match` expression that
    /// observe the same order of calls to such destructors is proposed by this lint.
    /// Authors may take their own discretion whether the rewrite suggestion shall be
    /// accepted, or rejected to continue the use of the `if let` expression.
    pub IF_LET_RESCOPE,
    Allow,
    "`if let` assigns a shorter lifetime to temporary values being pattern-matched against in Edition 2024 and \
    rewriting in `match` is an option to preserve the semantics up to Edition 2021",
    @future_incompatible = FutureIncompatibleInfo {
        reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2024),
        reference: "issue #124085 <https://github.com/rust-lang/rust/issues/124085>",
    };
}

/// Lint for potential change in program semantics of `if let`s
#[derive(Default)]
pub(crate) struct IfLetRescope {
    skip: HirIdSet,
}

fn expr_parent_is_else(tcx: TyCtxt<'_>, hir_id: hir::HirId) -> bool {
    let Some((_, hir::Node::Expr(expr))) = tcx.hir().parent_iter(hir_id).next() else {
        return false;
    };
    let hir::ExprKind::If(_cond, _conseq, Some(alt)) = expr.kind else { return false };
    alt.hir_id == hir_id
}

fn expr_parent_is_stmt(tcx: TyCtxt<'_>, hir_id: hir::HirId) -> bool {
    let Some((_, hir::Node::Stmt(stmt))) = tcx.hir().parent_iter(hir_id).next() else {
        return false;
    };
    let (hir::StmtKind::Semi(expr) | hir::StmtKind::Expr(expr)) = stmt.kind else { return false };
    expr.hir_id == hir_id
}

fn match_head_needs_bracket(tcx: TyCtxt<'_>, expr: &hir::Expr<'_>) -> bool {
    expr_parent_is_else(tcx, expr.hir_id) && matches!(expr.kind, hir::ExprKind::If(..))
}

impl IfLetRescope {
    fn probe_if_cascade<'tcx>(&mut self, cx: &LateContext<'tcx>, mut expr: &'tcx hir::Expr<'tcx>) {
        if self.skip.contains(&expr.hir_id) {
            return;
        }
        let tcx = cx.tcx;
        let source_map = tcx.sess.source_map();
        let expr_end = match expr.kind {
            hir::ExprKind::If(_cond, conseq, None) => conseq.span.shrink_to_hi(),
            hir::ExprKind::If(_cond, _conseq, Some(alt)) => alt.span.shrink_to_hi(),
            _ => return,
        };
        let mut add_bracket_to_match_head = match_head_needs_bracket(tcx, expr);
        let mut significant_droppers = vec![];
        let mut lifetime_ends = vec![];
        let mut closing_brackets = 0;
        let mut alt_heads = vec![];
        let mut match_heads = vec![];
        let mut consequent_heads = vec![];
        let mut first_if_to_lint = None;
        let mut first_if_to_rewrite = false;
        let mut empty_alt = false;
        while let hir::ExprKind::If(cond, conseq, alt) = expr.kind {
            self.skip.insert(expr.hir_id);
            // We are interested in `let` fragment of the condition.
            // Otherwise, we probe into the `else` fragment.
            if let hir::ExprKind::Let(&hir::LetExpr {
                span,
                pat,
                init,
                ty: ty_ascription,
                recovered: Recovered::No,
            }) = cond.kind
            {
                // Peel off round braces
                let if_let_pat = source_map
                    .span_take_while(expr.span, |&ch| ch == '(' || ch.is_whitespace())
                    .between(init.span);
                // The consequent fragment is always a block.
                let before_conseq = conseq.span.shrink_to_lo();
                let lifetime_end = source_map.end_point(conseq.span);

                if let ControlFlow::Break(significant_dropper) =
                    (FindSignificantDropper { cx }).visit_expr(init)
                {
                    first_if_to_lint = first_if_to_lint.or_else(|| Some((span, expr.hir_id)));
                    significant_droppers.push(significant_dropper);
                    lifetime_ends.push(lifetime_end);
                    if ty_ascription.is_some()
                        || !expr.span.can_be_used_for_suggestions()
                        || !pat.span.can_be_used_for_suggestions()
                        || !if_let_pat.can_be_used_for_suggestions()
                        || !before_conseq.can_be_used_for_suggestions()
                    {
                        // Our `match` rewrites does not support type ascription,
                        // so we just bail.
                        // Alternatively when the span comes from proc macro expansion,
                        // we will also bail.
                        // FIXME(#101728): change this when type ascription syntax is stabilized again
                    } else if let Ok(pat) = source_map.span_to_snippet(pat.span) {
                        let emit_suggestion = |alt_span| {
                            first_if_to_rewrite = true;
                            if add_bracket_to_match_head {
                                closing_brackets += 2;
                                match_heads.push(SingleArmMatchBegin::WithOpenBracket(if_let_pat));
                            } else {
                                // Sometimes, wrapping `match` into a block is undesirable,
                                // because the scrutinee temporary lifetime is shortened and
                                // the proposed fix will not work.
                                closing_brackets += 1;
                                match_heads
                                    .push(SingleArmMatchBegin::WithoutOpenBracket(if_let_pat));
                            }
                            consequent_heads.push(ConsequentRewrite { span: before_conseq, pat });
                            if let Some(alt_span) = alt_span {
                                alt_heads.push(AltHead(alt_span));
                            }
                        };
                        if let Some(alt) = alt {
                            let alt_head = conseq.span.between(alt.span);
                            if alt_head.can_be_used_for_suggestions() {
                                // We lint only when the `else` span is user code, too.
                                emit_suggestion(Some(alt_head));
                            }
                        } else {
                            // This is the end of the `if .. else ..` cascade.
                            // We can stop here.
                            emit_suggestion(None);
                            empty_alt = true;
                            break;
                        }
                    }
                }
            }
            // At this point, any `if let` fragment in the cascade is definitely preceeded by `else`,
            // so a opening bracket is mandatory before each `match`.
            add_bracket_to_match_head = true;
            if let Some(alt) = alt {
                expr = alt;
            } else {
                break;
            }
        }
        if let Some((span, hir_id)) = first_if_to_lint {
            tcx.emit_node_span_lint(IF_LET_RESCOPE, hir_id, span, IfLetRescopeLint {
                significant_droppers,
                lifetime_ends,
                rewrite: first_if_to_rewrite.then_some(IfLetRescopeRewrite {
                    match_heads,
                    consequent_heads,
                    closing_brackets: ClosingBrackets {
                        span: expr_end,
                        count: closing_brackets,
                        empty_alt,
                    },
                    alt_heads,
                }),
            });
        }
    }
}

impl_lint_pass!(
    IfLetRescope => [IF_LET_RESCOPE]
);

impl<'tcx> LateLintPass<'tcx> for IfLetRescope {
    fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
        if expr.span.edition().at_least_rust_2024() || !cx.tcx.features().if_let_rescope {
            return;
        }
        if let (Level::Allow, _) = cx.tcx.lint_level_at_node(IF_LET_RESCOPE, expr.hir_id) {
            return;
        }
        if let hir::ExprKind::Loop(block, _label, hir::LoopSource::While, _span) = expr.kind
            && let Some(value) = block.expr
            && let hir::ExprKind::If(cond, _conseq, _alt) = value.kind
            && let hir::ExprKind::Let(..) = cond.kind
        {
            // Recall that `while let` is lowered into this:
            // ```
            // loop {
            //     if let .. { body } else { break; }
            // }
            // ```
            // There is no observable change in drop order on the overall `if let` expression
            // given that the `{ break; }` block is trivial so the edition change
            // means nothing substantial to this `while` statement.
            self.skip.insert(value.hir_id);
            return;
        }
        if expr_parent_is_stmt(cx.tcx, expr.hir_id)
            && matches!(expr.kind, hir::ExprKind::If(_cond, _conseq, None))
        {
            // `if let` statement without an `else` branch has no observable change
            // so we can skip linting it
            return;
        }
        self.probe_if_cascade(cx, expr);
    }
}

#[derive(LintDiagnostic)]
#[diag(lint_if_let_rescope)]
struct IfLetRescopeLint {
    #[label]
    significant_droppers: Vec<Span>,
    #[help]
    lifetime_ends: Vec<Span>,
    #[subdiagnostic]
    rewrite: Option<IfLetRescopeRewrite>,
}

// #[derive(Subdiagnostic)]
struct IfLetRescopeRewrite {
    match_heads: Vec<SingleArmMatchBegin>,
    consequent_heads: Vec<ConsequentRewrite>,
    closing_brackets: ClosingBrackets,
    alt_heads: Vec<AltHead>,
}

impl Subdiagnostic for IfLetRescopeRewrite {
    fn add_to_diag_with<G: EmissionGuarantee, F: SubdiagMessageOp<G>>(
        self,
        diag: &mut Diag<'_, G>,
        f: &F,
    ) {
        let mut suggestions = vec![];
        for match_head in self.match_heads {
            match match_head {
                SingleArmMatchBegin::WithOpenBracket(span) => {
                    suggestions.push((span, "{ match ".into()))
                }
                SingleArmMatchBegin::WithoutOpenBracket(span) => {
                    suggestions.push((span, "match ".into()))
                }
            }
        }
        for ConsequentRewrite { span, pat } in self.consequent_heads {
            suggestions.push((span, format!("{{ {pat} => ")));
        }
        for AltHead(span) in self.alt_heads {
            suggestions.push((span, " _ => ".into()));
        }
        let closing_brackets = self.closing_brackets;
        suggestions.push((
            closing_brackets.span,
            closing_brackets
                .empty_alt
                .then_some(" _ => {}".chars())
                .into_iter()
                .flatten()
                .chain(repeat('}').take(closing_brackets.count))
                .collect(),
        ));
        let msg = f(diag, crate::fluent_generated::lint_suggestion);
        diag.multipart_suggestion_with_style(
            msg,
            suggestions,
            Applicability::MachineApplicable,
            SuggestionStyle::ShowCode,
        );
    }
}

struct AltHead(Span);

struct ConsequentRewrite {
    span: Span,
    pat: String,
}

struct ClosingBrackets {
    span: Span,
    count: usize,
    empty_alt: bool,
}
enum SingleArmMatchBegin {
    WithOpenBracket(Span),
    WithoutOpenBracket(Span),
}

struct FindSignificantDropper<'tcx, 'a> {
    cx: &'a LateContext<'tcx>,
}

impl<'tcx, 'a> Visitor<'tcx> for FindSignificantDropper<'tcx, 'a> {
    type Result = ControlFlow<Span>;

    fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) -> Self::Result {
        if self
            .cx
            .typeck_results()
            .expr_ty(expr)
            .has_significant_drop(self.cx.tcx, self.cx.param_env)
        {
            return ControlFlow::Break(expr.span);
        }
        match expr.kind {
            hir::ExprKind::ConstBlock(_)
            | hir::ExprKind::Lit(_)
            | hir::ExprKind::Path(_)
            | hir::ExprKind::Assign(_, _, _)
            | hir::ExprKind::AssignOp(_, _, _)
            | hir::ExprKind::Break(_, _)
            | hir::ExprKind::Continue(_)
            | hir::ExprKind::Ret(_)
            | hir::ExprKind::Become(_)
            | hir::ExprKind::InlineAsm(_)
            | hir::ExprKind::OffsetOf(_, _)
            | hir::ExprKind::Repeat(_, _)
            | hir::ExprKind::Err(_)
            | hir::ExprKind::Struct(_, _, _)
            | hir::ExprKind::Closure(_)
            | hir::ExprKind::Block(_, _)
            | hir::ExprKind::DropTemps(_)
            | hir::ExprKind::Loop(_, _, _, _) => ControlFlow::Continue(()),

            hir::ExprKind::Tup(exprs) | hir::ExprKind::Array(exprs) => {
                for expr in exprs {
                    self.visit_expr(expr)?;
                }
                ControlFlow::Continue(())
            }
            hir::ExprKind::Call(callee, args) => {
                self.visit_expr(callee)?;
                for expr in args {
                    self.visit_expr(expr)?;
                }
                ControlFlow::Continue(())
            }
            hir::ExprKind::MethodCall(_, receiver, args, _) => {
                self.visit_expr(receiver)?;
                for expr in args {
                    self.visit_expr(expr)?;
                }
                ControlFlow::Continue(())
            }
            hir::ExprKind::Index(left, right, _) | hir::ExprKind::Binary(_, left, right) => {
                self.visit_expr(left)?;
                self.visit_expr(right)
            }
            hir::ExprKind::Unary(_, expr)
            | hir::ExprKind::Cast(expr, _)
            | hir::ExprKind::Type(expr, _)
            | hir::ExprKind::Yield(expr, _)
            | hir::ExprKind::AddrOf(_, _, expr)
            | hir::ExprKind::Match(expr, _, _)
            | hir::ExprKind::Field(expr, _)
            | hir::ExprKind::Let(&hir::LetExpr {
                init: expr,
                span: _,
                pat: _,
                ty: _,
                recovered: Recovered::No,
            }) => self.visit_expr(expr),
            hir::ExprKind::Let(_) => ControlFlow::Continue(()),

            hir::ExprKind::If(cond, _, _) => {
                if let hir::ExprKind::Let(hir::LetExpr {
                    init,
                    span: _,
                    pat: _,
                    ty: _,
                    recovered: Recovered::No,
                }) = cond.kind
                {
                    self.visit_expr(init)?;
                }
                ControlFlow::Continue(())
            }
        }
    }
}