rustc_mir_build/thir/pattern/const_to_pat.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
use either::Either;
use rustc_apfloat::Float;
use rustc_hir as hir;
use rustc_index::Idx;
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::Obligation;
use rustc_middle::mir;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::thir::{FieldPat, Pat, PatKind};
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt, ValTree};
use rustc_span::Span;
use rustc_target::abi::{FieldIdx, VariantIdx};
use rustc_trait_selection::traits::ObligationCause;
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
use tracing::{debug, instrument, trace};
use super::PatCtxt;
use crate::errors::{
ConstPatternDependsOnGenericParameter, CouldNotEvalConstPattern, InvalidPattern, NaNPattern,
PointerPattern, TypeNotPartialEq, TypeNotStructural, UnionPattern, UnsizedPattern,
};
impl<'a, 'tcx> PatCtxt<'a, 'tcx> {
/// Converts a constant to a pattern (if possible).
/// This means aggregate values (like structs and enums) are converted
/// to a pattern that matches the value (as if you'd compared via structural equality).
///
/// Only type system constants are supported, as we are using valtrees
/// as an intermediate step. Unfortunately those don't carry a type
/// so we have to carry one ourselves.
#[instrument(level = "debug", skip(self), ret)]
pub(super) fn const_to_pat(
&self,
c: ty::Const<'tcx>,
ty: Ty<'tcx>,
id: hir::HirId,
span: Span,
) -> Box<Pat<'tcx>> {
let infcx = self.tcx.infer_ctxt().build();
let mut convert = ConstToPat::new(self, id, span, infcx);
convert.to_pat(c, ty)
}
}
struct ConstToPat<'tcx> {
span: Span,
param_env: ty::ParamEnv<'tcx>,
// inference context used for checking `T: Structural` bounds.
infcx: InferCtxt<'tcx>,
treat_byte_string_as_slice: bool,
}
impl<'tcx> ConstToPat<'tcx> {
fn new(
pat_ctxt: &PatCtxt<'_, 'tcx>,
id: hir::HirId,
span: Span,
infcx: InferCtxt<'tcx>,
) -> Self {
trace!(?pat_ctxt.typeck_results.hir_owner);
ConstToPat {
span,
infcx,
param_env: pat_ctxt.param_env,
treat_byte_string_as_slice: pat_ctxt
.typeck_results
.treat_byte_string_as_slice
.contains(&id.local_id),
}
}
fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
fn type_marked_structural(&self, ty: Ty<'tcx>) -> bool {
ty.is_structural_eq_shallow(self.infcx.tcx)
}
fn to_pat(&mut self, c: ty::Const<'tcx>, ty: Ty<'tcx>) -> Box<Pat<'tcx>> {
trace!(self.treat_byte_string_as_slice);
let pat_from_kind = |kind| Box::new(Pat { span: self.span, ty, kind });
// Get a valtree. If that fails, this const is definitely not valid for use as a pattern.
let valtree = match c.eval_valtree(self.tcx(), self.param_env, self.span) {
Ok((_, valtree)) => valtree,
Err(Either::Right(e)) => {
let err = match e {
ErrorHandled::Reported(..) => {
// Let's tell the use where this failing const occurs.
self.tcx().dcx().emit_err(CouldNotEvalConstPattern { span: self.span })
}
ErrorHandled::TooGeneric(_) => self
.tcx()
.dcx()
.emit_err(ConstPatternDependsOnGenericParameter { span: self.span }),
};
return pat_from_kind(PatKind::Error(err));
}
Err(Either::Left(bad_ty)) => {
// The pattern cannot be turned into a valtree.
let e = match bad_ty.kind() {
ty::Adt(def, ..) => {
assert!(def.is_union());
self.tcx().dcx().emit_err(UnionPattern { span: self.span })
}
ty::FnPtr(..) | ty::RawPtr(..) => {
self.tcx().dcx().emit_err(PointerPattern { span: self.span })
}
_ => self
.tcx()
.dcx()
.emit_err(InvalidPattern { span: self.span, non_sm_ty: bad_ty }),
};
return pat_from_kind(PatKind::Error(e));
}
};
// Convert the valtree to a const.
let inlined_const_as_pat = self.valtree_to_pat(valtree, ty);
if !inlined_const_as_pat.references_error() {
// Always check for `PartialEq` if we had no other errors yet.
if !self.type_has_partial_eq_impl(ty) {
let err = TypeNotPartialEq { span: self.span, non_peq_ty: ty };
let e = self.tcx().dcx().emit_err(err);
let kind = PatKind::Error(e);
return Box::new(Pat { span: self.span, ty, kind });
}
}
inlined_const_as_pat
}
#[instrument(level = "trace", skip(self), ret)]
fn type_has_partial_eq_impl(&self, ty: Ty<'tcx>) -> bool {
let tcx = self.tcx();
// double-check there even *is* a semantic `PartialEq` to dispatch to.
//
// (If there isn't, then we can safely issue a hard
// error, because that's never worked, due to compiler
// using `PartialEq::eq` in this scenario in the past.)
let partial_eq_trait_id = tcx.require_lang_item(hir::LangItem::PartialEq, Some(self.span));
let partial_eq_obligation = Obligation::new(
tcx,
ObligationCause::dummy(),
self.param_env,
ty::TraitRef::new(tcx, partial_eq_trait_id, [ty, ty]),
);
// This *could* accept a type that isn't actually `PartialEq`, because region bounds get
// ignored. However that should be pretty much impossible since consts that do not depend on
// generics can only mention the `'static` lifetime, and how would one have a type that's
// `PartialEq` for some lifetime but *not* for `'static`? If this ever becomes a problem
// we'll need to leave some sort of trace of this requirement in the MIR so that borrowck
// can ensure that the type really implements `PartialEq`.
self.infcx.predicate_must_hold_modulo_regions(&partial_eq_obligation)
}
fn field_pats(
&self,
vals: impl Iterator<Item = (ValTree<'tcx>, Ty<'tcx>)>,
) -> Vec<FieldPat<'tcx>> {
vals.enumerate()
.map(|(idx, (val, ty))| {
let field = FieldIdx::new(idx);
// Patterns can only use monomorphic types.
let ty = self.tcx().normalize_erasing_regions(self.param_env, ty);
FieldPat { field, pattern: self.valtree_to_pat(val, ty) }
})
.collect()
}
// Recursive helper for `to_pat`; invoke that (instead of calling this directly).
#[instrument(skip(self), level = "debug")]
fn valtree_to_pat(&self, cv: ValTree<'tcx>, ty: Ty<'tcx>) -> Box<Pat<'tcx>> {
let span = self.span;
let tcx = self.tcx();
let param_env = self.param_env;
let kind = match ty.kind() {
ty::Adt(adt_def, _) if !self.type_marked_structural(ty) => {
// Extremely important check for all ADTs! Make sure they opted-in to be used in
// patterns.
debug!("adt_def {:?} has !type_marked_structural for cv.ty: {:?}", adt_def, ty,);
let err = TypeNotStructural { span, non_sm_ty: ty };
let e = tcx.dcx().emit_err(err);
// We errored. Signal that in the pattern, so that follow up errors can be silenced.
PatKind::Error(e)
}
ty::Adt(adt_def, args) if adt_def.is_enum() => {
let (&variant_index, fields) = cv.unwrap_branch().split_first().unwrap();
let variant_index = VariantIdx::from_u32(variant_index.unwrap_leaf().to_u32());
PatKind::Variant {
adt_def: *adt_def,
args,
variant_index,
subpatterns: self.field_pats(
fields.iter().copied().zip(
adt_def.variants()[variant_index]
.fields
.iter()
.map(|field| field.ty(self.tcx(), args)),
),
),
}
}
ty::Adt(def, args) => {
assert!(!def.is_union()); // Valtree construction would never succeed for unions.
PatKind::Leaf {
subpatterns: self.field_pats(
cv.unwrap_branch().iter().copied().zip(
def.non_enum_variant()
.fields
.iter()
.map(|field| field.ty(self.tcx(), args)),
),
),
}
}
ty::Tuple(fields) => PatKind::Leaf {
subpatterns: self.field_pats(cv.unwrap_branch().iter().copied().zip(fields.iter())),
},
ty::Slice(elem_ty) => PatKind::Slice {
prefix: cv
.unwrap_branch()
.iter()
.map(|val| self.valtree_to_pat(*val, *elem_ty))
.collect(),
slice: None,
suffix: Box::new([]),
},
ty::Array(elem_ty, _) => PatKind::Array {
prefix: cv
.unwrap_branch()
.iter()
.map(|val| self.valtree_to_pat(*val, *elem_ty))
.collect(),
slice: None,
suffix: Box::new([]),
},
ty::Ref(_, pointee_ty, ..) => match *pointee_ty.kind() {
// `&str` is represented as a valtree, let's keep using this
// optimization for now.
ty::Str => PatKind::Constant {
value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)),
},
// All other references are converted into deref patterns and then recursively
// convert the dereferenced constant to a pattern that is the sub-pattern of the
// deref pattern.
_ => {
if !pointee_ty.is_sized(tcx, param_env) && !pointee_ty.is_slice() {
let err = UnsizedPattern { span, non_sm_ty: *pointee_ty };
let e = tcx.dcx().emit_err(err);
// We errored. Signal that in the pattern, so that follow up errors can be silenced.
PatKind::Error(e)
} else {
// `b"foo"` produces a `&[u8; 3]`, but you can't use constants of array type when
// matching against references, you can only use byte string literals.
// The typechecker has a special case for byte string literals, by treating them
// as slices. This means we turn `&[T; N]` constants into slice patterns, which
// has no negative effects on pattern matching, even if we're actually matching on
// arrays.
let pointee_ty = match *pointee_ty.kind() {
ty::Array(elem_ty, _) if self.treat_byte_string_as_slice => {
Ty::new_slice(tcx, elem_ty)
}
_ => *pointee_ty,
};
// References have the same valtree representation as their pointee.
let subpattern = self.valtree_to_pat(cv, pointee_ty);
PatKind::Deref { subpattern }
}
}
},
ty::Float(flt) => {
let v = cv.unwrap_leaf();
let is_nan = match flt {
ty::FloatTy::F16 => v.to_f16().is_nan(),
ty::FloatTy::F32 => v.to_f32().is_nan(),
ty::FloatTy::F64 => v.to_f64().is_nan(),
ty::FloatTy::F128 => v.to_f128().is_nan(),
};
if is_nan {
// NaNs are not ever equal to anything so they make no sense as patterns.
// Also see <https://github.com/rust-lang/rfcs/pull/3535>.
let e = tcx.dcx().emit_err(NaNPattern { span });
PatKind::Error(e)
} else {
PatKind::Constant {
value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)),
}
}
}
ty::Pat(..) | ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::RawPtr(..) => {
// The raw pointers we see here have been "vetted" by valtree construction to be
// just integers, so we simply allow them.
PatKind::Constant { value: mir::Const::Ty(ty, ty::Const::new_value(tcx, cv, ty)) }
}
ty::FnPtr(..) => {
unreachable!(
"Valtree construction would never succeed for FnPtr, so this is unreachable."
)
}
_ => {
let err = InvalidPattern { span, non_sm_ty: ty };
let e = tcx.dcx().emit_err(err);
// We errored. Signal that in the pattern, so that follow up errors can be silenced.
PatKind::Error(e)
}
};
Box::new(Pat { span, ty, kind })
}
}