rustc_mir_dataflow/
value_analysis.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
//! This module provides a framework on top of the normal MIR dataflow framework to simplify the
//! implementation of analyses that track information about the values stored in certain places.
//! We are using the term "place" here to refer to a `mir::Place` (a place expression) instead of
//! an `interpret::Place` (a memory location).
//!
//! The default methods of [`ValueAnalysis`] (prefixed with `super_` instead of `handle_`)
//! provide some behavior that should be valid for all abstract domains that are based only on the
//! value stored in a certain place. On top of these default rules, an implementation should
//! override some of the `handle_` methods. For an example, see `ConstAnalysis`.
//!
//! An implementation must also provide a [`Map`]. Before the analysis begins, all places that
//! should be tracked during the analysis must be registered. During the analysis, no new places
//! can be registered. The [`State`] can be queried to retrieve the abstract value stored for a
//! certain place by passing the map.
//!
//! This framework is currently experimental. Originally, it supported shared references and enum
//! variants. However, it was discovered that both of these were unsound, and especially references
//! had subtle but serious issues. In the future, they could be added back in, but we should clarify
//! the rules for optimizations that rely on the aliasing model first.
//!
//!
//! # Notes
//!
//! - The bottom state denotes uninitialized memory. Because we are only doing a sound approximation
//! of the actual execution, we can also use this state for places where access would be UB.
//!
//! - The assignment logic in `State::insert_place_idx` assumes that the places are non-overlapping,
//! or identical. Note that this refers to place expressions, not memory locations.
//!
//! - Currently, places that have their reference taken cannot be tracked. Although this would be
//! possible, it has to rely on some aliasing model, which we are not ready to commit to yet.
//! Because of that, we can assume that the only way to change the value behind a tracked place is
//! by direct assignment.

use std::assert_matches::assert_matches;
use std::fmt::{Debug, Formatter};
use std::ops::Range;

use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::{FxHashMap, FxIndexSet, StdEntry};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_index::IndexVec;
use rustc_index::bit_set::BitSet;
use rustc_middle::bug;
use rustc_middle::mir::tcx::PlaceTy;
use rustc_middle::mir::visit::{MutatingUseContext, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_target::abi::{FieldIdx, VariantIdx};
use tracing::debug;

use crate::fmt::DebugWithContext;
use crate::lattice::{HasBottom, HasTop};
use crate::{Analysis, JoinSemiLattice, SwitchIntEdgeEffects};

pub trait ValueAnalysis<'tcx> {
    /// For each place of interest, the analysis tracks a value of the given type.
    type Value: Clone + JoinSemiLattice + HasBottom + HasTop + Debug;

    const NAME: &'static str;

    fn map(&self) -> &Map<'tcx>;

    fn handle_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
        self.super_statement(statement, state)
    }

    fn super_statement(&self, statement: &Statement<'tcx>, state: &mut State<Self::Value>) {
        match &statement.kind {
            StatementKind::Assign(box (place, rvalue)) => {
                self.handle_assign(*place, rvalue, state);
            }
            StatementKind::SetDiscriminant { box place, variant_index } => {
                self.handle_set_discriminant(*place, *variant_index, state);
            }
            StatementKind::Intrinsic(box intrinsic) => {
                self.handle_intrinsic(intrinsic, state);
            }
            StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
                // StorageLive leaves the local in an uninitialized state.
                // StorageDead makes it UB to access the local afterwards.
                state.flood_with(Place::from(*local).as_ref(), self.map(), Self::Value::BOTTOM);
            }
            StatementKind::Deinit(box place) => {
                // Deinit makes the place uninitialized.
                state.flood_with(place.as_ref(), self.map(), Self::Value::BOTTOM);
            }
            StatementKind::Retag(..) => {
                // We don't track references.
            }
            StatementKind::ConstEvalCounter
            | StatementKind::Nop
            | StatementKind::FakeRead(..)
            | StatementKind::PlaceMention(..)
            | StatementKind::Coverage(..)
            | StatementKind::AscribeUserType(..) => (),
        }
    }

    fn handle_set_discriminant(
        &self,
        place: Place<'tcx>,
        variant_index: VariantIdx,
        state: &mut State<Self::Value>,
    ) {
        self.super_set_discriminant(place, variant_index, state)
    }

    fn super_set_discriminant(
        &self,
        place: Place<'tcx>,
        _variant_index: VariantIdx,
        state: &mut State<Self::Value>,
    ) {
        state.flood_discr(place.as_ref(), self.map());
    }

    fn handle_intrinsic(
        &self,
        intrinsic: &NonDivergingIntrinsic<'tcx>,
        state: &mut State<Self::Value>,
    ) {
        self.super_intrinsic(intrinsic, state);
    }

    fn super_intrinsic(
        &self,
        intrinsic: &NonDivergingIntrinsic<'tcx>,
        _state: &mut State<Self::Value>,
    ) {
        match intrinsic {
            NonDivergingIntrinsic::Assume(..) => {
                // Could use this, but ignoring it is sound.
            }
            NonDivergingIntrinsic::CopyNonOverlapping(CopyNonOverlapping {
                dst: _,
                src: _,
                count: _,
            }) => {
                // This statement represents `*dst = *src`, `count` times.
            }
        }
    }

    fn handle_assign(
        &self,
        target: Place<'tcx>,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) {
        self.super_assign(target, rvalue, state)
    }

    fn super_assign(
        &self,
        target: Place<'tcx>,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) {
        let result = self.handle_rvalue(rvalue, state);
        state.assign(target.as_ref(), result, self.map());
    }

    fn handle_rvalue(
        &self,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        self.super_rvalue(rvalue, state)
    }

    fn super_rvalue(
        &self,
        rvalue: &Rvalue<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        match rvalue {
            Rvalue::Use(operand) => self.handle_operand(operand, state),
            Rvalue::CopyForDeref(place) => self.handle_operand(&Operand::Copy(*place), state),
            Rvalue::Ref(..) | Rvalue::RawPtr(..) => {
                // We don't track such places.
                ValueOrPlace::TOP
            }
            Rvalue::Repeat(..)
            | Rvalue::ThreadLocalRef(..)
            | Rvalue::Len(..)
            | Rvalue::Cast(..)
            | Rvalue::BinaryOp(..)
            | Rvalue::NullaryOp(..)
            | Rvalue::UnaryOp(..)
            | Rvalue::Discriminant(..)
            | Rvalue::Aggregate(..)
            | Rvalue::ShallowInitBox(..) => {
                // No modification is possible through these r-values.
                ValueOrPlace::TOP
            }
        }
    }

    fn handle_operand(
        &self,
        operand: &Operand<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        self.super_operand(operand, state)
    }

    fn super_operand(
        &self,
        operand: &Operand<'tcx>,
        state: &mut State<Self::Value>,
    ) -> ValueOrPlace<Self::Value> {
        match operand {
            Operand::Constant(box constant) => {
                ValueOrPlace::Value(self.handle_constant(constant, state))
            }
            Operand::Copy(place) | Operand::Move(place) => {
                // On move, we would ideally flood the place with bottom. But with the current
                // framework this is not possible (similar to `InterpCx::eval_operand`).
                self.map()
                    .find(place.as_ref())
                    .map(ValueOrPlace::Place)
                    .unwrap_or(ValueOrPlace::TOP)
            }
        }
    }

    fn handle_constant(
        &self,
        constant: &ConstOperand<'tcx>,
        state: &mut State<Self::Value>,
    ) -> Self::Value {
        self.super_constant(constant, state)
    }

    fn super_constant(
        &self,
        _constant: &ConstOperand<'tcx>,
        _state: &mut State<Self::Value>,
    ) -> Self::Value {
        Self::Value::TOP
    }

    /// The effect of a successful function call return should not be
    /// applied here, see [`Analysis::apply_terminator_effect`].
    fn handle_terminator<'mir>(
        &self,
        terminator: &'mir Terminator<'tcx>,
        state: &mut State<Self::Value>,
    ) -> TerminatorEdges<'mir, 'tcx> {
        self.super_terminator(terminator, state)
    }

    fn super_terminator<'mir>(
        &self,
        terminator: &'mir Terminator<'tcx>,
        state: &mut State<Self::Value>,
    ) -> TerminatorEdges<'mir, 'tcx> {
        match &terminator.kind {
            TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => {
                // Effect is applied by `handle_call_return`.
            }
            TerminatorKind::Drop { place, .. } => {
                state.flood_with(place.as_ref(), self.map(), Self::Value::BOTTOM);
            }
            TerminatorKind::Yield { .. } => {
                // They would have an effect, but are not allowed in this phase.
                bug!("encountered disallowed terminator");
            }
            TerminatorKind::SwitchInt { discr, targets } => {
                return self.handle_switch_int(discr, targets, state);
            }
            TerminatorKind::TailCall { .. } => {
                // FIXME(explicit_tail_calls): determine if we need to do something here (probably not)
            }
            TerminatorKind::Goto { .. }
            | TerminatorKind::UnwindResume
            | TerminatorKind::UnwindTerminate(_)
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Assert { .. }
            | TerminatorKind::CoroutineDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. } => {
                // These terminators have no effect on the analysis.
            }
        }
        terminator.edges()
    }

    fn handle_call_return(
        &self,
        return_places: CallReturnPlaces<'_, 'tcx>,
        state: &mut State<Self::Value>,
    ) {
        self.super_call_return(return_places, state)
    }

    fn super_call_return(
        &self,
        return_places: CallReturnPlaces<'_, 'tcx>,
        state: &mut State<Self::Value>,
    ) {
        return_places.for_each(|place| {
            state.flood(place.as_ref(), self.map());
        })
    }

    fn handle_switch_int<'mir>(
        &self,
        discr: &'mir Operand<'tcx>,
        targets: &'mir SwitchTargets,
        state: &mut State<Self::Value>,
    ) -> TerminatorEdges<'mir, 'tcx> {
        self.super_switch_int(discr, targets, state)
    }

    fn super_switch_int<'mir>(
        &self,
        discr: &'mir Operand<'tcx>,
        targets: &'mir SwitchTargets,
        _state: &mut State<Self::Value>,
    ) -> TerminatorEdges<'mir, 'tcx> {
        TerminatorEdges::SwitchInt { discr, targets }
    }

    fn wrap(self) -> ValueAnalysisWrapper<Self>
    where
        Self: Sized,
    {
        ValueAnalysisWrapper(self)
    }
}

pub struct ValueAnalysisWrapper<T>(pub T);

impl<'tcx, T: ValueAnalysis<'tcx>> Analysis<'tcx> for ValueAnalysisWrapper<T> {
    type Domain = State<T::Value>;

    const NAME: &'static str = T::NAME;

    fn bottom_value(&self, _body: &Body<'tcx>) -> Self::Domain {
        State::Unreachable
    }

    fn initialize_start_block(&self, body: &Body<'tcx>, state: &mut Self::Domain) {
        // The initial state maps all tracked places of argument projections to ⊤ and the rest to ⊥.
        assert_matches!(state, State::Unreachable);
        *state = State::new_reachable();
        for arg in body.args_iter() {
            state.flood(PlaceRef { local: arg, projection: &[] }, self.0.map());
        }
    }

    fn apply_statement_effect(
        &mut self,
        state: &mut Self::Domain,
        statement: &Statement<'tcx>,
        _location: Location,
    ) {
        if state.is_reachable() {
            self.0.handle_statement(statement, state);
        }
    }

    fn apply_terminator_effect<'mir>(
        &mut self,
        state: &mut Self::Domain,
        terminator: &'mir Terminator<'tcx>,
        _location: Location,
    ) -> TerminatorEdges<'mir, 'tcx> {
        if state.is_reachable() {
            self.0.handle_terminator(terminator, state)
        } else {
            TerminatorEdges::None
        }
    }

    fn apply_call_return_effect(
        &mut self,
        state: &mut Self::Domain,
        _block: BasicBlock,
        return_places: CallReturnPlaces<'_, 'tcx>,
    ) {
        if state.is_reachable() {
            self.0.handle_call_return(return_places, state)
        }
    }

    fn apply_switch_int_edge_effects(
        &mut self,
        _block: BasicBlock,
        _discr: &Operand<'tcx>,
        _apply_edge_effects: &mut impl SwitchIntEdgeEffects<Self::Domain>,
    ) {
    }
}

rustc_index::newtype_index!(
    /// This index uniquely identifies a place.
    ///
    /// Not every place has a `PlaceIndex`, and not every `PlaceIndex` corresponds to a tracked
    /// place. However, every tracked place and all places along its projection have a `PlaceIndex`.
    pub struct PlaceIndex {}
);

rustc_index::newtype_index!(
    /// This index uniquely identifies a tracked place and therefore a slot in [`State`].
    ///
    /// It is an implementation detail of this module.
    struct ValueIndex {}
);

/// See [`State`].
#[derive(PartialEq, Eq, Debug)]
pub struct StateData<V> {
    bottom: V,
    /// This map only contains values that are not `⊥`.
    map: FxHashMap<ValueIndex, V>,
}

impl<V: HasBottom> StateData<V> {
    fn new() -> StateData<V> {
        StateData { bottom: V::BOTTOM, map: FxHashMap::default() }
    }

    fn get(&self, idx: ValueIndex) -> &V {
        self.map.get(&idx).unwrap_or(&self.bottom)
    }

    fn insert(&mut self, idx: ValueIndex, elem: V) {
        if elem.is_bottom() {
            self.map.remove(&idx);
        } else {
            self.map.insert(idx, elem);
        }
    }
}

impl<V: Clone> Clone for StateData<V> {
    fn clone(&self) -> Self {
        StateData { bottom: self.bottom.clone(), map: self.map.clone() }
    }

    fn clone_from(&mut self, source: &Self) {
        self.map.clone_from(&source.map)
    }
}

impl<V: JoinSemiLattice + Clone + HasBottom> JoinSemiLattice for StateData<V> {
    fn join(&mut self, other: &Self) -> bool {
        let mut changed = false;
        #[allow(rustc::potential_query_instability)]
        for (i, v) in other.map.iter() {
            match self.map.entry(*i) {
                StdEntry::Vacant(e) => {
                    e.insert(v.clone());
                    changed = true
                }
                StdEntry::Occupied(e) => changed |= e.into_mut().join(v),
            }
        }
        changed
    }
}

/// The dataflow state for an instance of [`ValueAnalysis`].
///
/// Every instance specifies a lattice that represents the possible values of a single tracked
/// place. If we call this lattice `V` and set of tracked places `P`, then a [`State`] is an
/// element of `{unreachable} ∪ (P -> V)`. This again forms a lattice, where the bottom element is
/// `unreachable` and the top element is the mapping `p ↦ ⊤`. Note that the mapping `p ↦ ⊥` is not
/// the bottom element (because joining an unreachable and any other reachable state yields a
/// reachable state). All operations on unreachable states are ignored.
///
/// Flooding means assigning a value (by default `⊤`) to all tracked projections of a given place.
#[derive(PartialEq, Eq, Debug)]
pub enum State<V> {
    Unreachable,
    Reachable(StateData<V>),
}

impl<V: Clone> Clone for State<V> {
    fn clone(&self) -> Self {
        match self {
            Self::Reachable(x) => Self::Reachable(x.clone()),
            Self::Unreachable => Self::Unreachable,
        }
    }

    fn clone_from(&mut self, source: &Self) {
        match (&mut *self, source) {
            (Self::Reachable(x), Self::Reachable(y)) => {
                x.clone_from(&y);
            }
            _ => *self = source.clone(),
        }
    }
}

impl<V: Clone + HasBottom> State<V> {
    pub fn new_reachable() -> State<V> {
        State::Reachable(StateData::new())
    }

    pub fn all_bottom(&self) -> bool {
        match self {
            State::Unreachable => false,
            State::Reachable(ref values) =>
            {
                #[allow(rustc::potential_query_instability)]
                values.map.values().all(V::is_bottom)
            }
        }
    }

    fn is_reachable(&self) -> bool {
        matches!(self, State::Reachable(_))
    }

    /// Assign `value` to all places that are contained in `place` or may alias one.
    pub fn flood_with(&mut self, place: PlaceRef<'_>, map: &Map<'_>, value: V) {
        self.flood_with_tail_elem(place, None, map, value)
    }

    /// Assign `TOP` to all places that are contained in `place` or may alias one.
    pub fn flood(&mut self, place: PlaceRef<'_>, map: &Map<'_>)
    where
        V: HasTop,
    {
        self.flood_with(place, map, V::TOP)
    }

    /// Assign `value` to the discriminant of `place` and all places that may alias it.
    fn flood_discr_with(&mut self, place: PlaceRef<'_>, map: &Map<'_>, value: V) {
        self.flood_with_tail_elem(place, Some(TrackElem::Discriminant), map, value)
    }

    /// Assign `TOP` to the discriminant of `place` and all places that may alias it.
    pub fn flood_discr(&mut self, place: PlaceRef<'_>, map: &Map<'_>)
    where
        V: HasTop,
    {
        self.flood_discr_with(place, map, V::TOP)
    }

    /// This method is the most general version of the `flood_*` method.
    ///
    /// Assign `value` on the given place and all places that may alias it. In particular, when
    /// the given place has a variant downcast, we invoke the function on all the other variants.
    ///
    /// `tail_elem` allows to support discriminants that are not a place in MIR, but that we track
    /// as such.
    pub fn flood_with_tail_elem(
        &mut self,
        place: PlaceRef<'_>,
        tail_elem: Option<TrackElem>,
        map: &Map<'_>,
        value: V,
    ) {
        let State::Reachable(values) = self else { return };
        map.for_each_aliasing_place(place, tail_elem, &mut |vi| values.insert(vi, value.clone()));
    }

    /// Low-level method that assigns to a place.
    /// This does nothing if the place is not tracked.
    ///
    /// The target place must have been flooded before calling this method.
    fn insert_idx(&mut self, target: PlaceIndex, result: ValueOrPlace<V>, map: &Map<'_>) {
        match result {
            ValueOrPlace::Value(value) => self.insert_value_idx(target, value, map),
            ValueOrPlace::Place(source) => self.insert_place_idx(target, source, map),
        }
    }

    /// Low-level method that assigns a value to a place.
    /// This does nothing if the place is not tracked.
    ///
    /// The target place must have been flooded before calling this method.
    pub fn insert_value_idx(&mut self, target: PlaceIndex, value: V, map: &Map<'_>) {
        let State::Reachable(values) = self else { return };
        if let Some(value_index) = map.places[target].value_index {
            values.insert(value_index, value)
        }
    }

    /// Copies `source` to `target`, including all tracked places beneath.
    ///
    /// If `target` contains a place that is not contained in `source`, it will be overwritten with
    /// Top. Also, because this will copy all entries one after another, it may only be used for
    /// places that are non-overlapping or identical.
    ///
    /// The target place must have been flooded before calling this method.
    pub fn insert_place_idx(&mut self, target: PlaceIndex, source: PlaceIndex, map: &Map<'_>) {
        let State::Reachable(values) = self else { return };

        // If both places are tracked, we copy the value to the target.
        // If the target is tracked, but the source is not, we do nothing, as invalidation has
        // already been performed.
        if let Some(target_value) = map.places[target].value_index {
            if let Some(source_value) = map.places[source].value_index {
                values.insert(target_value, values.get(source_value).clone());
            }
        }
        for target_child in map.children(target) {
            // Try to find corresponding child and recurse. Reasoning is similar as above.
            let projection = map.places[target_child].proj_elem.unwrap();
            if let Some(source_child) = map.projections.get(&(source, projection)) {
                self.insert_place_idx(target_child, *source_child, map);
            }
        }
    }

    /// Helper method to interpret `target = result`.
    pub fn assign(&mut self, target: PlaceRef<'_>, result: ValueOrPlace<V>, map: &Map<'_>)
    where
        V: HasTop,
    {
        self.flood(target, map);
        if let Some(target) = map.find(target) {
            self.insert_idx(target, result, map);
        }
    }

    /// Helper method for assignments to a discriminant.
    pub fn assign_discr(&mut self, target: PlaceRef<'_>, result: ValueOrPlace<V>, map: &Map<'_>)
    where
        V: HasTop,
    {
        self.flood_discr(target, map);
        if let Some(target) = map.find_discr(target) {
            self.insert_idx(target, result, map);
        }
    }

    /// Retrieve the value stored for a place, or `None` if it is not tracked.
    pub fn try_get(&self, place: PlaceRef<'_>, map: &Map<'_>) -> Option<V> {
        let place = map.find(place)?;
        self.try_get_idx(place, map)
    }

    /// Retrieve the discriminant stored for a place, or `None` if it is not tracked.
    pub fn try_get_discr(&self, place: PlaceRef<'_>, map: &Map<'_>) -> Option<V> {
        let place = map.find_discr(place)?;
        self.try_get_idx(place, map)
    }

    /// Retrieve the slice length stored for a place, or `None` if it is not tracked.
    pub fn try_get_len(&self, place: PlaceRef<'_>, map: &Map<'_>) -> Option<V> {
        let place = map.find_len(place)?;
        self.try_get_idx(place, map)
    }

    /// Retrieve the value stored for a place index, or `None` if it is not tracked.
    pub fn try_get_idx(&self, place: PlaceIndex, map: &Map<'_>) -> Option<V> {
        match self {
            State::Reachable(values) => {
                map.places[place].value_index.map(|v| values.get(v).clone())
            }
            State::Unreachable => None,
        }
    }

    /// Retrieve the value stored for a place, or ⊤ if it is not tracked.
    ///
    /// This method returns ⊥ if the place is tracked and the state is unreachable.
    pub fn get(&self, place: PlaceRef<'_>, map: &Map<'_>) -> V
    where
        V: HasBottom + HasTop,
    {
        match self {
            State::Reachable(_) => self.try_get(place, map).unwrap_or(V::TOP),
            // Because this is unreachable, we can return any value we want.
            State::Unreachable => V::BOTTOM,
        }
    }

    /// Retrieve the value stored for a place, or ⊤ if it is not tracked.
    ///
    /// This method returns ⊥ the current state is unreachable.
    pub fn get_discr(&self, place: PlaceRef<'_>, map: &Map<'_>) -> V
    where
        V: HasBottom + HasTop,
    {
        match self {
            State::Reachable(_) => self.try_get_discr(place, map).unwrap_or(V::TOP),
            // Because this is unreachable, we can return any value we want.
            State::Unreachable => V::BOTTOM,
        }
    }

    /// Retrieve the value stored for a place, or ⊤ if it is not tracked.
    ///
    /// This method returns ⊥ the current state is unreachable.
    pub fn get_len(&self, place: PlaceRef<'_>, map: &Map<'_>) -> V
    where
        V: HasBottom + HasTop,
    {
        match self {
            State::Reachable(_) => self.try_get_len(place, map).unwrap_or(V::TOP),
            // Because this is unreachable, we can return any value we want.
            State::Unreachable => V::BOTTOM,
        }
    }

    /// Retrieve the value stored for a place index, or ⊤ if it is not tracked.
    ///
    /// This method returns ⊥ the current state is unreachable.
    pub fn get_idx(&self, place: PlaceIndex, map: &Map<'_>) -> V
    where
        V: HasBottom + HasTop,
    {
        match self {
            State::Reachable(values) => {
                map.places[place].value_index.map(|v| values.get(v).clone()).unwrap_or(V::TOP)
            }
            State::Unreachable => {
                // Because this is unreachable, we can return any value we want.
                V::BOTTOM
            }
        }
    }
}

impl<V: JoinSemiLattice + Clone + HasBottom> JoinSemiLattice for State<V> {
    fn join(&mut self, other: &Self) -> bool {
        match (&mut *self, other) {
            (_, State::Unreachable) => false,
            (State::Unreachable, _) => {
                *self = other.clone();
                true
            }
            (State::Reachable(this), State::Reachable(ref other)) => this.join(other),
        }
    }
}

/// Partial mapping from [`Place`] to [`PlaceIndex`], where some places also have a [`ValueIndex`].
///
/// This data structure essentially maintains a tree of places and their projections. Some
/// additional bookkeeping is done, to speed up traversal over this tree:
/// - For iteration, every [`PlaceInfo`] contains an intrusive linked list of its children.
/// - To directly get the child for a specific projection, there is a `projections` map.
#[derive(Debug)]
pub struct Map<'tcx> {
    locals: IndexVec<Local, Option<PlaceIndex>>,
    projections: FxHashMap<(PlaceIndex, TrackElem), PlaceIndex>,
    places: IndexVec<PlaceIndex, PlaceInfo<'tcx>>,
    value_count: usize,
    // The Range corresponds to a slice into `inner_values_buffer`.
    inner_values: IndexVec<PlaceIndex, Range<usize>>,
    inner_values_buffer: Vec<ValueIndex>,
}

impl<'tcx> Map<'tcx> {
    /// Returns a map that only tracks places whose type has scalar layout.
    ///
    /// This is currently the only way to create a [`Map`]. The way in which the tracked places are
    /// chosen is an implementation detail and may not be relied upon (other than that their type
    /// are scalars).
    pub fn new(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, value_limit: Option<usize>) -> Self {
        let mut map = Self {
            locals: IndexVec::from_elem(None, &body.local_decls),
            projections: FxHashMap::default(),
            places: IndexVec::new(),
            value_count: 0,
            inner_values: IndexVec::new(),
            inner_values_buffer: Vec::new(),
        };
        let exclude = excluded_locals(body);
        map.register(tcx, body, exclude, value_limit);
        debug!("registered {} places ({} nodes in total)", map.value_count, map.places.len());
        map
    }

    /// Register all non-excluded places that have scalar layout.
    #[tracing::instrument(level = "trace", skip(self, tcx, body))]
    fn register(
        &mut self,
        tcx: TyCtxt<'tcx>,
        body: &Body<'tcx>,
        exclude: BitSet<Local>,
        value_limit: Option<usize>,
    ) {
        // Start by constructing the places for each bare local.
        for (local, decl) in body.local_decls.iter_enumerated() {
            if exclude.contains(local) {
                continue;
            }

            // Create a place for the local.
            debug_assert!(self.locals[local].is_none());
            let place = self.places.push(PlaceInfo::new(decl.ty, None));
            self.locals[local] = Some(place);
        }

        // Collect syntactic places and assignments between them.
        let mut collector =
            PlaceCollector { tcx, body, map: self, assignments: Default::default() };
        collector.visit_body(body);
        let PlaceCollector { mut assignments, .. } = collector;

        // Just collecting syntactic places is not enough. We may need to propagate this pattern:
        //      _1 = (const 5u32, const 13i64);
        //      _2 = _1;
        //      _3 = (_2.0 as u32);
        //
        // `_1.0` does not appear, but we still need to track it. This is achieved by propagating
        // projections from assignments. We recorded an assignment between `_2` and `_1`, so we
        // want `_1` and `_2` to have the same sub-places.
        //
        // This is what this fixpoint loop does. While we are still creating places, run through
        // all the assignments, and register places for children.
        let mut num_places = 0;
        while num_places < self.places.len() {
            num_places = self.places.len();

            for assign in 0.. {
                let Some(&(lhs, rhs)) = assignments.get_index(assign) else { break };

                // Mirror children from `lhs` in `rhs`.
                let mut child = self.places[lhs].first_child;
                while let Some(lhs_child) = child {
                    let PlaceInfo { ty, proj_elem, next_sibling, .. } = self.places[lhs_child];
                    let rhs_child =
                        self.register_place(ty, rhs, proj_elem.expect("child is not a projection"));
                    assignments.insert((lhs_child, rhs_child));
                    child = next_sibling;
                }

                // Conversely, mirror children from `rhs` in `lhs`.
                let mut child = self.places[rhs].first_child;
                while let Some(rhs_child) = child {
                    let PlaceInfo { ty, proj_elem, next_sibling, .. } = self.places[rhs_child];
                    let lhs_child =
                        self.register_place(ty, lhs, proj_elem.expect("child is not a projection"));
                    assignments.insert((lhs_child, rhs_child));
                    child = next_sibling;
                }
            }
        }
        drop(assignments);

        // Create values for places whose type have scalar layout.
        let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id());
        for place_info in self.places.iter_mut() {
            // The user requires a bound on the number of created values.
            if let Some(value_limit) = value_limit
                && self.value_count >= value_limit
            {
                break;
            }

            if let Ok(ty) = tcx.try_normalize_erasing_regions(param_env, place_info.ty) {
                place_info.ty = ty;
            }

            // Allocate a value slot if it doesn't have one, and the user requested one.
            assert!(place_info.value_index.is_none());
            if let Ok(layout) = tcx.layout_of(param_env.and(place_info.ty))
                && layout.abi.is_scalar()
            {
                place_info.value_index = Some(self.value_count.into());
                self.value_count += 1;
            }
        }

        // Pre-compute the tree of ValueIndex nested in each PlaceIndex.
        // `inner_values_buffer[inner_values[place]]` is the set of all the values
        // reachable by projecting `place`.
        self.inner_values_buffer = Vec::with_capacity(self.value_count);
        self.inner_values = IndexVec::from_elem(0..0, &self.places);
        for local in body.local_decls.indices() {
            if let Some(place) = self.locals[local] {
                self.cache_preorder_invoke(place);
            }
        }

        // Trim useless places.
        for opt_place in self.locals.iter_mut() {
            if let Some(place) = *opt_place
                && self.inner_values[place].is_empty()
            {
                *opt_place = None;
            }
        }
        #[allow(rustc::potential_query_instability)]
        self.projections.retain(|_, child| !self.inner_values[*child].is_empty());
    }

    #[tracing::instrument(level = "trace", skip(self), ret)]
    fn register_place(&mut self, ty: Ty<'tcx>, base: PlaceIndex, elem: TrackElem) -> PlaceIndex {
        *self.projections.entry((base, elem)).or_insert_with(|| {
            let next = self.places.push(PlaceInfo::new(ty, Some(elem)));
            self.places[next].next_sibling = self.places[base].first_child;
            self.places[base].first_child = Some(next);
            next
        })
    }

    /// Precompute the list of values inside `root` and store it inside
    /// as a slice within `inner_values_buffer`.
    fn cache_preorder_invoke(&mut self, root: PlaceIndex) {
        let start = self.inner_values_buffer.len();
        if let Some(vi) = self.places[root].value_index {
            self.inner_values_buffer.push(vi);
        }

        // We manually iterate instead of using `children` as we need to mutate `self`.
        let mut next_child = self.places[root].first_child;
        while let Some(child) = next_child {
            ensure_sufficient_stack(|| self.cache_preorder_invoke(child));
            next_child = self.places[child].next_sibling;
        }

        let end = self.inner_values_buffer.len();
        self.inner_values[root] = start..end;
    }
}

struct PlaceCollector<'a, 'tcx> {
    tcx: TyCtxt<'tcx>,
    body: &'a Body<'tcx>,
    map: &'a mut Map<'tcx>,
    assignments: FxIndexSet<(PlaceIndex, PlaceIndex)>,
}

impl<'tcx> PlaceCollector<'_, 'tcx> {
    #[tracing::instrument(level = "trace", skip(self))]
    fn register_place(&mut self, place: Place<'tcx>) -> Option<PlaceIndex> {
        // Create a place for this projection.
        let mut place_index = self.map.locals[place.local]?;
        let mut ty = PlaceTy::from_ty(self.body.local_decls[place.local].ty);
        tracing::trace!(?place_index, ?ty);

        if let ty::Ref(_, ref_ty, _) | ty::RawPtr(ref_ty, _) = ty.ty.kind()
            && let ty::Slice(..) = ref_ty.kind()
        {
            self.map.register_place(self.tcx.types.usize, place_index, TrackElem::DerefLen);
        } else if ty.ty.is_enum() {
            let discriminant_ty = ty.ty.discriminant_ty(self.tcx);
            self.map.register_place(discriminant_ty, place_index, TrackElem::Discriminant);
        }

        for proj in place.projection {
            let track_elem = proj.try_into().ok()?;
            ty = ty.projection_ty(self.tcx, proj);
            place_index = self.map.register_place(ty.ty, place_index, track_elem);
            tracing::trace!(?proj, ?place_index, ?ty);

            if let ty::Ref(_, ref_ty, _) | ty::RawPtr(ref_ty, _) = ty.ty.kind()
                && let ty::Slice(..) = ref_ty.kind()
            {
                self.map.register_place(self.tcx.types.usize, place_index, TrackElem::DerefLen);
            } else if ty.ty.is_enum() {
                let discriminant_ty = ty.ty.discriminant_ty(self.tcx);
                self.map.register_place(discriminant_ty, place_index, TrackElem::Discriminant);
            }
        }

        Some(place_index)
    }
}

impl<'tcx> Visitor<'tcx> for PlaceCollector<'_, 'tcx> {
    #[tracing::instrument(level = "trace", skip(self))]
    fn visit_place(&mut self, place: &Place<'tcx>, ctxt: PlaceContext, _: Location) {
        if !ctxt.is_use() {
            return;
        }

        self.register_place(*place);
    }

    fn visit_assign(&mut self, lhs: &Place<'tcx>, rhs: &Rvalue<'tcx>, location: Location) {
        self.super_assign(lhs, rhs, location);

        match rhs {
            Rvalue::Use(Operand::Move(rhs) | Operand::Copy(rhs)) | Rvalue::CopyForDeref(rhs) => {
                let Some(lhs) = self.register_place(*lhs) else { return };
                let Some(rhs) = self.register_place(*rhs) else { return };
                self.assignments.insert((lhs, rhs));
            }
            Rvalue::Aggregate(kind, fields) => {
                let Some(mut lhs) = self.register_place(*lhs) else { return };
                match **kind {
                    // Do not propagate unions.
                    AggregateKind::Adt(_, _, _, _, Some(_)) => return,
                    AggregateKind::Adt(_, variant, _, _, None) => {
                        let ty = self.map.places[lhs].ty;
                        if ty.is_enum() {
                            lhs = self.map.register_place(ty, lhs, TrackElem::Variant(variant));
                        }
                    }
                    AggregateKind::RawPtr(..)
                    | AggregateKind::Array(_)
                    | AggregateKind::Tuple
                    | AggregateKind::Closure(..)
                    | AggregateKind::Coroutine(..)
                    | AggregateKind::CoroutineClosure(..) => {}
                }
                for (index, field) in fields.iter_enumerated() {
                    if let Some(rhs) = field.place()
                        && let Some(rhs) = self.register_place(rhs)
                    {
                        let lhs = self.map.register_place(
                            self.map.places[rhs].ty,
                            lhs,
                            TrackElem::Field(index),
                        );
                        self.assignments.insert((lhs, rhs));
                    }
                }
            }
            _ => {}
        }
    }
}

impl<'tcx> Map<'tcx> {
    /// Applies a single projection element, yielding the corresponding child.
    pub fn apply(&self, place: PlaceIndex, elem: TrackElem) -> Option<PlaceIndex> {
        self.projections.get(&(place, elem)).copied()
    }

    /// Locates the given place, if it exists in the tree.
    fn find_extra(
        &self,
        place: PlaceRef<'_>,
        extra: impl IntoIterator<Item = TrackElem>,
    ) -> Option<PlaceIndex> {
        let mut index = *self.locals[place.local].as_ref()?;

        for &elem in place.projection {
            index = self.apply(index, elem.try_into().ok()?)?;
        }
        for elem in extra {
            index = self.apply(index, elem)?;
        }

        Some(index)
    }

    /// Locates the given place, if it exists in the tree.
    pub fn find(&self, place: PlaceRef<'_>) -> Option<PlaceIndex> {
        self.find_extra(place, [])
    }

    /// Locates the given place and applies `Discriminant`, if it exists in the tree.
    pub fn find_discr(&self, place: PlaceRef<'_>) -> Option<PlaceIndex> {
        self.find_extra(place, [TrackElem::Discriminant])
    }

    /// Locates the given place and applies `DerefLen`, if it exists in the tree.
    pub fn find_len(&self, place: PlaceRef<'_>) -> Option<PlaceIndex> {
        self.find_extra(place, [TrackElem::DerefLen])
    }

    /// Iterate over all direct children.
    fn children(
        &self,
        parent: PlaceIndex,
    ) -> impl Iterator<Item = PlaceIndex> + Captures<'_> + Captures<'tcx> {
        Children::new(self, parent)
    }

    /// Invoke a function on the given place and all places that may alias it.
    ///
    /// In particular, when the given place has a variant downcast, we invoke the function on all
    /// the other variants.
    ///
    /// `tail_elem` allows to support discriminants that are not a place in MIR, but that we track
    /// as such.
    fn for_each_aliasing_place(
        &self,
        place: PlaceRef<'_>,
        tail_elem: Option<TrackElem>,
        f: &mut impl FnMut(ValueIndex),
    ) {
        if place.is_indirect_first_projection() {
            // We do not track indirect places.
            return;
        }
        let Some(mut index) = self.locals[place.local] else {
            // The local is not tracked at all, so it does not alias anything.
            return;
        };
        let elems = place.projection.iter().map(|&elem| elem.try_into()).chain(tail_elem.map(Ok));
        for elem in elems {
            // A field aliases the parent place.
            if let Some(vi) = self.places[index].value_index {
                f(vi);
            }

            let Ok(elem) = elem else { return };
            let sub = self.apply(index, elem);
            if let TrackElem::Variant(..) | TrackElem::Discriminant = elem {
                // Enum variant fields and enum discriminants alias each another.
                self.for_each_variant_sibling(index, sub, f);
            }
            if let Some(sub) = sub {
                index = sub
            } else {
                return;
            }
        }
        self.for_each_value_inside(index, f);
    }

    /// Invoke the given function on all the descendants of the given place, except one branch.
    fn for_each_variant_sibling(
        &self,
        parent: PlaceIndex,
        preserved_child: Option<PlaceIndex>,
        f: &mut impl FnMut(ValueIndex),
    ) {
        for sibling in self.children(parent) {
            let elem = self.places[sibling].proj_elem;
            // Only invalidate variants and discriminant. Fields (for coroutines) are not
            // invalidated by assignment to a variant.
            if let Some(TrackElem::Variant(..) | TrackElem::Discriminant) = elem
                // Only invalidate the other variants, the current one is fine.
                && Some(sibling) != preserved_child
            {
                self.for_each_value_inside(sibling, f);
            }
        }
    }

    /// Invoke a function on each value in the given place and all descendants.
    fn for_each_value_inside(&self, root: PlaceIndex, f: &mut impl FnMut(ValueIndex)) {
        let range = self.inner_values[root].clone();
        let values = &self.inner_values_buffer[range];
        for &v in values {
            f(v)
        }
    }

    /// Invoke a function on each value in the given place and all descendants.
    pub fn for_each_projection_value<O>(
        &self,
        root: PlaceIndex,
        value: O,
        project: &mut impl FnMut(TrackElem, &O) -> Option<O>,
        f: &mut impl FnMut(PlaceIndex, &O),
    ) {
        // Fast path is there is nothing to do.
        if self.inner_values[root].is_empty() {
            return;
        }

        if self.places[root].value_index.is_some() {
            f(root, &value)
        }

        for child in self.children(root) {
            let elem = self.places[child].proj_elem.unwrap();
            if let Some(value) = project(elem, &value) {
                self.for_each_projection_value(child, value, project, f);
            }
        }
    }
}

/// This is the information tracked for every [`PlaceIndex`] and is stored by [`Map`].
///
/// Together, `first_child` and `next_sibling` form an intrusive linked list, which is used to
/// model a tree structure (a replacement for a member like `children: Vec<PlaceIndex>`).
#[derive(Debug)]
struct PlaceInfo<'tcx> {
    /// Type of the referenced place.
    ty: Ty<'tcx>,

    /// We store a [`ValueIndex`] if and only if the placed is tracked by the analysis.
    value_index: Option<ValueIndex>,

    /// The projection used to go from parent to this node (only None for root).
    proj_elem: Option<TrackElem>,

    /// The left-most child.
    first_child: Option<PlaceIndex>,

    /// Index of the sibling to the right of this node.
    next_sibling: Option<PlaceIndex>,
}

impl<'tcx> PlaceInfo<'tcx> {
    fn new(ty: Ty<'tcx>, proj_elem: Option<TrackElem>) -> Self {
        Self { ty, next_sibling: None, first_child: None, proj_elem, value_index: None }
    }
}

struct Children<'a, 'tcx> {
    map: &'a Map<'tcx>,
    next: Option<PlaceIndex>,
}

impl<'a, 'tcx> Children<'a, 'tcx> {
    fn new(map: &'a Map<'tcx>, parent: PlaceIndex) -> Self {
        Self { map, next: map.places[parent].first_child }
    }
}

impl Iterator for Children<'_, '_> {
    type Item = PlaceIndex;

    fn next(&mut self) -> Option<Self::Item> {
        match self.next {
            Some(child) => {
                self.next = self.map.places[child].next_sibling;
                Some(child)
            }
            None => None,
        }
    }
}

/// Used as the result of an operand or r-value.
#[derive(Debug)]
pub enum ValueOrPlace<V> {
    Value(V),
    Place(PlaceIndex),
}

impl<V: HasTop> ValueOrPlace<V> {
    pub const TOP: Self = ValueOrPlace::Value(V::TOP);
}

/// The set of projection elements that can be used by a tracked place.
///
/// Although only field projections are currently allowed, this could change in the future.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum TrackElem {
    Field(FieldIdx),
    Variant(VariantIdx),
    Discriminant,
    // Length of a slice.
    DerefLen,
}

impl<V, T> TryFrom<ProjectionElem<V, T>> for TrackElem {
    type Error = ();

    fn try_from(value: ProjectionElem<V, T>) -> Result<Self, Self::Error> {
        match value {
            ProjectionElem::Field(field, _) => Ok(TrackElem::Field(field)),
            ProjectionElem::Downcast(_, idx) => Ok(TrackElem::Variant(idx)),
            _ => Err(()),
        }
    }
}

/// Invokes `f` on all direct fields of `ty`.
pub fn iter_fields<'tcx>(
    ty: Ty<'tcx>,
    tcx: TyCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    mut f: impl FnMut(Option<VariantIdx>, FieldIdx, Ty<'tcx>),
) {
    match ty.kind() {
        ty::Tuple(list) => {
            for (field, ty) in list.iter().enumerate() {
                f(None, field.into(), ty);
            }
        }
        ty::Adt(def, args) => {
            if def.is_union() {
                return;
            }
            for (v_index, v_def) in def.variants().iter_enumerated() {
                let variant = if def.is_struct() { None } else { Some(v_index) };
                for (f_index, f_def) in v_def.fields.iter().enumerate() {
                    let field_ty = f_def.ty(tcx, args);
                    let field_ty = tcx
                        .try_normalize_erasing_regions(param_env, field_ty)
                        .unwrap_or_else(|_| tcx.erase_regions(field_ty));
                    f(variant, f_index.into(), field_ty);
                }
            }
        }
        ty::Closure(_, args) => {
            iter_fields(args.as_closure().tupled_upvars_ty(), tcx, param_env, f);
        }
        ty::Coroutine(_, args) => {
            iter_fields(args.as_coroutine().tupled_upvars_ty(), tcx, param_env, f);
        }
        ty::CoroutineClosure(_, args) => {
            iter_fields(args.as_coroutine_closure().tupled_upvars_ty(), tcx, param_env, f);
        }
        _ => (),
    }
}

/// Returns all locals with projections that have their reference or address taken.
pub fn excluded_locals(body: &Body<'_>) -> BitSet<Local> {
    struct Collector {
        result: BitSet<Local>,
    }

    impl<'tcx> Visitor<'tcx> for Collector {
        fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, _location: Location) {
            if (context.is_borrow()
                || context.is_address_of()
                || context.is_drop()
                || context == PlaceContext::MutatingUse(MutatingUseContext::AsmOutput))
                && !place.is_indirect()
            {
                // A pointer to a place could be used to access other places with the same local,
                // hence we have to exclude the local completely.
                self.result.insert(place.local);
            }
        }
    }

    let mut collector = Collector { result: BitSet::new_empty(body.local_decls.len()) };
    collector.visit_body(body);
    collector.result
}

/// This is used to visualize the dataflow analysis.
impl<'tcx, T> DebugWithContext<ValueAnalysisWrapper<T>> for State<T::Value>
where
    T: ValueAnalysis<'tcx>,
    T::Value: Debug,
{
    fn fmt_with(&self, ctxt: &ValueAnalysisWrapper<T>, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            State::Reachable(values) => debug_with_context(values, None, ctxt.0.map(), f),
            State::Unreachable => write!(f, "unreachable"),
        }
    }

    fn fmt_diff_with(
        &self,
        old: &Self,
        ctxt: &ValueAnalysisWrapper<T>,
        f: &mut Formatter<'_>,
    ) -> std::fmt::Result {
        match (self, old) {
            (State::Reachable(this), State::Reachable(old)) => {
                debug_with_context(this, Some(old), ctxt.0.map(), f)
            }
            _ => Ok(()), // Consider printing something here.
        }
    }
}

fn debug_with_context_rec<V: Debug + Eq + HasBottom>(
    place: PlaceIndex,
    place_str: &str,
    new: &StateData<V>,
    old: Option<&StateData<V>>,
    map: &Map<'_>,
    f: &mut Formatter<'_>,
) -> std::fmt::Result {
    if let Some(value) = map.places[place].value_index {
        match old {
            None => writeln!(f, "{}: {:?}", place_str, new.get(value))?,
            Some(old) => {
                if new.get(value) != old.get(value) {
                    writeln!(f, "\u{001f}-{}: {:?}", place_str, old.get(value))?;
                    writeln!(f, "\u{001f}+{}: {:?}", place_str, new.get(value))?;
                }
            }
        }
    }

    for child in map.children(place) {
        let info_elem = map.places[child].proj_elem.unwrap();
        let child_place_str = match info_elem {
            TrackElem::Discriminant => {
                format!("discriminant({place_str})")
            }
            TrackElem::Variant(idx) => {
                format!("({place_str} as {idx:?})")
            }
            TrackElem::Field(field) => {
                if place_str.starts_with('*') {
                    format!("({}).{}", place_str, field.index())
                } else {
                    format!("{}.{}", place_str, field.index())
                }
            }
            TrackElem::DerefLen => {
                format!("Len(*{})", place_str)
            }
        };
        debug_with_context_rec(child, &child_place_str, new, old, map, f)?;
    }

    Ok(())
}

fn debug_with_context<V: Debug + Eq + HasBottom>(
    new: &StateData<V>,
    old: Option<&StateData<V>>,
    map: &Map<'_>,
    f: &mut Formatter<'_>,
) -> std::fmt::Result {
    for (local, place) in map.locals.iter_enumerated() {
        if let Some(place) = place {
            debug_with_context_rec(*place, &format!("{local:?}"), new, old, map, f)?;
        }
    }
    Ok(())
}