rustc_next_trait_solver/solve/eval_ctxt/canonical.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
//! Canonicalization is used to separate some goal from its context,
//! throwing away unnecessary information in the process.
//!
//! This is necessary to cache goals containing inference variables
//! and placeholders without restricting them to the current `InferCtxt`.
//!
//! Canonicalization is fairly involved, for more details see the relevant
//! section of the [rustc-dev-guide][c].
//!
//! [c]: https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
use std::iter;
use rustc_index::IndexVec;
use rustc_type_ir::fold::TypeFoldable;
use rustc_type_ir::inherent::*;
use rustc_type_ir::relate::solver_relating::RelateExt;
use rustc_type_ir::{self as ty, Canonical, CanonicalVarValues, InferCtxtLike, Interner};
use tracing::{debug, instrument, trace};
use crate::canonicalizer::{CanonicalizeMode, Canonicalizer};
use crate::delegate::SolverDelegate;
use crate::resolve::EagerResolver;
use crate::solve::eval_ctxt::NestedGoals;
use crate::solve::{
CanonicalInput, CanonicalResponse, Certainty, EvalCtxt, ExternalConstraintsData, Goal,
MaybeCause, NestedNormalizationGoals, NoSolution, PredefinedOpaquesData, QueryInput,
QueryResult, Response, inspect, response_no_constraints_raw,
};
trait ResponseT<I: Interner> {
fn var_values(&self) -> CanonicalVarValues<I>;
}
impl<I: Interner> ResponseT<I> for Response<I> {
fn var_values(&self) -> CanonicalVarValues<I> {
self.var_values
}
}
impl<I: Interner, T> ResponseT<I> for inspect::State<I, T> {
fn var_values(&self) -> CanonicalVarValues<I> {
self.var_values
}
}
impl<D, I> EvalCtxt<'_, D>
where
D: SolverDelegate<Interner = I>,
I: Interner,
{
/// Canonicalizes the goal remembering the original values
/// for each bound variable.
pub(super) fn canonicalize_goal<T: TypeFoldable<I>>(
&self,
goal: Goal<I, T>,
) -> (Vec<I::GenericArg>, CanonicalInput<I, T>) {
let opaque_types = self.delegate.clone_opaque_types_for_query_response();
let (goal, opaque_types) =
(goal, opaque_types).fold_with(&mut EagerResolver::new(self.delegate));
let mut orig_values = Default::default();
let canonical = Canonicalizer::canonicalize(
self.delegate,
CanonicalizeMode::Input,
&mut orig_values,
QueryInput {
goal,
predefined_opaques_in_body: self
.cx()
.mk_predefined_opaques_in_body(PredefinedOpaquesData { opaque_types }),
},
);
let query_input = ty::CanonicalQueryInput {
canonical,
defining_opaque_types: self.delegate.defining_opaque_types(),
};
(orig_values, query_input)
}
/// To return the constraints of a canonical query to the caller, we canonicalize:
///
/// - `var_values`: a map from bound variables in the canonical goal to
/// the values inferred while solving the instantiated goal.
/// - `external_constraints`: additional constraints which aren't expressible
/// using simple unification of inference variables.
#[instrument(level = "trace", skip(self), ret)]
pub(in crate::solve) fn evaluate_added_goals_and_make_canonical_response(
&mut self,
certainty: Certainty,
) -> QueryResult<I> {
self.inspect.make_canonical_response(certainty);
let goals_certainty = self.try_evaluate_added_goals()?;
assert_eq!(
self.tainted,
Ok(()),
"EvalCtxt is tainted -- nested goals may have been dropped in a \
previous call to `try_evaluate_added_goals!`"
);
// We only check for leaks from universes which were entered inside
// of the query.
self.delegate.leak_check(self.max_input_universe).map_err(|NoSolution| {
trace!("failed the leak check");
NoSolution
})?;
// When normalizing, we've replaced the expected term with an unconstrained
// inference variable. This means that we dropped information which could
// have been important. We handle this by instead returning the nested goals
// to the caller, where they are then handled.
//
// As we return all ambiguous nested goals, we can ignore the certainty returned
// by `try_evaluate_added_goals()`.
let (certainty, normalization_nested_goals) = if self.is_normalizes_to_goal {
let NestedGoals { normalizes_to_goals, goals } = std::mem::take(&mut self.nested_goals);
if cfg!(debug_assertions) {
assert!(normalizes_to_goals.is_empty());
if goals.is_empty() {
assert!(matches!(goals_certainty, Certainty::Yes));
}
}
(certainty, NestedNormalizationGoals(goals))
} else {
let certainty = certainty.unify_with(goals_certainty);
(certainty, NestedNormalizationGoals::empty())
};
if let Certainty::Maybe(cause @ MaybeCause::Overflow { .. }) = certainty {
// If we have overflow, it's probable that we're substituting a type
// into itself infinitely and any partial substitutions in the query
// response are probably not useful anyways, so just return an empty
// query response.
//
// This may prevent us from potentially useful inference, e.g.
// 2 candidates, one ambiguous and one overflow, which both
// have the same inference constraints.
//
// Changing this to retain some constraints in the future
// won't be a breaking change, so this is good enough for now.
return Ok(self.make_ambiguous_response_no_constraints(cause));
}
let external_constraints =
self.compute_external_query_constraints(certainty, normalization_nested_goals);
let (var_values, mut external_constraints) = (self.var_values, external_constraints)
.fold_with(&mut EagerResolver::new(self.delegate));
// Remove any trivial region constraints once we've resolved regions
external_constraints
.region_constraints
.retain(|outlives| outlives.0.as_region().map_or(true, |re| re != outlives.1));
let canonical = Canonicalizer::canonicalize(
self.delegate,
CanonicalizeMode::Response { max_input_universe: self.max_input_universe },
&mut Default::default(),
Response {
var_values,
certainty,
external_constraints: self.cx().mk_external_constraints(external_constraints),
},
);
// HACK: We bail with overflow if the response would have too many non-region
// inference variables. This tends to only happen if we encounter a lot of
// ambiguous alias types which get replaced with fresh inference variables
// during generalization. This prevents hangs caused by an exponential blowup,
// see tests/ui/traits/next-solver/coherence-alias-hang.rs.
//
// We don't do so for `NormalizesTo` goals as we erased the expected term and
// bailing with overflow here would prevent us from detecting a type-mismatch,
// causing a coherence error in diesel, see #131969. We still bail with verflow
// when later returning from the parent AliasRelate goal.
if !self.is_normalizes_to_goal {
let num_non_region_vars =
canonical.variables.iter().filter(|c| !c.is_region() && c.is_existential()).count();
if num_non_region_vars > self.cx().recursion_limit() {
debug!(?num_non_region_vars, "too many inference variables -> overflow");
return Ok(self.make_ambiguous_response_no_constraints(MaybeCause::Overflow {
suggest_increasing_limit: true,
}));
}
}
Ok(canonical)
}
/// Constructs a totally unconstrained, ambiguous response to a goal.
///
/// Take care when using this, since often it's useful to respond with
/// ambiguity but return constrained variables to guide inference.
pub(in crate::solve) fn make_ambiguous_response_no_constraints(
&self,
maybe_cause: MaybeCause,
) -> CanonicalResponse<I> {
response_no_constraints_raw(
self.cx(),
self.max_input_universe,
self.variables,
Certainty::Maybe(maybe_cause),
)
}
/// Computes the region constraints and *new* opaque types registered when
/// proving a goal.
///
/// If an opaque was already constrained before proving this goal, then the
/// external constraints do not need to record that opaque, since if it is
/// further constrained by inference, that will be passed back in the var
/// values.
#[instrument(level = "trace", skip(self), ret)]
fn compute_external_query_constraints(
&self,
certainty: Certainty,
normalization_nested_goals: NestedNormalizationGoals<I>,
) -> ExternalConstraintsData<I> {
// We only return region constraints once the certainty is `Yes`. This
// is necessary as we may drop nested goals on ambiguity, which may result
// in unconstrained inference variables in the region constraints. It also
// prevents us from emitting duplicate region constraints, avoiding some
// unnecessary work. This slightly weakens the leak check in case it uses
// region constraints from an ambiguous nested goal. This is tested in both
// `tests/ui/higher-ranked/leak-check/leak-check-in-selection-5-ambig.rs` and
// `tests/ui/higher-ranked/leak-check/leak-check-in-selection-6-ambig-unify.rs`.
let region_constraints = if certainty == Certainty::Yes {
self.delegate.make_deduplicated_outlives_constraints()
} else {
Default::default()
};
ExternalConstraintsData {
region_constraints,
opaque_types: self
.delegate
.clone_opaque_types_for_query_response()
.into_iter()
// Only return *newly defined* opaque types.
.filter(|(a, _)| {
self.predefined_opaques_in_body.opaque_types.iter().all(|(pa, _)| pa != a)
})
.collect(),
normalization_nested_goals,
}
}
/// After calling a canonical query, we apply the constraints returned
/// by the query using this function.
///
/// This happens in three steps:
/// - we instantiate the bound variables of the query response
/// - we unify the `var_values` of the response with the `original_values`
/// - we apply the `external_constraints` returned by the query, returning
/// the `normalization_nested_goals`
pub(super) fn instantiate_and_apply_query_response(
&mut self,
param_env: I::ParamEnv,
original_values: Vec<I::GenericArg>,
response: CanonicalResponse<I>,
) -> (NestedNormalizationGoals<I>, Certainty) {
let instantiation = Self::compute_query_response_instantiation_values(
self.delegate,
&original_values,
&response,
);
let Response { var_values, external_constraints, certainty } =
self.delegate.instantiate_canonical(response, instantiation);
Self::unify_query_var_values(self.delegate, param_env, &original_values, var_values);
let ExternalConstraintsData {
region_constraints,
opaque_types,
normalization_nested_goals,
} = &*external_constraints;
self.register_region_constraints(region_constraints);
self.register_new_opaque_types(opaque_types);
(normalization_nested_goals.clone(), certainty)
}
/// This returns the canonical variable values to instantiate the bound variables of
/// the canonical response. This depends on the `original_values` for the
/// bound variables.
fn compute_query_response_instantiation_values<T: ResponseT<I>>(
delegate: &D,
original_values: &[I::GenericArg],
response: &Canonical<I, T>,
) -> CanonicalVarValues<I> {
// FIXME: Longterm canonical queries should deal with all placeholders
// created inside of the query directly instead of returning them to the
// caller.
let prev_universe = delegate.universe();
let universes_created_in_query = response.max_universe.index();
for _ in 0..universes_created_in_query {
delegate.create_next_universe();
}
let var_values = response.value.var_values();
assert_eq!(original_values.len(), var_values.len());
// If the query did not make progress with constraining inference variables,
// we would normally create a new inference variables for bound existential variables
// only then unify this new inference variable with the inference variable from
// the input.
//
// We therefore instantiate the existential variable in the canonical response with the
// inference variable of the input right away, which is more performant.
let mut opt_values = IndexVec::from_elem_n(None, response.variables.len());
for (original_value, result_value) in
iter::zip(original_values, var_values.var_values.iter())
{
match result_value.kind() {
ty::GenericArgKind::Type(t) => {
if let ty::Bound(debruijn, b) = t.kind() {
assert_eq!(debruijn, ty::INNERMOST);
opt_values[b.var()] = Some(*original_value);
}
}
ty::GenericArgKind::Lifetime(r) => {
if let ty::ReBound(debruijn, br) = r.kind() {
assert_eq!(debruijn, ty::INNERMOST);
opt_values[br.var()] = Some(*original_value);
}
}
ty::GenericArgKind::Const(c) => {
if let ty::ConstKind::Bound(debruijn, bv) = c.kind() {
assert_eq!(debruijn, ty::INNERMOST);
opt_values[bv.var()] = Some(*original_value);
}
}
}
}
let var_values = delegate.cx().mk_args_from_iter(
response.variables.iter().enumerate().map(|(index, info)| {
if info.universe() != ty::UniverseIndex::ROOT {
// A variable from inside a binder of the query. While ideally these shouldn't
// exist at all (see the FIXME at the start of this method), we have to deal with
// them for now.
delegate.instantiate_canonical_var_with_infer(info, |idx| {
ty::UniverseIndex::from(prev_universe.index() + idx.index())
})
} else if info.is_existential() {
// As an optimization we sometimes avoid creating a new inference variable here.
//
// All new inference variables we create start out in the current universe of the caller.
// This is conceptually wrong as these inference variables would be able to name
// more placeholders then they should be able to. However the inference variables have
// to "come from somewhere", so by equating them with the original values of the caller
// later on, we pull them down into their correct universe again.
if let Some(v) = opt_values[ty::BoundVar::from_usize(index)] {
v
} else {
delegate.instantiate_canonical_var_with_infer(info, |_| prev_universe)
}
} else {
// For placeholders which were already part of the input, we simply map this
// universal bound variable back the placeholder of the input.
original_values[info.expect_placeholder_index()]
}
}),
);
CanonicalVarValues { var_values }
}
/// Unify the `original_values` with the `var_values` returned by the canonical query..
///
/// This assumes that this unification will always succeed. This is the case when
/// applying a query response right away. However, calling a canonical query, doing any
/// other kind of trait solving, and only then instantiating the result of the query
/// can cause the instantiation to fail. This is not supported and we ICE in this case.
///
/// We always structurally instantiate aliases. Relating aliases needs to be different
/// depending on whether the alias is *rigid* or not. We're only really able to tell
/// whether an alias is rigid by using the trait solver. When instantiating a response
/// from the solver we assume that the solver correctly handled aliases and therefore
/// always relate them structurally here.
#[instrument(level = "trace", skip(delegate))]
fn unify_query_var_values(
delegate: &D,
param_env: I::ParamEnv,
original_values: &[I::GenericArg],
var_values: CanonicalVarValues<I>,
) {
assert_eq!(original_values.len(), var_values.len());
for (&orig, response) in iter::zip(original_values, var_values.var_values.iter()) {
let goals =
delegate.eq_structurally_relating_aliases(param_env, orig, response).unwrap();
assert!(goals.is_empty());
}
}
fn register_region_constraints(
&mut self,
outlives: &[ty::OutlivesPredicate<I, I::GenericArg>],
) {
for &ty::OutlivesPredicate(lhs, rhs) in outlives {
match lhs.kind() {
ty::GenericArgKind::Lifetime(lhs) => self.register_region_outlives(lhs, rhs),
ty::GenericArgKind::Type(lhs) => self.register_ty_outlives(lhs, rhs),
ty::GenericArgKind::Const(_) => panic!("const outlives: {lhs:?}: {rhs:?}"),
}
}
}
fn register_new_opaque_types(&mut self, opaque_types: &[(ty::OpaqueTypeKey<I>, I::Ty)]) {
for &(key, ty) in opaque_types {
self.delegate.inject_new_hidden_type_unchecked(key, ty);
}
}
}
/// Used by proof trees to be able to recompute intermediate actions while
/// evaluating a goal. The `var_values` not only include the bound variables
/// of the query input, but also contain all unconstrained inference vars
/// created while evaluating this goal.
pub(in crate::solve) fn make_canonical_state<D, T, I>(
delegate: &D,
var_values: &[I::GenericArg],
max_input_universe: ty::UniverseIndex,
data: T,
) -> inspect::CanonicalState<I, T>
where
D: SolverDelegate<Interner = I>,
I: Interner,
T: TypeFoldable<I>,
{
let var_values = CanonicalVarValues { var_values: delegate.cx().mk_args(var_values) };
let state = inspect::State { var_values, data };
let state = state.fold_with(&mut EagerResolver::new(delegate));
Canonicalizer::canonicalize(
delegate,
CanonicalizeMode::Response { max_input_universe },
&mut vec![],
state,
)
}
// FIXME: needs to be pub to be accessed by downstream
// `rustc_trait_selection::solve::inspect::analyse`.
pub fn instantiate_canonical_state<D, I, T: TypeFoldable<I>>(
delegate: &D,
span: D::Span,
param_env: I::ParamEnv,
orig_values: &mut Vec<I::GenericArg>,
state: inspect::CanonicalState<I, T>,
) -> T
where
D: SolverDelegate<Interner = I>,
I: Interner,
{
// In case any fresh inference variables have been created between `state`
// and the previous instantiation, extend `orig_values` for it.
assert!(orig_values.len() <= state.value.var_values.len());
for &arg in &state.value.var_values.var_values.as_slice()
[orig_values.len()..state.value.var_values.len()]
{
let unconstrained = delegate.fresh_var_for_kind_with_span(arg, span);
orig_values.push(unconstrained);
}
let instantiation =
EvalCtxt::compute_query_response_instantiation_values(delegate, orig_values, &state);
let inspect::State { var_values, data } = delegate.instantiate_canonical(state, instantiation);
EvalCtxt::unify_query_var_values(delegate, param_env, orig_values, var_values);
data
}