rustc_next_trait_solver/solve/eval_ctxt/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
use std::ops::ControlFlow;

use derive_where::derive_where;
#[cfg(feature = "nightly")]
use rustc_macros::{HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir::data_structures::{HashMap, HashSet, ensure_sufficient_stack};
use rustc_type_ir::fast_reject::DeepRejectCtxt;
use rustc_type_ir::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_type_ir::inherent::*;
use rustc_type_ir::relate::Relate;
use rustc_type_ir::relate::solver_relating::RelateExt;
use rustc_type_ir::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor};
use rustc_type_ir::{self as ty, CanonicalVarValues, InferCtxtLike, Interner};
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
use tracing::{instrument, trace};

use crate::coherence;
use crate::delegate::SolverDelegate;
use crate::solve::inspect::{self, ProofTreeBuilder};
use crate::solve::search_graph::SearchGraph;
use crate::solve::{
    CanonicalInput, Certainty, FIXPOINT_STEP_LIMIT, Goal, GoalEvaluationKind, GoalSource,
    HasChanged, NestedNormalizationGoals, NoSolution, PredefinedOpaquesData, QueryResult,
    SolverMode,
};

pub(super) mod canonical;
mod probe;

pub struct EvalCtxt<'a, D, I = <D as SolverDelegate>::Interner>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    /// The inference context that backs (mostly) inference and placeholder terms
    /// instantiated while solving goals.
    ///
    /// NOTE: The `InferCtxt` that backs the `EvalCtxt` is intentionally private,
    /// because the `InferCtxt` is much more general than `EvalCtxt`. Methods such
    /// as  `take_registered_region_obligations` can mess up query responses,
    /// using `At::normalize` is totally wrong, calling `evaluate_root_goal` can
    /// cause coinductive unsoundness, etc.
    ///
    /// Methods that are generally of use for trait solving are *intentionally*
    /// re-declared through the `EvalCtxt` below, often with cleaner signatures
    /// since we don't care about things like `ObligationCause`s and `Span`s here.
    /// If some `InferCtxt` method is missing, please first think defensively about
    /// the method's compatibility with this solver, or if an existing one does
    /// the job already.
    delegate: &'a D,

    /// The variable info for the `var_values`, only used to make an ambiguous response
    /// with no constraints.
    variables: I::CanonicalVars,
    /// Whether we're currently computing a `NormalizesTo` goal. Unlike other goals,
    /// `NormalizesTo` goals act like functions with the expected term always being
    /// fully unconstrained. This would weaken inference however, as the nested goals
    /// never get the inference constraints from the actual normalized-to type. Because
    /// of this we return any ambiguous nested goals from `NormalizesTo` to the caller
    /// when then adds these to its own context. The caller is always an `AliasRelate`
    /// goal so this never leaks out of the solver.
    is_normalizes_to_goal: bool,
    pub(super) var_values: CanonicalVarValues<I>,

    predefined_opaques_in_body: I::PredefinedOpaques,

    /// The highest universe index nameable by the caller.
    ///
    /// When we enter a new binder inside of the query we create new universes
    /// which the caller cannot name. We have to be careful with variables from
    /// these new universes when creating the query response.
    ///
    /// Both because these new universes can prevent us from reaching a fixpoint
    /// if we have a coinductive cycle and because that's the only way we can return
    /// new placeholders to the caller.
    pub(super) max_input_universe: ty::UniverseIndex,

    pub(super) search_graph: &'a mut SearchGraph<D>,

    nested_goals: NestedGoals<I>,

    // Has this `EvalCtxt` errored out with `NoSolution` in `try_evaluate_added_goals`?
    //
    // If so, then it can no longer be used to make a canonical query response,
    // since subsequent calls to `try_evaluate_added_goals` have possibly dropped
    // ambiguous goals. Instead, a probe needs to be introduced somewhere in the
    // evaluation code.
    tainted: Result<(), NoSolution>,

    pub(super) inspect: ProofTreeBuilder<D>,
}

#[derive_where(Clone, Debug, Default; I: Interner)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
struct NestedGoals<I: Interner> {
    /// These normalizes-to goals are treated specially during the evaluation
    /// loop. In each iteration we take the RHS of the projection, replace it with
    /// a fresh inference variable, and only after evaluating that goal do we
    /// equate the fresh inference variable with the actual RHS of the predicate.
    ///
    /// This is both to improve caching, and to avoid using the RHS of the
    /// projection predicate to influence the normalizes-to candidate we select.
    ///
    /// Forgetting to replace the RHS with a fresh inference variable when we evaluate
    /// this goal results in an ICE..
    pub normalizes_to_goals: Vec<Goal<I, ty::NormalizesTo<I>>>,
    /// The rest of the goals which have not yet processed or remain ambiguous.
    pub goals: Vec<(GoalSource, Goal<I, I::Predicate>)>,
}

impl<I: Interner> NestedGoals<I> {
    fn new() -> Self {
        Self { normalizes_to_goals: Vec::new(), goals: Vec::new() }
    }

    fn is_empty(&self) -> bool {
        self.normalizes_to_goals.is_empty() && self.goals.is_empty()
    }
}

#[derive(PartialEq, Eq, Debug, Hash, Clone, Copy)]
#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
pub enum GenerateProofTree {
    Yes,
    No,
}

pub trait SolverDelegateEvalExt: SolverDelegate {
    /// Evaluates a goal from **outside** of the trait solver.
    ///
    /// Using this while inside of the solver is wrong as it uses a new
    /// search graph which would break cycle detection.
    fn evaluate_root_goal(
        &self,
        goal: Goal<Self::Interner, <Self::Interner as Interner>::Predicate>,
        generate_proof_tree: GenerateProofTree,
    ) -> (
        Result<(HasChanged, Certainty), NoSolution>,
        Option<inspect::GoalEvaluation<Self::Interner>>,
    );

    /// Check whether evaluating `goal` with a depth of `root_depth` may
    /// succeed. This only returns `false` if the goal is guaranteed to
    /// not hold. In case evaluation overflows and fails with ambiguity this
    /// returns `true`.
    ///
    /// This is only intended to be used as a performance optimization
    /// in coherence checking.
    fn root_goal_may_hold_with_depth(
        &self,
        root_depth: usize,
        goal: Goal<Self::Interner, <Self::Interner as Interner>::Predicate>,
    ) -> bool;

    // FIXME: This is only exposed because we need to use it in `analyse.rs`
    // which is not yet uplifted. Once that's done, we should remove this.
    fn evaluate_root_goal_raw(
        &self,
        goal: Goal<Self::Interner, <Self::Interner as Interner>::Predicate>,
        generate_proof_tree: GenerateProofTree,
    ) -> (
        Result<(NestedNormalizationGoals<Self::Interner>, HasChanged, Certainty), NoSolution>,
        Option<inspect::GoalEvaluation<Self::Interner>>,
    );
}

impl<D, I> SolverDelegateEvalExt for D
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    #[instrument(level = "debug", skip(self))]
    fn evaluate_root_goal(
        &self,
        goal: Goal<I, I::Predicate>,
        generate_proof_tree: GenerateProofTree,
    ) -> (Result<(HasChanged, Certainty), NoSolution>, Option<inspect::GoalEvaluation<I>>) {
        EvalCtxt::enter_root(self, self.cx().recursion_limit(), generate_proof_tree, |ecx| {
            ecx.evaluate_goal(GoalEvaluationKind::Root, GoalSource::Misc, goal)
        })
    }

    fn root_goal_may_hold_with_depth(
        &self,
        root_depth: usize,
        goal: Goal<Self::Interner, <Self::Interner as Interner>::Predicate>,
    ) -> bool {
        self.probe(|| {
            EvalCtxt::enter_root(self, root_depth, GenerateProofTree::No, |ecx| {
                ecx.evaluate_goal(GoalEvaluationKind::Root, GoalSource::Misc, goal)
            })
            .0
        })
        .is_ok()
    }

    #[instrument(level = "debug", skip(self))]
    fn evaluate_root_goal_raw(
        &self,
        goal: Goal<I, I::Predicate>,
        generate_proof_tree: GenerateProofTree,
    ) -> (
        Result<(NestedNormalizationGoals<I>, HasChanged, Certainty), NoSolution>,
        Option<inspect::GoalEvaluation<I>>,
    ) {
        EvalCtxt::enter_root(self, self.cx().recursion_limit(), generate_proof_tree, |ecx| {
            ecx.evaluate_goal_raw(GoalEvaluationKind::Root, GoalSource::Misc, goal)
        })
    }
}

impl<'a, D, I> EvalCtxt<'a, D>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    pub(super) fn solver_mode(&self) -> SolverMode {
        self.search_graph.solver_mode()
    }

    pub(super) fn set_is_normalizes_to_goal(&mut self) {
        self.is_normalizes_to_goal = true;
    }

    /// Creates a root evaluation context and search graph. This should only be
    /// used from outside of any evaluation, and other methods should be preferred
    /// over using this manually (such as [`SolverDelegateEvalExt::evaluate_root_goal`]).
    pub(super) fn enter_root<R>(
        delegate: &D,
        root_depth: usize,
        generate_proof_tree: GenerateProofTree,
        f: impl FnOnce(&mut EvalCtxt<'_, D>) -> R,
    ) -> (R, Option<inspect::GoalEvaluation<I>>) {
        let mut search_graph = SearchGraph::new(delegate.solver_mode(), root_depth);

        let mut ecx = EvalCtxt {
            delegate,
            search_graph: &mut search_graph,
            nested_goals: NestedGoals::new(),
            inspect: ProofTreeBuilder::new_maybe_root(generate_proof_tree),

            // Only relevant when canonicalizing the response,
            // which we don't do within this evaluation context.
            predefined_opaques_in_body: delegate
                .cx()
                .mk_predefined_opaques_in_body(PredefinedOpaquesData::default()),
            max_input_universe: ty::UniverseIndex::ROOT,
            variables: Default::default(),
            var_values: CanonicalVarValues::dummy(),
            is_normalizes_to_goal: false,
            tainted: Ok(()),
        };
        let result = f(&mut ecx);

        let proof_tree = ecx.inspect.finalize();
        assert!(
            ecx.nested_goals.is_empty(),
            "root `EvalCtxt` should not have any goals added to it"
        );

        assert!(search_graph.is_empty());
        (result, proof_tree)
    }

    /// Creates a nested evaluation context that shares the same search graph as the
    /// one passed in. This is suitable for evaluation, granted that the search graph
    /// has had the nested goal recorded on its stack ([`SearchGraph::with_new_goal`]),
    /// but it's preferable to use other methods that call this one rather than this
    /// method directly.
    ///
    /// This function takes care of setting up the inference context, setting the anchor,
    /// and registering opaques from the canonicalized input.
    fn enter_canonical<R>(
        cx: I,
        search_graph: &'a mut SearchGraph<D>,
        canonical_input: CanonicalInput<I>,
        canonical_goal_evaluation: &mut ProofTreeBuilder<D>,
        f: impl FnOnce(&mut EvalCtxt<'_, D>, Goal<I, I::Predicate>) -> R,
    ) -> R {
        let (ref delegate, input, var_values) =
            SolverDelegate::build_with_canonical(cx, search_graph.solver_mode(), &canonical_input);

        let mut ecx = EvalCtxt {
            delegate,
            variables: canonical_input.canonical.variables,
            var_values,
            is_normalizes_to_goal: false,
            predefined_opaques_in_body: input.predefined_opaques_in_body,
            max_input_universe: canonical_input.canonical.max_universe,
            search_graph,
            nested_goals: NestedGoals::new(),
            tainted: Ok(()),
            inspect: canonical_goal_evaluation.new_goal_evaluation_step(var_values, input),
        };

        for &(key, ty) in &input.predefined_opaques_in_body.opaque_types {
            ecx.delegate.inject_new_hidden_type_unchecked(key, ty);
        }

        if !ecx.nested_goals.is_empty() {
            panic!("prepopulating opaque types shouldn't add goals: {:?}", ecx.nested_goals);
        }

        let result = f(&mut ecx, input.goal);
        ecx.inspect.probe_final_state(ecx.delegate, ecx.max_input_universe);
        canonical_goal_evaluation.goal_evaluation_step(ecx.inspect);

        // When creating a query response we clone the opaque type constraints
        // instead of taking them. This would cause an ICE here, since we have
        // assertions against dropping an `InferCtxt` without taking opaques.
        // FIXME: Once we remove support for the old impl we can remove this.
        // FIXME: Could we make `build_with_canonical` into `enter_with_canonical` and call this at the end?
        delegate.reset_opaque_types();

        result
    }

    /// The entry point of the solver.
    ///
    /// This function deals with (coinductive) cycles, overflow, and caching
    /// and then calls [`EvalCtxt::compute_goal`] which contains the actual
    /// logic of the solver.
    ///
    /// Instead of calling this function directly, use either [EvalCtxt::evaluate_goal]
    /// if you're inside of the solver or [SolverDelegateEvalExt::evaluate_root_goal] if you're
    /// outside of it.
    #[instrument(level = "debug", skip(cx, search_graph, goal_evaluation), ret)]
    fn evaluate_canonical_goal(
        cx: I,
        search_graph: &'a mut SearchGraph<D>,
        canonical_input: CanonicalInput<I>,
        goal_evaluation: &mut ProofTreeBuilder<D>,
    ) -> QueryResult<I> {
        let mut canonical_goal_evaluation =
            goal_evaluation.new_canonical_goal_evaluation(canonical_input);

        // Deal with overflow, caching, and coinduction.
        //
        // The actual solver logic happens in `ecx.compute_goal`.
        let result = ensure_sufficient_stack(|| {
            search_graph.with_new_goal(
                cx,
                canonical_input,
                &mut canonical_goal_evaluation,
                |search_graph, canonical_goal_evaluation| {
                    EvalCtxt::enter_canonical(
                        cx,
                        search_graph,
                        canonical_input,
                        canonical_goal_evaluation,
                        |ecx, goal| {
                            let result = ecx.compute_goal(goal);
                            ecx.inspect.query_result(result);
                            result
                        },
                    )
                },
            )
        });

        canonical_goal_evaluation.query_result(result);
        goal_evaluation.canonical_goal_evaluation(canonical_goal_evaluation);
        result
    }

    /// Recursively evaluates `goal`, returning whether any inference vars have
    /// been constrained and the certainty of the result.
    fn evaluate_goal(
        &mut self,
        goal_evaluation_kind: GoalEvaluationKind,
        source: GoalSource,
        goal: Goal<I, I::Predicate>,
    ) -> Result<(HasChanged, Certainty), NoSolution> {
        let (normalization_nested_goals, has_changed, certainty) =
            self.evaluate_goal_raw(goal_evaluation_kind, source, goal)?;
        assert!(normalization_nested_goals.is_empty());
        Ok((has_changed, certainty))
    }

    /// Recursively evaluates `goal`, returning the nested goals in case
    /// the nested goal is a `NormalizesTo` goal.
    ///
    /// As all other goal kinds do not return any nested goals and
    /// `NormalizesTo` is only used by `AliasRelate`, all other callsites
    /// should use [`EvalCtxt::evaluate_goal`] which discards that empty
    /// storage.
    // FIXME(-Znext-solver=coinduction): `_source` is currently unused but will
    // be necessary once we implement the new coinduction approach.
    pub(super) fn evaluate_goal_raw(
        &mut self,
        goal_evaluation_kind: GoalEvaluationKind,
        _source: GoalSource,
        goal: Goal<I, I::Predicate>,
    ) -> Result<(NestedNormalizationGoals<I>, HasChanged, Certainty), NoSolution> {
        let (orig_values, canonical_goal) = self.canonicalize_goal(goal);
        let mut goal_evaluation =
            self.inspect.new_goal_evaluation(goal, &orig_values, goal_evaluation_kind);
        let canonical_response = EvalCtxt::evaluate_canonical_goal(
            self.cx(),
            self.search_graph,
            canonical_goal,
            &mut goal_evaluation,
        );
        let response = match canonical_response {
            Err(e) => {
                self.inspect.goal_evaluation(goal_evaluation);
                return Err(e);
            }
            Ok(response) => response,
        };

        let has_changed = if !response.value.var_values.is_identity_modulo_regions()
            || !response.value.external_constraints.opaque_types.is_empty()
        {
            HasChanged::Yes
        } else {
            HasChanged::No
        };

        let (normalization_nested_goals, certainty) =
            self.instantiate_and_apply_query_response(goal.param_env, orig_values, response);
        self.inspect.goal_evaluation(goal_evaluation);

        // FIXME: We previously had an assert here that checked that recomputing
        // a goal after applying its constraints did not change its response.
        //
        // This assert was removed as it did not hold for goals constraining
        // an inference variable to a recursive alias, e.g. in
        // tests/ui/traits/next-solver/overflow/recursive-self-normalization.rs.
        //
        // Once we have decided on how to handle trait-system-refactor-initiative#75,
        // we should re-add an assert here.

        Ok((normalization_nested_goals, has_changed, certainty))
    }

    fn compute_goal(&mut self, goal: Goal<I, I::Predicate>) -> QueryResult<I> {
        let Goal { param_env, predicate } = goal;
        let kind = predicate.kind();
        if let Some(kind) = kind.no_bound_vars() {
            match kind {
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(predicate)) => {
                    self.compute_trait_goal(Goal { param_env, predicate })
                }
                ty::PredicateKind::Clause(ty::ClauseKind::Projection(predicate)) => {
                    self.compute_projection_goal(Goal { param_env, predicate })
                }
                ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(predicate)) => {
                    self.compute_type_outlives_goal(Goal { param_env, predicate })
                }
                ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(predicate)) => {
                    self.compute_region_outlives_goal(Goal { param_env, predicate })
                }
                ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
                    self.compute_const_arg_has_type_goal(Goal { param_env, predicate: (ct, ty) })
                }
                ty::PredicateKind::Subtype(predicate) => {
                    self.compute_subtype_goal(Goal { param_env, predicate })
                }
                ty::PredicateKind::Coerce(predicate) => {
                    self.compute_coerce_goal(Goal { param_env, predicate })
                }
                ty::PredicateKind::DynCompatible(trait_def_id) => {
                    self.compute_dyn_compatible_goal(trait_def_id)
                }
                ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
                    self.compute_well_formed_goal(Goal { param_env, predicate: arg })
                }
                ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(ct)) => {
                    self.compute_const_evaluatable_goal(Goal { param_env, predicate: ct })
                }
                ty::PredicateKind::ConstEquate(_, _) => {
                    panic!("ConstEquate should not be emitted when `-Znext-solver` is active")
                }
                ty::PredicateKind::NormalizesTo(predicate) => {
                    self.compute_normalizes_to_goal(Goal { param_env, predicate })
                }
                ty::PredicateKind::AliasRelate(lhs, rhs, direction) => self
                    .compute_alias_relate_goal(Goal {
                        param_env,
                        predicate: (lhs, rhs, direction),
                    }),
                ty::PredicateKind::Ambiguous => {
                    self.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS)
                }
            }
        } else {
            self.enter_forall(kind, |ecx, kind| {
                let goal = goal.with(ecx.cx(), ty::Binder::dummy(kind));
                ecx.add_goal(GoalSource::InstantiateHigherRanked, goal);
                ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
            })
        }
    }

    // Recursively evaluates all the goals added to this `EvalCtxt` to completion, returning
    // the certainty of all the goals.
    #[instrument(level = "trace", skip(self))]
    pub(super) fn try_evaluate_added_goals(&mut self) -> Result<Certainty, NoSolution> {
        let mut response = Ok(Certainty::overflow(false));
        for _ in 0..FIXPOINT_STEP_LIMIT {
            // FIXME: This match is a bit ugly, it might be nice to change the inspect
            // stuff to use a closure instead. which should hopefully simplify this a bit.
            match self.evaluate_added_goals_step() {
                Ok(Some(cert)) => {
                    response = Ok(cert);
                    break;
                }
                Ok(None) => {}
                Err(NoSolution) => {
                    response = Err(NoSolution);
                    break;
                }
            }
        }

        if response.is_err() {
            self.tainted = Err(NoSolution);
        }

        response
    }

    /// Iterate over all added goals: returning `Ok(Some(_))` in case we can stop rerunning.
    ///
    /// Goals for the next step get directly added to the nested goals of the `EvalCtxt`.
    fn evaluate_added_goals_step(&mut self) -> Result<Option<Certainty>, NoSolution> {
        let cx = self.cx();
        let mut goals = core::mem::take(&mut self.nested_goals);

        // If this loop did not result in any progress, what's our final certainty.
        let mut unchanged_certainty = Some(Certainty::Yes);
        for goal in goals.normalizes_to_goals {
            // Replace the goal with an unconstrained infer var, so the
            // RHS does not affect projection candidate assembly.
            let unconstrained_rhs = self.next_term_infer_of_kind(goal.predicate.term);
            let unconstrained_goal = goal.with(cx, ty::NormalizesTo {
                alias: goal.predicate.alias,
                term: unconstrained_rhs,
            });

            let (NestedNormalizationGoals(nested_goals), _, certainty) = self.evaluate_goal_raw(
                GoalEvaluationKind::Nested,
                GoalSource::Misc,
                unconstrained_goal,
            )?;
            // Add the nested goals from normalization to our own nested goals.
            trace!(?nested_goals);
            goals.goals.extend(nested_goals);

            // Finally, equate the goal's RHS with the unconstrained var.
            //
            // SUBTLE:
            // We structurally relate aliases here. This is necessary
            // as we otherwise emit a nested `AliasRelate` goal in case the
            // returned term is a rigid alias, resulting in overflow.
            //
            // It is correct as both `goal.predicate.term` and `unconstrained_rhs`
            // start out as an unconstrained inference variable so any aliases get
            // fully normalized when instantiating it.
            //
            // FIXME: Strictly speaking this may be incomplete if the normalized-to
            // type contains an ambiguous alias referencing bound regions. We should
            // consider changing this to only use "shallow structural equality".
            self.eq_structurally_relating_aliases(
                goal.param_env,
                goal.predicate.term,
                unconstrained_rhs,
            )?;

            // We only look at the `projection_ty` part here rather than
            // looking at the "has changed" return from evaluate_goal,
            // because we expect the `unconstrained_rhs` part of the predicate
            // to have changed -- that means we actually normalized successfully!
            let with_resolved_vars = self.resolve_vars_if_possible(goal);
            if goal.predicate.alias != with_resolved_vars.predicate.alias {
                unchanged_certainty = None;
            }

            match certainty {
                Certainty::Yes => {}
                Certainty::Maybe(_) => {
                    self.nested_goals.normalizes_to_goals.push(with_resolved_vars);
                    unchanged_certainty = unchanged_certainty.map(|c| c.unify_with(certainty));
                }
            }
        }

        for (source, goal) in goals.goals {
            let (has_changed, certainty) =
                self.evaluate_goal(GoalEvaluationKind::Nested, source, goal)?;
            if has_changed == HasChanged::Yes {
                unchanged_certainty = None;
            }

            match certainty {
                Certainty::Yes => {}
                Certainty::Maybe(_) => {
                    self.nested_goals.goals.push((source, goal));
                    unchanged_certainty = unchanged_certainty.map(|c| c.unify_with(certainty));
                }
            }
        }

        Ok(unchanged_certainty)
    }

    /// Record impl args in the proof tree for later access by `InspectCandidate`.
    pub(crate) fn record_impl_args(&mut self, impl_args: I::GenericArgs) {
        self.inspect.record_impl_args(self.delegate, self.max_input_universe, impl_args)
    }

    pub(super) fn cx(&self) -> I {
        self.delegate.cx()
    }

    #[instrument(level = "trace", skip(self))]
    pub(super) fn add_normalizes_to_goal(&mut self, mut goal: Goal<I, ty::NormalizesTo<I>>) {
        goal.predicate =
            goal.predicate.fold_with(&mut ReplaceAliasWithInfer::new(self, goal.param_env));
        self.inspect.add_normalizes_to_goal(self.delegate, self.max_input_universe, goal);
        self.nested_goals.normalizes_to_goals.push(goal);
    }

    #[instrument(level = "debug", skip(self))]
    pub(super) fn add_goal(&mut self, source: GoalSource, mut goal: Goal<I, I::Predicate>) {
        goal.predicate =
            goal.predicate.fold_with(&mut ReplaceAliasWithInfer::new(self, goal.param_env));
        self.inspect.add_goal(self.delegate, self.max_input_universe, source, goal);
        self.nested_goals.goals.push((source, goal));
    }

    #[instrument(level = "trace", skip(self, goals))]
    pub(super) fn add_goals(
        &mut self,
        source: GoalSource,
        goals: impl IntoIterator<Item = Goal<I, I::Predicate>>,
    ) {
        for goal in goals {
            self.add_goal(source, goal);
        }
    }

    pub(super) fn next_ty_infer(&mut self) -> I::Ty {
        let ty = self.delegate.next_ty_infer();
        self.inspect.add_var_value(ty);
        ty
    }

    pub(super) fn next_const_infer(&mut self) -> I::Const {
        let ct = self.delegate.next_const_infer();
        self.inspect.add_var_value(ct);
        ct
    }

    /// Returns a ty infer or a const infer depending on whether `kind` is a `Ty` or `Const`.
    /// If `kind` is an integer inference variable this will still return a ty infer var.
    pub(super) fn next_term_infer_of_kind(&mut self, kind: I::Term) -> I::Term {
        match kind.kind() {
            ty::TermKind::Ty(_) => self.next_ty_infer().into(),
            ty::TermKind::Const(_) => self.next_const_infer().into(),
        }
    }

    /// Is the projection predicate is of the form `exists<T> <Ty as Trait>::Assoc = T`.
    ///
    /// This is the case if the `term` does not occur in any other part of the predicate
    /// and is able to name all other placeholder and inference variables.
    #[instrument(level = "trace", skip(self), ret)]
    pub(super) fn term_is_fully_unconstrained(&self, goal: Goal<I, ty::NormalizesTo<I>>) -> bool {
        let universe_of_term = match goal.predicate.term.kind() {
            ty::TermKind::Ty(ty) => {
                if let ty::Infer(ty::TyVar(vid)) = ty.kind() {
                    self.delegate.universe_of_ty(vid).unwrap()
                } else {
                    return false;
                }
            }
            ty::TermKind::Const(ct) => {
                if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = ct.kind() {
                    self.delegate.universe_of_ct(vid).unwrap()
                } else {
                    return false;
                }
            }
        };

        struct ContainsTermOrNotNameable<'a, D: SolverDelegate<Interner = I>, I: Interner> {
            term: I::Term,
            universe_of_term: ty::UniverseIndex,
            delegate: &'a D,
            cache: HashSet<I::Ty>,
        }

        impl<D: SolverDelegate<Interner = I>, I: Interner> ContainsTermOrNotNameable<'_, D, I> {
            fn check_nameable(&self, universe: ty::UniverseIndex) -> ControlFlow<()> {
                if self.universe_of_term.can_name(universe) {
                    ControlFlow::Continue(())
                } else {
                    ControlFlow::Break(())
                }
            }
        }

        impl<D: SolverDelegate<Interner = I>, I: Interner> TypeVisitor<I>
            for ContainsTermOrNotNameable<'_, D, I>
        {
            type Result = ControlFlow<()>;
            fn visit_ty(&mut self, t: I::Ty) -> Self::Result {
                if self.cache.contains(&t) {
                    return ControlFlow::Continue(());
                }

                match t.kind() {
                    ty::Infer(ty::TyVar(vid)) => {
                        if let ty::TermKind::Ty(term) = self.term.kind() {
                            if let ty::Infer(ty::TyVar(term_vid)) = term.kind() {
                                if self.delegate.root_ty_var(vid)
                                    == self.delegate.root_ty_var(term_vid)
                                {
                                    return ControlFlow::Break(());
                                }
                            }
                        }

                        self.check_nameable(self.delegate.universe_of_ty(vid).unwrap())?;
                    }
                    ty::Placeholder(p) => self.check_nameable(p.universe())?,
                    _ => {
                        if t.has_non_region_infer() || t.has_placeholders() {
                            t.super_visit_with(self)?
                        }
                    }
                }

                assert!(self.cache.insert(t));
                ControlFlow::Continue(())
            }

            fn visit_const(&mut self, c: I::Const) -> Self::Result {
                match c.kind() {
                    ty::ConstKind::Infer(ty::InferConst::Var(vid)) => {
                        if let ty::TermKind::Const(term) = self.term.kind() {
                            if let ty::ConstKind::Infer(ty::InferConst::Var(term_vid)) = term.kind()
                            {
                                if self.delegate.root_const_var(vid)
                                    == self.delegate.root_const_var(term_vid)
                                {
                                    return ControlFlow::Break(());
                                }
                            }
                        }

                        self.check_nameable(self.delegate.universe_of_ct(vid).unwrap())
                    }
                    ty::ConstKind::Placeholder(p) => self.check_nameable(p.universe()),
                    _ => {
                        if c.has_non_region_infer() || c.has_placeholders() {
                            c.super_visit_with(self)
                        } else {
                            ControlFlow::Continue(())
                        }
                    }
                }
            }
        }

        let mut visitor = ContainsTermOrNotNameable {
            delegate: self.delegate,
            universe_of_term,
            term: goal.predicate.term,
            cache: Default::default(),
        };
        goal.predicate.alias.visit_with(&mut visitor).is_continue()
            && goal.param_env.visit_with(&mut visitor).is_continue()
    }

    #[instrument(level = "trace", skip(self, param_env), ret)]
    pub(super) fn eq<T: Relate<I>>(
        &mut self,
        param_env: I::ParamEnv,
        lhs: T,
        rhs: T,
    ) -> Result<(), NoSolution> {
        self.relate(param_env, lhs, ty::Variance::Invariant, rhs)
    }

    /// This should be used when relating a rigid alias with another type.
    ///
    /// Normally we emit a nested `AliasRelate` when equating an inference
    /// variable and an alias. This causes us to instead constrain the inference
    /// variable to the alias without emitting a nested alias relate goals.
    #[instrument(level = "trace", skip(self, param_env), ret)]
    pub(super) fn relate_rigid_alias_non_alias(
        &mut self,
        param_env: I::ParamEnv,
        alias: ty::AliasTerm<I>,
        variance: ty::Variance,
        term: I::Term,
    ) -> Result<(), NoSolution> {
        // NOTE: this check is purely an optimization, the structural eq would
        // always fail if the term is not an inference variable.
        if term.is_infer() {
            let cx = self.cx();
            // We need to relate `alias` to `term` treating only the outermost
            // constructor as rigid, relating any contained generic arguments as
            // normal. We do this by first structurally equating the `term`
            // with the alias constructor instantiated with unconstrained infer vars,
            // and then relate this with the whole `alias`.
            //
            // Alternatively we could modify `Equate` for this case by adding another
            // variant to `StructurallyRelateAliases`.
            let identity_args = self.fresh_args_for_item(alias.def_id);
            let rigid_ctor = ty::AliasTerm::new_from_args(cx, alias.def_id, identity_args);
            let ctor_term = rigid_ctor.to_term(cx);
            let obligations =
                self.delegate.eq_structurally_relating_aliases(param_env, term, ctor_term)?;
            debug_assert!(obligations.is_empty());
            self.relate(param_env, alias, variance, rigid_ctor)
        } else {
            Err(NoSolution)
        }
    }

    /// This sohuld only be used when we're either instantiating a previously
    /// unconstrained "return value" or when we're sure that all aliases in
    /// the types are rigid.
    #[instrument(level = "trace", skip(self, param_env), ret)]
    pub(super) fn eq_structurally_relating_aliases<T: Relate<I>>(
        &mut self,
        param_env: I::ParamEnv,
        lhs: T,
        rhs: T,
    ) -> Result<(), NoSolution> {
        let result = self.delegate.eq_structurally_relating_aliases(param_env, lhs, rhs)?;
        assert_eq!(result, vec![]);
        Ok(())
    }

    #[instrument(level = "trace", skip(self, param_env), ret)]
    pub(super) fn sub<T: Relate<I>>(
        &mut self,
        param_env: I::ParamEnv,
        sub: T,
        sup: T,
    ) -> Result<(), NoSolution> {
        self.relate(param_env, sub, ty::Variance::Covariant, sup)
    }

    #[instrument(level = "trace", skip(self, param_env), ret)]
    pub(super) fn relate<T: Relate<I>>(
        &mut self,
        param_env: I::ParamEnv,
        lhs: T,
        variance: ty::Variance,
        rhs: T,
    ) -> Result<(), NoSolution> {
        let goals = self.delegate.relate(param_env, lhs, variance, rhs)?;
        self.add_goals(GoalSource::Misc, goals);
        Ok(())
    }

    /// Equates two values returning the nested goals without adding them
    /// to the nested goals of the `EvalCtxt`.
    ///
    /// If possible, try using `eq` instead which automatically handles nested
    /// goals correctly.
    #[instrument(level = "trace", skip(self, param_env), ret)]
    pub(super) fn eq_and_get_goals<T: Relate<I>>(
        &self,
        param_env: I::ParamEnv,
        lhs: T,
        rhs: T,
    ) -> Result<Vec<Goal<I, I::Predicate>>, NoSolution> {
        Ok(self.delegate.relate(param_env, lhs, ty::Variance::Invariant, rhs)?)
    }

    pub(super) fn instantiate_binder_with_infer<T: TypeFoldable<I> + Copy>(
        &self,
        value: ty::Binder<I, T>,
    ) -> T {
        self.delegate.instantiate_binder_with_infer(value)
    }

    /// `enter_forall`, but takes `&mut self` and passes it back through the
    /// callback since it can't be aliased during the call.
    pub(super) fn enter_forall<T: TypeFoldable<I> + Copy, U>(
        &mut self,
        value: ty::Binder<I, T>,
        f: impl FnOnce(&mut Self, T) -> U,
    ) -> U {
        self.delegate.enter_forall(value, |value| f(self, value))
    }

    pub(super) fn resolve_vars_if_possible<T>(&self, value: T) -> T
    where
        T: TypeFoldable<I>,
    {
        self.delegate.resolve_vars_if_possible(value)
    }

    pub(super) fn fresh_args_for_item(&mut self, def_id: I::DefId) -> I::GenericArgs {
        let args = self.delegate.fresh_args_for_item(def_id);
        for arg in args.iter() {
            self.inspect.add_var_value(arg);
        }
        args
    }

    pub(super) fn register_ty_outlives(&self, ty: I::Ty, lt: I::Region) {
        self.delegate.register_ty_outlives(ty, lt);
    }

    pub(super) fn register_region_outlives(&self, a: I::Region, b: I::Region) {
        // `b : a` ==> `a <= b`
        self.delegate.sub_regions(b, a);
    }

    /// Computes the list of goals required for `arg` to be well-formed
    pub(super) fn well_formed_goals(
        &self,
        param_env: I::ParamEnv,
        arg: I::GenericArg,
    ) -> Option<Vec<Goal<I, I::Predicate>>> {
        self.delegate.well_formed_goals(param_env, arg)
    }

    pub(super) fn trait_ref_is_knowable(
        &mut self,
        param_env: I::ParamEnv,
        trait_ref: ty::TraitRef<I>,
    ) -> Result<bool, NoSolution> {
        let delegate = self.delegate;
        let lazily_normalize_ty = |ty| self.structurally_normalize_ty(param_env, ty);
        coherence::trait_ref_is_knowable(&**delegate, trait_ref, lazily_normalize_ty)
            .map(|is_knowable| is_knowable.is_ok())
    }

    pub(super) fn fetch_eligible_assoc_item(
        &self,
        param_env: I::ParamEnv,
        goal_trait_ref: ty::TraitRef<I>,
        trait_assoc_def_id: I::DefId,
        impl_def_id: I::DefId,
    ) -> Result<Option<I::DefId>, NoSolution> {
        self.delegate.fetch_eligible_assoc_item(
            param_env,
            goal_trait_ref,
            trait_assoc_def_id,
            impl_def_id,
        )
    }

    pub(super) fn can_define_opaque_ty(&self, def_id: I::LocalDefId) -> bool {
        self.delegate.defining_opaque_types().contains(&def_id)
    }

    pub(super) fn insert_hidden_type(
        &mut self,
        opaque_type_key: ty::OpaqueTypeKey<I>,
        param_env: I::ParamEnv,
        hidden_ty: I::Ty,
    ) -> Result<(), NoSolution> {
        let mut goals = Vec::new();
        self.delegate.insert_hidden_type(opaque_type_key, param_env, hidden_ty, &mut goals)?;
        self.add_goals(GoalSource::Misc, goals);
        Ok(())
    }

    pub(super) fn add_item_bounds_for_hidden_type(
        &mut self,
        opaque_def_id: I::DefId,
        opaque_args: I::GenericArgs,
        param_env: I::ParamEnv,
        hidden_ty: I::Ty,
    ) {
        let mut goals = Vec::new();
        self.delegate.add_item_bounds_for_hidden_type(
            opaque_def_id,
            opaque_args,
            param_env,
            hidden_ty,
            &mut goals,
        );
        self.add_goals(GoalSource::AliasWellFormed, goals);
    }

    // Do something for each opaque/hidden pair defined with `def_id` in the
    // current inference context.
    pub(super) fn probe_existing_opaque_ty(
        &mut self,
        key: ty::OpaqueTypeKey<I>,
    ) -> Option<(ty::OpaqueTypeKey<I>, I::Ty)> {
        let mut matching =
            self.delegate.clone_opaque_types_for_query_response().into_iter().filter(
                |(candidate_key, _)| {
                    candidate_key.def_id == key.def_id
                        && DeepRejectCtxt::relate_rigid_rigid(self.cx())
                            .args_may_unify(candidate_key.args, key.args)
                },
            );
        let first = matching.next();
        let second = matching.next();
        assert_eq!(second, None);
        first
    }

    // Try to evaluate a const, or return `None` if the const is too generic.
    // This doesn't mean the const isn't evaluatable, though, and should be treated
    // as an ambiguity rather than no-solution.
    pub(super) fn try_const_eval_resolve(
        &self,
        param_env: I::ParamEnv,
        unevaluated: ty::UnevaluatedConst<I>,
    ) -> Option<I::Const> {
        self.delegate.try_const_eval_resolve(param_env, unevaluated)
    }

    pub(super) fn is_transmutable(
        &mut self,
        param_env: I::ParamEnv,
        dst: I::Ty,
        src: I::Ty,
        assume: I::Const,
    ) -> Result<Certainty, NoSolution> {
        self.delegate.is_transmutable(param_env, dst, src, assume)
    }
}

/// Eagerly replace aliases with inference variables, emitting `AliasRelate`
/// goals, used when adding goals to the `EvalCtxt`. We compute the
/// `AliasRelate` goals before evaluating the actual goal to get all the
/// constraints we can.
///
/// This is a performance optimization to more eagerly detect cycles during trait
/// solving. See tests/ui/traits/next-solver/cycles/cycle-modulo-ambig-aliases.rs.
struct ReplaceAliasWithInfer<'me, 'a, D, I>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    ecx: &'me mut EvalCtxt<'a, D>,
    param_env: I::ParamEnv,
    cache: HashMap<I::Ty, I::Ty>,
}

impl<'me, 'a, D, I> ReplaceAliasWithInfer<'me, 'a, D, I>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    fn new(ecx: &'me mut EvalCtxt<'a, D>, param_env: I::ParamEnv) -> Self {
        ReplaceAliasWithInfer { ecx, param_env, cache: Default::default() }
    }
}

impl<D, I> TypeFolder<I> for ReplaceAliasWithInfer<'_, '_, D, I>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    fn cx(&self) -> I {
        self.ecx.cx()
    }

    fn fold_ty(&mut self, ty: I::Ty) -> I::Ty {
        match ty.kind() {
            ty::Alias(..) if !ty.has_escaping_bound_vars() => {
                let infer_ty = self.ecx.next_ty_infer();
                let normalizes_to = ty::PredicateKind::AliasRelate(
                    ty.into(),
                    infer_ty.into(),
                    ty::AliasRelationDirection::Equate,
                );
                self.ecx.add_goal(
                    GoalSource::Misc,
                    Goal::new(self.cx(), self.param_env, normalizes_to),
                );
                infer_ty
            }
            _ => {
                if !ty.has_aliases() {
                    ty
                } else if let Some(&entry) = self.cache.get(&ty) {
                    return entry;
                } else {
                    let res = ty.super_fold_with(self);
                    assert!(self.cache.insert(ty, res).is_none());
                    res
                }
            }
        }
    }

    fn fold_const(&mut self, ct: I::Const) -> I::Const {
        match ct.kind() {
            ty::ConstKind::Unevaluated(..) if !ct.has_escaping_bound_vars() => {
                let infer_ct = self.ecx.next_const_infer();
                let normalizes_to = ty::PredicateKind::AliasRelate(
                    ct.into(),
                    infer_ct.into(),
                    ty::AliasRelationDirection::Equate,
                );
                self.ecx.add_goal(
                    GoalSource::Misc,
                    Goal::new(self.cx(), self.param_env, normalizes_to),
                );
                infer_ct
            }
            _ => ct.super_fold_with(self),
        }
    }

    fn fold_predicate(&mut self, predicate: I::Predicate) -> I::Predicate {
        if predicate.allow_normalization() { predicate.super_fold_with(self) } else { predicate }
    }
}