rustc_next_trait_solver/solve/normalizes_to/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
mod anon_const;
mod inherent;
mod opaque_types;
mod weak_types;

use rustc_type_ir::fast_reject::DeepRejectCtxt;
use rustc_type_ir::inherent::*;
use rustc_type_ir::lang_items::TraitSolverLangItem;
use rustc_type_ir::{self as ty, Interner, NormalizesTo, Upcast as _};
use tracing::instrument;

use crate::delegate::SolverDelegate;
use crate::solve::assembly::structural_traits::{self, AsyncCallableRelevantTypes};
use crate::solve::assembly::{self, Candidate};
use crate::solve::inspect::ProbeKind;
use crate::solve::{
    BuiltinImplSource, CandidateSource, Certainty, EvalCtxt, Goal, GoalSource, MaybeCause,
    NoSolution, QueryResult, Reveal,
};

impl<D, I> EvalCtxt<'_, D>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    #[instrument(level = "trace", skip(self), ret)]
    pub(super) fn compute_normalizes_to_goal(
        &mut self,
        goal: Goal<I, NormalizesTo<I>>,
    ) -> QueryResult<I> {
        self.set_is_normalizes_to_goal();
        debug_assert!(self.term_is_fully_unconstrained(goal));
        let normalize_result = self
            .probe(|&result| ProbeKind::TryNormalizeNonRigid { result })
            .enter(|this| this.normalize_at_least_one_step(goal));

        match normalize_result {
            Ok(res) => Ok(res),
            Err(NoSolution) => {
                self.probe(|&result| ProbeKind::RigidAlias { result }).enter(|this| {
                    let Goal { param_env, predicate: NormalizesTo { alias, term } } = goal;
                    this.add_rigid_constraints(param_env, alias)?;
                    this.relate_rigid_alias_non_alias(param_env, alias, ty::Invariant, term)?;
                    this.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
                })
            }
        }
    }

    /// Register any obligations that are used to validate that an alias should be
    /// treated as rigid.
    ///
    /// An alias may be considered rigid if it fails normalization, but we also don't
    /// want to consider aliases that are not well-formed to be rigid simply because
    /// they fail normalization.
    ///
    /// For example, some `<T as Trait>::Assoc` where `T: Trait` does not hold, or an
    /// opaque type whose hidden type doesn't actually satisfy the opaque item bounds.
    fn add_rigid_constraints(
        &mut self,
        param_env: I::ParamEnv,
        rigid_alias: ty::AliasTerm<I>,
    ) -> Result<(), NoSolution> {
        let cx = self.cx();
        match rigid_alias.kind(cx) {
            // Projections are rigid only if their trait ref holds,
            // and the GAT where-clauses hold.
            ty::AliasTermKind::ProjectionTy | ty::AliasTermKind::ProjectionConst => {
                let trait_ref = rigid_alias.trait_ref(cx);
                self.add_goal(GoalSource::AliasWellFormed, Goal::new(cx, param_env, trait_ref));
                Ok(())
            }
            ty::AliasTermKind::OpaqueTy => {
                match param_env.reveal() {
                    // In user-facing mode, paques are only rigid if we may not define it.
                    Reveal::UserFacing => {
                        if rigid_alias
                            .def_id
                            .as_local()
                            .is_some_and(|def_id| self.can_define_opaque_ty(def_id))
                        {
                            Err(NoSolution)
                        } else {
                            Ok(())
                        }
                    }
                    // Opaques are never rigid in reveal-all mode.
                    Reveal::All => Err(NoSolution),
                }
            }
            // FIXME(generic_const_exprs): we would need to support generic consts here
            ty::AliasTermKind::UnevaluatedConst => Err(NoSolution),
            // Inherent and weak types are never rigid. This type must not be well-formed.
            ty::AliasTermKind::WeakTy | ty::AliasTermKind::InherentTy => Err(NoSolution),
        }
    }

    /// Normalize the given alias by at least one step. If the alias is rigid, this
    /// returns `NoSolution`.
    #[instrument(level = "trace", skip(self), ret)]
    fn normalize_at_least_one_step(&mut self, goal: Goal<I, NormalizesTo<I>>) -> QueryResult<I> {
        match goal.predicate.alias.kind(self.cx()) {
            ty::AliasTermKind::ProjectionTy | ty::AliasTermKind::ProjectionConst => {
                let candidates = self.assemble_and_evaluate_candidates(goal);
                self.merge_candidates(candidates)
            }
            ty::AliasTermKind::InherentTy => self.normalize_inherent_associated_type(goal),
            ty::AliasTermKind::OpaqueTy => self.normalize_opaque_type(goal),
            ty::AliasTermKind::WeakTy => self.normalize_weak_type(goal),
            ty::AliasTermKind::UnevaluatedConst => self.normalize_anon_const(goal),
        }
    }

    /// When normalizing an associated item, constrain the expected term to `term`.
    ///
    /// We know `term` to always be a fully unconstrained inference variable, so
    /// `eq` should never fail here. However, in case `term` contains aliases, we
    /// emit nested `AliasRelate` goals to structurally normalize the alias.
    pub fn instantiate_normalizes_to_term(
        &mut self,
        goal: Goal<I, NormalizesTo<I>>,
        term: I::Term,
    ) {
        self.eq(goal.param_env, goal.predicate.term, term)
            .expect("expected goal term to be fully unconstrained");
    }
}

impl<D, I> assembly::GoalKind<D> for NormalizesTo<I>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    fn self_ty(self) -> I::Ty {
        self.self_ty()
    }

    fn trait_ref(self, cx: I) -> ty::TraitRef<I> {
        self.alias.trait_ref(cx)
    }

    fn with_self_ty(self, cx: I, self_ty: I::Ty) -> Self {
        self.with_self_ty(cx, self_ty)
    }

    fn trait_def_id(self, cx: I) -> I::DefId {
        self.trait_def_id(cx)
    }

    fn probe_and_match_goal_against_assumption(
        ecx: &mut EvalCtxt<'_, D>,
        source: CandidateSource<I>,
        goal: Goal<I, Self>,
        assumption: I::Clause,
        then: impl FnOnce(&mut EvalCtxt<'_, D>) -> QueryResult<I>,
    ) -> Result<Candidate<I>, NoSolution> {
        if let Some(projection_pred) = assumption.as_projection_clause() {
            if projection_pred.projection_def_id() == goal.predicate.def_id() {
                let cx = ecx.cx();
                if !DeepRejectCtxt::relate_rigid_rigid(ecx.cx()).args_may_unify(
                    goal.predicate.alias.args,
                    projection_pred.skip_binder().projection_term.args,
                ) {
                    return Err(NoSolution);
                }
                ecx.probe_trait_candidate(source).enter(|ecx| {
                    let assumption_projection_pred =
                        ecx.instantiate_binder_with_infer(projection_pred);
                    ecx.eq(
                        goal.param_env,
                        goal.predicate.alias,
                        assumption_projection_pred.projection_term,
                    )?;

                    ecx.instantiate_normalizes_to_term(goal, assumption_projection_pred.term);

                    // Add GAT where clauses from the trait's definition
                    // FIXME: We don't need these, since these are the type's own WF obligations.
                    ecx.add_goals(
                        GoalSource::Misc,
                        cx.own_predicates_of(goal.predicate.def_id())
                            .iter_instantiated(cx, goal.predicate.alias.args)
                            .map(|pred| goal.with(cx, pred)),
                    );

                    then(ecx)
                })
            } else {
                Err(NoSolution)
            }
        } else {
            Err(NoSolution)
        }
    }

    fn consider_impl_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, NormalizesTo<I>>,
        impl_def_id: I::DefId,
    ) -> Result<Candidate<I>, NoSolution> {
        let cx = ecx.cx();

        let goal_trait_ref = goal.predicate.alias.trait_ref(cx);
        let impl_trait_ref = cx.impl_trait_ref(impl_def_id);
        if !DeepRejectCtxt::relate_rigid_infer(ecx.cx()).args_may_unify(
            goal.predicate.alias.trait_ref(cx).args,
            impl_trait_ref.skip_binder().args,
        ) {
            return Err(NoSolution);
        }

        // We have to ignore negative impls when projecting.
        let impl_polarity = cx.impl_polarity(impl_def_id);
        match impl_polarity {
            ty::ImplPolarity::Negative => return Err(NoSolution),
            ty::ImplPolarity::Reservation => {
                unimplemented!("reservation impl for trait with assoc item: {:?}", goal)
            }
            ty::ImplPolarity::Positive => {}
        };

        ecx.probe_trait_candidate(CandidateSource::Impl(impl_def_id)).enter(|ecx| {
            let impl_args = ecx.fresh_args_for_item(impl_def_id);
            let impl_trait_ref = impl_trait_ref.instantiate(cx, impl_args);

            ecx.eq(goal.param_env, goal_trait_ref, impl_trait_ref)?;

            let where_clause_bounds = cx
                .predicates_of(impl_def_id)
                .iter_instantiated(cx, impl_args)
                .map(|pred| goal.with(cx, pred));
            ecx.add_goals(GoalSource::ImplWhereBound, where_clause_bounds);

            // Add GAT where clauses from the trait's definition.
            // FIXME: We don't need these, since these are the type's own WF obligations.
            ecx.add_goals(
                GoalSource::Misc,
                cx.own_predicates_of(goal.predicate.def_id())
                    .iter_instantiated(cx, goal.predicate.alias.args)
                    .map(|pred| goal.with(cx, pred)),
            );

            // In case the associated item is hidden due to specialization, we have to
            // return ambiguity this would otherwise be incomplete, resulting in
            // unsoundness during coherence (#105782).
            let Some(target_item_def_id) = ecx.fetch_eligible_assoc_item(
                goal.param_env,
                goal_trait_ref,
                goal.predicate.def_id(),
                impl_def_id,
            )?
            else {
                return ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS);
            };

            let error_response = |ecx: &mut EvalCtxt<'_, D>, msg: &str| {
                let guar = cx.delay_bug(msg);
                let error_term = match goal.predicate.alias.kind(cx) {
                    ty::AliasTermKind::ProjectionTy => Ty::new_error(cx, guar).into(),
                    ty::AliasTermKind::ProjectionConst => Const::new_error(cx, guar).into(),
                    kind => panic!("expected projection, found {kind:?}"),
                };
                ecx.instantiate_normalizes_to_term(goal, error_term);
                ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
            };

            if !cx.has_item_definition(target_item_def_id) {
                return error_response(ecx, "missing item");
            }

            let target_container_def_id = cx.parent(target_item_def_id);

            // Getting the right args here is complex, e.g. given:
            // - a goal `<Vec<u32> as Trait<i32>>::Assoc<u64>`
            // - the applicable impl `impl<T> Trait<i32> for Vec<T>`
            // - and the impl which defines `Assoc` being `impl<T, U> Trait<U> for Vec<T>`
            //
            // We first rebase the goal args onto the impl, going from `[Vec<u32>, i32, u64]`
            // to `[u32, u64]`.
            //
            // And then map these args to the args of the defining impl of `Assoc`, going
            // from `[u32, u64]` to `[u32, i32, u64]`.
            let target_args = ecx.translate_args(
                goal,
                impl_def_id,
                impl_args,
                impl_trait_ref,
                target_container_def_id,
            )?;

            if !cx.check_args_compatible(target_item_def_id, target_args) {
                return error_response(ecx, "associated item has mismatched arguments");
            }

            // Finally we construct the actual value of the associated type.
            let term = match goal.predicate.alias.kind(cx) {
                ty::AliasTermKind::ProjectionTy => {
                    cx.type_of(target_item_def_id).map_bound(|ty| ty.into())
                }
                ty::AliasTermKind::ProjectionConst => {
                    if cx.features().associated_const_equality() {
                        panic!("associated const projection is not supported yet")
                    } else {
                        ty::EarlyBinder::bind(
                            Const::new_error_with_message(
                                cx,
                                "associated const projection is not supported yet",
                            )
                            .into(),
                        )
                    }
                }
                kind => panic!("expected projection, found {kind:?}"),
            };

            ecx.instantiate_normalizes_to_term(goal, term.instantiate(cx, target_args));
            ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
        })
    }

    /// Fail to normalize if the predicate contains an error, alternatively, we could normalize to `ty::Error`
    /// and succeed. Can experiment with this to figure out what results in better error messages.
    fn consider_error_guaranteed_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        _guar: I::ErrorGuaranteed,
    ) -> Result<Candidate<I>, NoSolution> {
        Err(NoSolution)
    }

    fn consider_auto_trait_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        _goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        ecx.cx().delay_bug("associated types not allowed on auto traits");
        Err(NoSolution)
    }

    fn consider_trait_alias_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("trait aliases do not have associated types: {:?}", goal);
    }

    fn consider_builtin_sized_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("`Sized` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_copy_clone_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("`Copy`/`Clone` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_pointer_like_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("`PointerLike` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_fn_ptr_trait_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("`FnPtr` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_fn_trait_candidates(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
        goal_kind: ty::ClosureKind,
    ) -> Result<Candidate<I>, NoSolution> {
        let cx = ecx.cx();
        let tupled_inputs_and_output =
            match structural_traits::extract_tupled_inputs_and_output_from_callable(
                cx,
                goal.predicate.self_ty(),
                goal_kind,
            )? {
                Some(tupled_inputs_and_output) => tupled_inputs_and_output,
                None => {
                    return ecx.forced_ambiguity(MaybeCause::Ambiguity);
                }
            };
        let output_is_sized_pred = tupled_inputs_and_output.map_bound(|(_, output)| {
            ty::TraitRef::new(cx, cx.require_lang_item(TraitSolverLangItem::Sized), [output])
        });

        let pred = tupled_inputs_and_output
            .map_bound(|(inputs, output)| ty::ProjectionPredicate {
                projection_term: ty::AliasTerm::new(cx, goal.predicate.def_id(), [
                    goal.predicate.self_ty(),
                    inputs,
                ]),
                term: output.into(),
            })
            .upcast(cx);

        // A built-in `Fn` impl only holds if the output is sized.
        // (FIXME: technically we only need to check this if the type is a fn ptr...)
        Self::probe_and_consider_implied_clause(
            ecx,
            CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
            goal,
            pred,
            [(GoalSource::ImplWhereBound, goal.with(cx, output_is_sized_pred))],
        )
    }

    fn consider_builtin_async_fn_trait_candidates(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
        goal_kind: ty::ClosureKind,
    ) -> Result<Candidate<I>, NoSolution> {
        let cx = ecx.cx();

        let env_region = match goal_kind {
            ty::ClosureKind::Fn | ty::ClosureKind::FnMut => goal.predicate.alias.args.region_at(2),
            // Doesn't matter what this region is
            ty::ClosureKind::FnOnce => Region::new_static(cx),
        };
        let (tupled_inputs_and_output_and_coroutine, nested_preds) =
            structural_traits::extract_tupled_inputs_and_output_from_async_callable(
                cx,
                goal.predicate.self_ty(),
                goal_kind,
                env_region,
            )?;
        let output_is_sized_pred = tupled_inputs_and_output_and_coroutine.map_bound(
            |AsyncCallableRelevantTypes { output_coroutine_ty: output_ty, .. }| {
                ty::TraitRef::new(cx, cx.require_lang_item(TraitSolverLangItem::Sized), [output_ty])
            },
        );

        let pred = tupled_inputs_and_output_and_coroutine
            .map_bound(
                |AsyncCallableRelevantTypes {
                     tupled_inputs_ty,
                     output_coroutine_ty,
                     coroutine_return_ty,
                 }| {
                    let (projection_term, term) = if cx
                        .is_lang_item(goal.predicate.def_id(), TraitSolverLangItem::CallOnceFuture)
                    {
                        (
                            ty::AliasTerm::new(cx, goal.predicate.def_id(), [
                                goal.predicate.self_ty(),
                                tupled_inputs_ty,
                            ]),
                            output_coroutine_ty.into(),
                        )
                    } else if cx
                        .is_lang_item(goal.predicate.def_id(), TraitSolverLangItem::CallRefFuture)
                    {
                        (
                            ty::AliasTerm::new(cx, goal.predicate.def_id(), [
                                I::GenericArg::from(goal.predicate.self_ty()),
                                tupled_inputs_ty.into(),
                                env_region.into(),
                            ]),
                            output_coroutine_ty.into(),
                        )
                    } else if cx.is_lang_item(
                        goal.predicate.def_id(),
                        TraitSolverLangItem::AsyncFnOnceOutput,
                    ) {
                        (
                            ty::AliasTerm::new(cx, goal.predicate.def_id(), [
                                I::GenericArg::from(goal.predicate.self_ty()),
                                tupled_inputs_ty.into(),
                            ]),
                            coroutine_return_ty.into(),
                        )
                    } else {
                        panic!(
                            "no such associated type in `AsyncFn*`: {:?}",
                            goal.predicate.def_id()
                        )
                    };
                    ty::ProjectionPredicate { projection_term, term }
                },
            )
            .upcast(cx);

        // A built-in `AsyncFn` impl only holds if the output is sized.
        // (FIXME: technically we only need to check this if the type is a fn ptr...)
        Self::probe_and_consider_implied_clause(
            ecx,
            CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
            goal,
            pred,
            [goal.with(cx, output_is_sized_pred)]
                .into_iter()
                .chain(nested_preds.into_iter().map(|pred| goal.with(cx, pred)))
                .map(|goal| (GoalSource::ImplWhereBound, goal)),
        )
    }

    fn consider_builtin_async_fn_kind_helper_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let [
            closure_fn_kind_ty,
            goal_kind_ty,
            borrow_region,
            tupled_inputs_ty,
            tupled_upvars_ty,
            coroutine_captures_by_ref_ty,
        ] = *goal.predicate.alias.args.as_slice()
        else {
            panic!();
        };

        // Bail if the upvars haven't been constrained.
        if tupled_upvars_ty.expect_ty().is_ty_var() {
            return ecx.forced_ambiguity(MaybeCause::Ambiguity);
        }

        let Some(closure_kind) = closure_fn_kind_ty.expect_ty().to_opt_closure_kind() else {
            // We don't need to worry about the self type being an infer var.
            return Err(NoSolution);
        };
        let Some(goal_kind) = goal_kind_ty.expect_ty().to_opt_closure_kind() else {
            return Err(NoSolution);
        };
        if !closure_kind.extends(goal_kind) {
            return Err(NoSolution);
        }

        let upvars_ty = ty::CoroutineClosureSignature::tupled_upvars_by_closure_kind(
            ecx.cx(),
            goal_kind,
            tupled_inputs_ty.expect_ty(),
            tupled_upvars_ty.expect_ty(),
            coroutine_captures_by_ref_ty.expect_ty(),
            borrow_region.expect_region(),
        );

        ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
            ecx.instantiate_normalizes_to_term(goal, upvars_ty.into());
            ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
        })
    }

    fn consider_builtin_tuple_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("`Tuple` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_pointee_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let cx = ecx.cx();
        let metadata_def_id = cx.require_lang_item(TraitSolverLangItem::Metadata);
        assert_eq!(metadata_def_id, goal.predicate.def_id());
        ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
            let metadata_ty = match goal.predicate.self_ty().kind() {
                ty::Bool
                | ty::Char
                | ty::Int(..)
                | ty::Uint(..)
                | ty::Float(..)
                | ty::Array(..)
                | ty::Pat(..)
                | ty::RawPtr(..)
                | ty::Ref(..)
                | ty::FnDef(..)
                | ty::FnPtr(..)
                | ty::Closure(..)
                | ty::CoroutineClosure(..)
                | ty::Infer(ty::IntVar(..) | ty::FloatVar(..))
                | ty::Coroutine(..)
                | ty::CoroutineWitness(..)
                | ty::Never
                | ty::Foreign(..)
                | ty::Dynamic(_, _, ty::DynStar) => Ty::new_unit(cx),

                ty::Error(e) => Ty::new_error(cx, e),

                ty::Str | ty::Slice(_) => Ty::new_usize(cx),

                ty::Dynamic(_, _, ty::Dyn) => {
                    let dyn_metadata = cx.require_lang_item(TraitSolverLangItem::DynMetadata);
                    cx.type_of(dyn_metadata)
                        .instantiate(cx, &[I::GenericArg::from(goal.predicate.self_ty())])
                }

                ty::Alias(_, _) | ty::Param(_) | ty::Placeholder(..) => {
                    // This is the "fallback impl" for type parameters, unnormalizable projections
                    // and opaque types: If the `self_ty` is `Sized`, then the metadata is `()`.
                    // FIXME(ptr_metadata): This impl overlaps with the other impls and shouldn't
                    // exist. Instead, `Pointee<Metadata = ()>` should be a supertrait of `Sized`.
                    let sized_predicate =
                        ty::TraitRef::new(cx, cx.require_lang_item(TraitSolverLangItem::Sized), [
                            I::GenericArg::from(goal.predicate.self_ty()),
                        ]);
                    // FIXME(-Znext-solver=coinductive): Should this be `GoalSource::ImplWhereBound`?
                    ecx.add_goal(GoalSource::Misc, goal.with(cx, sized_predicate));
                    Ty::new_unit(cx)
                }

                ty::Adt(def, args) if def.is_struct() => match def.struct_tail_ty(cx) {
                    None => Ty::new_unit(cx),
                    Some(tail_ty) => {
                        Ty::new_projection(cx, metadata_def_id, [tail_ty.instantiate(cx, args)])
                    }
                },
                ty::Adt(_, _) => Ty::new_unit(cx),

                ty::Tuple(elements) => match elements.last() {
                    None => Ty::new_unit(cx),
                    Some(tail_ty) => Ty::new_projection(cx, metadata_def_id, [tail_ty]),
                },

                ty::Infer(
                    ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_),
                )
                | ty::Bound(..) => panic!(
                    "unexpected self ty `{:?}` when normalizing `<T as Pointee>::Metadata`",
                    goal.predicate.self_ty()
                ),
            };

            ecx.instantiate_normalizes_to_term(goal, metadata_ty.into());
            ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
        })
    }

    fn consider_builtin_future_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let self_ty = goal.predicate.self_ty();
        let ty::Coroutine(def_id, args) = self_ty.kind() else {
            return Err(NoSolution);
        };

        // Coroutines are not futures unless they come from `async` desugaring
        let cx = ecx.cx();
        if !cx.coroutine_is_async(def_id) {
            return Err(NoSolution);
        }

        let term = args.as_coroutine().return_ty().into();

        Self::probe_and_consider_implied_clause(
            ecx,
            CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
            goal,
            ty::ProjectionPredicate {
                projection_term: ty::AliasTerm::new(ecx.cx(), goal.predicate.def_id(), [self_ty]),
                term,
            }
            .upcast(cx),
            // Technically, we need to check that the future type is Sized,
            // but that's already proven by the coroutine being WF.
            [],
        )
    }

    fn consider_builtin_iterator_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let self_ty = goal.predicate.self_ty();
        let ty::Coroutine(def_id, args) = self_ty.kind() else {
            return Err(NoSolution);
        };

        // Coroutines are not Iterators unless they come from `gen` desugaring
        let cx = ecx.cx();
        if !cx.coroutine_is_gen(def_id) {
            return Err(NoSolution);
        }

        let term = args.as_coroutine().yield_ty().into();

        Self::probe_and_consider_implied_clause(
            ecx,
            CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
            goal,
            ty::ProjectionPredicate {
                projection_term: ty::AliasTerm::new(ecx.cx(), goal.predicate.def_id(), [self_ty]),
                term,
            }
            .upcast(cx),
            // Technically, we need to check that the iterator type is Sized,
            // but that's already proven by the generator being WF.
            [],
        )
    }

    fn consider_builtin_fused_iterator_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("`FusedIterator` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_async_iterator_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let self_ty = goal.predicate.self_ty();
        let ty::Coroutine(def_id, args) = self_ty.kind() else {
            return Err(NoSolution);
        };

        // Coroutines are not AsyncIterators unless they come from `gen` desugaring
        let cx = ecx.cx();
        if !cx.coroutine_is_async_gen(def_id) {
            return Err(NoSolution);
        }

        ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
            let expected_ty = ecx.next_ty_infer();
            // Take `AsyncIterator<Item = I>` and turn it into the corresponding
            // coroutine yield ty `Poll<Option<I>>`.
            let wrapped_expected_ty = Ty::new_adt(
                cx,
                cx.adt_def(cx.require_lang_item(TraitSolverLangItem::Poll)),
                cx.mk_args(&[Ty::new_adt(
                    cx,
                    cx.adt_def(cx.require_lang_item(TraitSolverLangItem::Option)),
                    cx.mk_args(&[expected_ty.into()]),
                )
                .into()]),
            );
            let yield_ty = args.as_coroutine().yield_ty();
            ecx.eq(goal.param_env, wrapped_expected_ty, yield_ty)?;
            ecx.instantiate_normalizes_to_term(goal, expected_ty.into());
            ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
        })
    }

    fn consider_builtin_coroutine_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let self_ty = goal.predicate.self_ty();
        let ty::Coroutine(def_id, args) = self_ty.kind() else {
            return Err(NoSolution);
        };

        // `async`-desugared coroutines do not implement the coroutine trait
        let cx = ecx.cx();
        if !cx.is_general_coroutine(def_id) {
            return Err(NoSolution);
        }

        let coroutine = args.as_coroutine();

        let term = if cx.is_lang_item(goal.predicate.def_id(), TraitSolverLangItem::CoroutineReturn)
        {
            coroutine.return_ty().into()
        } else if cx.is_lang_item(goal.predicate.def_id(), TraitSolverLangItem::CoroutineYield) {
            coroutine.yield_ty().into()
        } else {
            panic!("unexpected associated item `{:?}` for `{self_ty:?}`", goal.predicate.def_id())
        };

        Self::probe_and_consider_implied_clause(
            ecx,
            CandidateSource::BuiltinImpl(BuiltinImplSource::Misc),
            goal,
            ty::ProjectionPredicate {
                projection_term: ty::AliasTerm::new(ecx.cx(), goal.predicate.def_id(), [
                    self_ty,
                    coroutine.resume_ty(),
                ]),
                term,
            }
            .upcast(cx),
            // Technically, we need to check that the coroutine type is Sized,
            // but that's already proven by the coroutine being WF.
            [],
        )
    }

    fn consider_structural_builtin_unsize_candidates(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Vec<Candidate<I>> {
        panic!("`Unsize` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_discriminant_kind_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let self_ty = goal.predicate.self_ty();
        let discriminant_ty = match self_ty.kind() {
            ty::Bool
            | ty::Char
            | ty::Int(..)
            | ty::Uint(..)
            | ty::Float(..)
            | ty::Array(..)
            | ty::Pat(..)
            | ty::RawPtr(..)
            | ty::Ref(..)
            | ty::FnDef(..)
            | ty::FnPtr(..)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Infer(ty::IntVar(..) | ty::FloatVar(..))
            | ty::Coroutine(..)
            | ty::CoroutineWitness(..)
            | ty::Never
            | ty::Foreign(..)
            | ty::Adt(_, _)
            | ty::Str
            | ty::Slice(_)
            | ty::Dynamic(_, _, _)
            | ty::Tuple(_)
            | ty::Error(_) => self_ty.discriminant_ty(ecx.cx()),

            // We do not call `Ty::discriminant_ty` on alias, param, or placeholder
            // types, which return `<self_ty as DiscriminantKind>::Discriminant`
            // (or ICE in the case of placeholders). Projecting a type to itself
            // is never really productive.
            ty::Alias(_, _) | ty::Param(_) | ty::Placeholder(..) => {
                return Err(NoSolution);
            }

            ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
            | ty::Bound(..) => panic!(
                "unexpected self ty `{:?}` when normalizing `<T as DiscriminantKind>::Discriminant`",
                goal.predicate.self_ty()
            ),
        };

        ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
            ecx.instantiate_normalizes_to_term(goal, discriminant_ty.into());
            ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
        })
    }

    fn consider_builtin_async_destruct_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let self_ty = goal.predicate.self_ty();
        let async_destructor_ty = match self_ty.kind() {
            ty::Bool
            | ty::Char
            | ty::Int(..)
            | ty::Uint(..)
            | ty::Float(..)
            | ty::Array(..)
            | ty::RawPtr(..)
            | ty::Ref(..)
            | ty::FnDef(..)
            | ty::FnPtr(..)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Infer(ty::IntVar(..) | ty::FloatVar(..))
            | ty::Never
            | ty::Adt(_, _)
            | ty::Str
            | ty::Slice(_)
            | ty::Tuple(_)
            | ty::Error(_) => self_ty.async_destructor_ty(ecx.cx()),

            // We do not call `Ty::async_destructor_ty` on alias, param, or placeholder
            // types, which return `<self_ty as AsyncDestruct>::AsyncDestructor`
            // (or ICE in the case of placeholders). Projecting a type to itself
            // is never really productive.
            ty::Alias(_, _) | ty::Param(_) | ty::Placeholder(..) => {
                return Err(NoSolution);
            }

            ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
            | ty::Foreign(..)
            | ty::Bound(..) => panic!(
                "unexpected self ty `{:?}` when normalizing `<T as AsyncDestruct>::AsyncDestructor`",
                goal.predicate.self_ty()
            ),

            ty::Pat(..) | ty::Dynamic(..) | ty::Coroutine(..) | ty::CoroutineWitness(..) => panic!(
                "`consider_builtin_async_destruct_candidate` is not yet implemented for type: {self_ty:?}"
            ),
        };

        ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
            ecx.eq(goal.param_env, goal.predicate.term, async_destructor_ty.into())
                .expect("expected goal term to be fully unconstrained");
            ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
        })
    }

    fn consider_builtin_destruct_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("`Destruct` does not have an associated type: {:?}", goal);
    }

    fn consider_builtin_transmute_candidate(
        _ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        panic!("`TransmuteFrom` does not have an associated type: {:?}", goal)
    }

    fn consider_builtin_effects_intersection_candidate(
        ecx: &mut EvalCtxt<'_, D>,
        goal: Goal<I, Self>,
    ) -> Result<Candidate<I>, NoSolution> {
        let ty::Tuple(types) = goal.predicate.self_ty().kind() else {
            return Err(NoSolution);
        };

        let cx = ecx.cx();

        let mut first_non_maybe = None;
        let mut non_maybe_count = 0;
        for ty in types.iter() {
            if !matches!(ty::EffectKind::try_from_ty(cx, ty), Some(ty::EffectKind::Maybe)) {
                first_non_maybe.get_or_insert(ty);
                non_maybe_count += 1;
            }
        }

        match non_maybe_count {
            0 => {
                let ty = ty::EffectKind::Maybe.to_ty(cx);
                ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
                    ecx.instantiate_normalizes_to_term(goal, ty.into());
                    ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
                })
            }
            1 => {
                let ty = first_non_maybe.unwrap();
                ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
                    ecx.instantiate_normalizes_to_term(goal, ty.into());
                    ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
                })
            }
            _ => {
                let mut min = ty::EffectKind::Maybe;

                for ty in types.iter() {
                    // We can't find the intersection if the types used are generic.
                    //
                    // FIXME(effects): do we want to look at where clauses to get some
                    // clue for the case where generic types are being used?
                    let Some(kind) = ty::EffectKind::try_from_ty(cx, ty) else {
                        return Err(NoSolution);
                    };

                    let Some(result) = ty::EffectKind::intersection(min, kind) else {
                        return Err(NoSolution);
                    };

                    min = result;
                }

                let ty = min.to_ty(cx);
                ecx.probe_builtin_trait_candidate(BuiltinImplSource::Misc).enter(|ecx| {
                    ecx.instantiate_normalizes_to_term(goal, ty.into());
                    ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
                })
            }
        }
    }
}

impl<D, I> EvalCtxt<'_, D>
where
    D: SolverDelegate<Interner = I>,
    I: Interner,
{
    fn translate_args(
        &mut self,
        goal: Goal<I, ty::NormalizesTo<I>>,
        impl_def_id: I::DefId,
        impl_args: I::GenericArgs,
        impl_trait_ref: rustc_type_ir::TraitRef<I>,
        target_container_def_id: I::DefId,
    ) -> Result<I::GenericArgs, NoSolution> {
        let cx = self.cx();
        Ok(if target_container_def_id == impl_trait_ref.def_id {
            // Default value from the trait definition. No need to rebase.
            goal.predicate.alias.args
        } else if target_container_def_id == impl_def_id {
            // Same impl, no need to fully translate, just a rebase from
            // the trait is sufficient.
            goal.predicate.alias.args.rebase_onto(cx, impl_trait_ref.def_id, impl_args)
        } else {
            let target_args = self.fresh_args_for_item(target_container_def_id);
            let target_trait_ref =
                cx.impl_trait_ref(target_container_def_id).instantiate(cx, target_args);
            // Relate source impl to target impl by equating trait refs.
            self.eq(goal.param_env, impl_trait_ref, target_trait_ref)?;
            // Also add predicates since they may be needed to constrain the
            // target impl's params.
            self.add_goals(
                GoalSource::Misc,
                cx.predicates_of(target_container_def_id)
                    .iter_instantiated(cx, target_args)
                    .map(|pred| goal.with(cx, pred)),
            );
            goal.predicate.alias.args.rebase_onto(cx, impl_trait_ref.def_id, target_args)
        })
    }
}