rustc_parse/parser/
attr_wrapper.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
use std::borrow::Cow;
use std::{iter, mem};

use rustc_ast::token::{Delimiter, Token, TokenKind};
use rustc_ast::tokenstream::{
    AttrTokenStream, AttrTokenTree, AttrsTarget, DelimSpacing, DelimSpan, LazyAttrTokenStream,
    Spacing, ToAttrTokenStream,
};
use rustc_ast::{self as ast, AttrVec, Attribute, HasAttrs, HasTokens};
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::PResult;
use rustc_session::parse::ParseSess;
use rustc_span::{DUMMY_SP, Span, sym};

use super::{
    Capturing, FlatToken, ForceCollect, NodeRange, NodeReplacement, Parser, ParserRange,
    TokenCursor, Trailing,
};

// When collecting tokens, this fully captures the start point. Usually its
// just after outer attributes, but occasionally it's before.
#[derive(Clone, Debug)]
pub(super) struct CollectPos {
    start_token: (Token, Spacing),
    cursor_snapshot: TokenCursor,
    start_pos: u32,
}

pub(super) enum UsePreAttrPos {
    No,
    Yes,
}

/// A wrapper type to ensure that the parser handles outer attributes correctly.
/// When we parse outer attributes, we need to ensure that we capture tokens
/// for the attribute target. This allows us to perform cfg-expansion on
/// a token stream before we invoke a derive proc-macro.
///
/// This wrapper prevents direct access to the underlying `ast::AttrVec`.
/// Parsing code can only get access to the underlying attributes
/// by passing an `AttrWrapper` to `collect_tokens`.
/// This makes it difficult to accidentally construct an AST node
/// (which stores an `ast::AttrVec`) without first collecting tokens.
///
/// This struct has its own module, to ensure that the parser code
/// cannot directly access the `attrs` field.
#[derive(Debug, Clone)]
pub(super) struct AttrWrapper {
    attrs: AttrVec,
    // The start of the outer attributes in the parser's token stream.
    // This lets us create a `NodeReplacement` for the entire attribute
    // target, including outer attributes. `None` if there are no outer
    // attributes.
    start_pos: Option<u32>,
}

impl AttrWrapper {
    pub(super) fn new(attrs: AttrVec, start_pos: u32) -> AttrWrapper {
        AttrWrapper { attrs, start_pos: Some(start_pos) }
    }

    pub(super) fn empty() -> AttrWrapper {
        AttrWrapper { attrs: AttrVec::new(), start_pos: None }
    }

    pub(super) fn take_for_recovery(self, psess: &ParseSess) -> AttrVec {
        psess.dcx().span_delayed_bug(
            self.attrs.get(0).map(|attr| attr.span).unwrap_or(DUMMY_SP),
            "AttrVec is taken for recovery but no error is produced",
        );

        self.attrs
    }

    /// Prepend `self.attrs` to `attrs`.
    // FIXME: require passing an NT to prevent misuse of this method
    pub(super) fn prepend_to_nt_inner(mut self, attrs: &mut AttrVec) {
        mem::swap(attrs, &mut self.attrs);
        attrs.extend(self.attrs);
    }

    pub(super) fn is_empty(&self) -> bool {
        self.attrs.is_empty()
    }
}

/// Returns `true` if `attrs` contains a `cfg` or `cfg_attr` attribute
fn has_cfg_or_cfg_attr(attrs: &[Attribute]) -> bool {
    // NOTE: Builtin attributes like `cfg` and `cfg_attr` cannot be renamed via imports.
    // Therefore, the absence of a literal `cfg` or `cfg_attr` guarantees that
    // we don't need to do any eager expansion.
    attrs.iter().any(|attr| {
        attr.ident().is_some_and(|ident| ident.name == sym::cfg || ident.name == sym::cfg_attr)
    })
}

// From a value of this type we can reconstruct the `TokenStream` seen by the
// `f` callback passed to a call to `Parser::collect_tokens`, by
// replaying the getting of the tokens. This saves us producing a `TokenStream`
// if it is never needed, e.g. a captured `macro_rules!` argument that is never
// passed to a proc macro. In practice, token stream creation happens rarely
// compared to calls to `collect_tokens` (see some statistics in #78736) so we
// are doing as little up-front work as possible.
//
// This also makes `Parser` very cheap to clone, since
// there is no intermediate collection buffer to clone.
struct LazyAttrTokenStreamImpl {
    start_token: (Token, Spacing),
    cursor_snapshot: TokenCursor,
    num_calls: u32,
    break_last_token: u32,
    node_replacements: Box<[NodeReplacement]>,
}

impl ToAttrTokenStream for LazyAttrTokenStreamImpl {
    fn to_attr_token_stream(&self) -> AttrTokenStream {
        // The token produced by the final call to `{,inlined_}next` was not
        // actually consumed by the callback. The combination of chaining the
        // initial token and using `take` produces the desired result - we
        // produce an empty `TokenStream` if no calls were made, and omit the
        // final token otherwise.
        let mut cursor_snapshot = self.cursor_snapshot.clone();
        let tokens = iter::once(FlatToken::Token(self.start_token.clone()))
            .chain(iter::repeat_with(|| FlatToken::Token(cursor_snapshot.next())))
            .take(self.num_calls as usize);

        if self.node_replacements.is_empty() {
            make_attr_token_stream(tokens, self.break_last_token)
        } else {
            let mut tokens: Vec<_> = tokens.collect();
            let mut node_replacements = self.node_replacements.to_vec();
            node_replacements.sort_by_key(|(range, _)| range.0.start);

            #[cfg(debug_assertions)]
            for [(node_range, tokens), (next_node_range, next_tokens)] in
                node_replacements.array_windows()
            {
                assert!(
                    node_range.0.end <= next_node_range.0.start,
                    "Node ranges should be disjoint: ({:?}, {:?}) ({:?}, {:?})",
                    node_range,
                    tokens,
                    next_node_range,
                    next_tokens,
                );
            }

            // Process the replace ranges.
            for (node_range, target) in node_replacements.into_iter() {
                assert!(
                    !node_range.0.is_empty(),
                    "Cannot replace an empty node range: {:?}",
                    node_range.0
                );

                // Replace the tokens in range with zero or one `FlatToken::AttrsTarget`s, plus
                // enough `FlatToken::Empty`s to fill up the rest of the range. This keeps the
                // total length of `tokens` constant throughout the replacement process, allowing
                // us to do all replacements without adjusting indices.
                let target_len = target.is_some() as usize;
                tokens.splice(
                    (node_range.0.start as usize)..(node_range.0.end as usize),
                    target.into_iter().map(|target| FlatToken::AttrsTarget(target)).chain(
                        iter::repeat(FlatToken::Empty).take(node_range.0.len() - target_len),
                    ),
                );
            }
            make_attr_token_stream(tokens.into_iter(), self.break_last_token)
        }
    }
}

impl<'a> Parser<'a> {
    pub(super) fn collect_pos(&self) -> CollectPos {
        CollectPos {
            start_token: (self.token.clone(), self.token_spacing),
            cursor_snapshot: self.token_cursor.clone(),
            start_pos: self.num_bump_calls,
        }
    }

    /// Parses code with `f`. If appropriate, it records the tokens (in
    /// `LazyAttrTokenStream` form) that were parsed in the result, accessible
    /// via the `HasTokens` trait. The `Trailing` part of the callback's
    /// result indicates if an extra token should be captured, e.g. a comma or
    /// semicolon. The `UsePreAttrPos` part of the callback's result indicates
    /// if we should use `pre_attr_pos` as the collection start position (only
    /// required in a few cases).
    ///
    /// The `attrs` passed in are in `AttrWrapper` form, which is opaque. The
    /// `AttrVec` within is passed to `f`. See the comment on `AttrWrapper` for
    /// details.
    ///
    /// `pre_attr_pos` is the position before the outer attributes (or the node
    /// itself, if no outer attributes are present). It is only needed if `f`
    /// can return `UsePreAttrPos::Yes`.
    ///
    /// Note: If your callback consumes an opening delimiter (including the
    /// case where `self.token` is an opening delimiter on entry to this
    /// function), you must also consume the corresponding closing delimiter.
    /// E.g. you can consume `something ([{ }])` or `([{}])`, but not `([{}]`.
    /// This restriction isn't a problem in practice, because parsed AST items
    /// always have matching delimiters.
    ///
    /// The following example code will be used to explain things in comments
    /// below. It has an outer attribute and an inner attribute. Parsing it
    /// involves two calls to this method, one of which is indirectly
    /// recursive.
    /// ```ignore (fake attributes)
    /// #[cfg_eval]                         // token pos
    /// mod m {                             //   0.. 3
    ///     #[cfg_attr(cond1, attr1)]       //   3..12
    ///     fn g() {                        //  12..17
    ///         #![cfg_attr(cond2, attr2)]  //  17..27
    ///         let _x = 3;                 //  27..32
    ///     }                               //  32..33
    /// }                                   //  33..34
    /// ```
    pub(super) fn collect_tokens<R: HasAttrs + HasTokens>(
        &mut self,
        pre_attr_pos: Option<CollectPos>,
        attrs: AttrWrapper,
        force_collect: ForceCollect,
        f: impl FnOnce(&mut Self, AttrVec) -> PResult<'a, (R, Trailing, UsePreAttrPos)>,
    ) -> PResult<'a, R> {
        let possible_capture_mode = self.capture_cfg;

        // We must collect if anything could observe the collected tokens, i.e.
        // if any of the following conditions hold.
        // - We are force collecting tokens (because force collection requires
        //   tokens by definition).
        let needs_collection = matches!(force_collect, ForceCollect::Yes)
            // - Any of our outer attributes require tokens.
            || needs_tokens(&attrs.attrs)
            // - Our target supports custom inner attributes (custom
            //   inner attribute invocation might require token capturing).
            || R::SUPPORTS_CUSTOM_INNER_ATTRS
            // - We are in "possible capture mode" (which requires tokens if
            //   the parsed node has `#[cfg]` or `#[cfg_attr]` attributes).
            || possible_capture_mode;
        if !needs_collection {
            return Ok(f(self, attrs.attrs)?.0);
        }

        let mut collect_pos = self.collect_pos();
        let has_outer_attrs = !attrs.attrs.is_empty();
        let parser_replacements_start = self.capture_state.parser_replacements.len();

        // We set and restore `Capturing::Yes` on either side of the call to
        // `f`, so we can distinguish the outermost call to `collect_tokens`
        // (e.g. parsing `m` in the example above) from any inner (indirectly
        // recursive) calls (e.g. parsing `g` in the example above). This
        // distinction is used below and in `Parser::parse_inner_attributes`.
        let (mut ret, capture_trailing, use_pre_attr_pos) = {
            let prev_capturing = mem::replace(&mut self.capture_state.capturing, Capturing::Yes);
            let res = f(self, attrs.attrs);
            self.capture_state.capturing = prev_capturing;
            res?
        };

        // - `None`: Our target doesn't support tokens at all (e.g. `NtIdent`).
        // - `Some(None)`: Our target supports tokens and has none.
        // - `Some(Some(_))`: Our target already has tokens set (e.g. we've
        //   parsed something like `#[my_attr] $item`).
        let ret_can_hold_tokens = matches!(ret.tokens_mut(), Some(None));

        // Ignore any attributes we've previously processed. This happens when
        // an inner call to `collect_tokens` returns an AST node and then an
        // outer call ends up with the same AST node without any additional
        // wrapping layer.
        let mut seen_indices = FxHashSet::default();
        for (i, attr) in ret.attrs().iter().enumerate() {
            let is_unseen = self.capture_state.seen_attrs.insert(attr.id);
            if !is_unseen {
                seen_indices.insert(i);
            }
        }
        let ret_attrs: Cow<'_, [Attribute]> =
            if seen_indices.is_empty() {
                Cow::Borrowed(ret.attrs())
            } else {
                let ret_attrs =
                    ret.attrs()
                        .iter()
                        .enumerate()
                        .filter_map(|(i, attr)| {
                            if seen_indices.contains(&i) { None } else { Some(attr.clone()) }
                        })
                        .collect();
                Cow::Owned(ret_attrs)
            };

        // When we're not in "definite capture mode", then skip collecting and
        // return early if `ret` doesn't support tokens or already has some.
        //
        // Note that this check is independent of `force_collect`. There's no
        // need to collect tokens when we don't support tokens or already have
        // tokens.
        let definite_capture_mode = self.capture_cfg
            && matches!(self.capture_state.capturing, Capturing::Yes)
            && has_cfg_or_cfg_attr(&ret_attrs);
        if !definite_capture_mode && !ret_can_hold_tokens {
            return Ok(ret);
        }

        // This is similar to the `needs_collection` check at the start of this
        // function, but now that we've parsed an AST node we have complete
        // information available. (If we return early here that means the
        // setup, such as cloning the token cursor, was unnecessary. That's
        // hard to avoid.)
        //
        // We must collect if anything could observe the collected tokens, i.e.
        // if any of the following conditions hold.
        // - We are force collecting tokens.
        let needs_collection = matches!(force_collect, ForceCollect::Yes)
            // - Any of our outer *or* inner attributes require tokens.
            //   (`attr.attrs` was just outer attributes, but `ret.attrs()` is
            //   outer and inner attributes. So this check is more precise than
            //   the earlier `needs_tokens` check, and we don't need to
            //   check `R::SUPPORTS_CUSTOM_INNER_ATTRS`.)
            || needs_tokens(&ret_attrs)
            // - We are in "definite capture mode", which requires that there
            //   are `#[cfg]` or `#[cfg_attr]` attributes. (During normal
            //   non-`capture_cfg` parsing, we don't need any special capturing
            //   for those attributes, because they're builtin.)
            || definite_capture_mode;
        if !needs_collection {
            return Ok(ret);
        }

        // Replace the post-attribute collection start position with the
        // pre-attribute position supplied, if `f` indicated it is necessary.
        // (The caller is responsible for providing a non-`None` `pre_attr_pos`
        // if this is a possibility.)
        if matches!(use_pre_attr_pos, UsePreAttrPos::Yes) {
            collect_pos = pre_attr_pos.unwrap();
        }

        let parser_replacements_end = self.capture_state.parser_replacements.len();

        assert!(
            !(self.break_last_token > 0 && matches!(capture_trailing, Trailing::Yes)),
            "Cannot have break_last_token > 0 and have trailing token"
        );
        assert!(self.break_last_token <= 2, "cannot break token more than twice");

        let end_pos = self.num_bump_calls
            + capture_trailing as u32
            // If we "broke" the last token (e.g. breaking a `>>` token once into `>` + `>`, or
            // breaking a `>>=` token twice into `>` + `>` + `=`), then extend the range of
            // captured tokens to include it, because the parser was not actually bumped past it.
            // (Even if we broke twice, it was still just one token originally, hence the `1`.)
            // When the `LazyAttrTokenStream` gets converted into an `AttrTokenStream`, we will
            // rebreak that final token once or twice.
            + if self.break_last_token == 0 { 0 } else { 1 };

        let num_calls = end_pos - collect_pos.start_pos;

        // Take the captured `ParserRange`s for any inner attributes that we parsed in
        // `Parser::parse_inner_attributes`, and pair them in a `ParserReplacement` with `None`,
        // which means the relevant tokens will be removed. (More details below.)
        let mut inner_attr_parser_replacements = Vec::new();
        for attr in ret_attrs.iter() {
            if attr.style == ast::AttrStyle::Inner {
                if let Some(inner_attr_parser_range) =
                    self.capture_state.inner_attr_parser_ranges.remove(&attr.id)
                {
                    inner_attr_parser_replacements.push((inner_attr_parser_range, None));
                } else {
                    self.dcx().span_delayed_bug(attr.span, "Missing token range for attribute");
                }
            }
        }

        // This is hot enough for `deep-vector` that checking the conditions for an empty iterator
        // is measurably faster than actually executing the iterator.
        let node_replacements: Box<[_]> = if parser_replacements_start == parser_replacements_end
            && inner_attr_parser_replacements.is_empty()
        {
            Box::new([])
        } else {
            // Grab any replace ranges that occur *inside* the current AST node. Convert them
            // from `ParserRange` form to `NodeRange` form. We will perform the actual
            // replacement only when we convert the `LazyAttrTokenStream` to an
            // `AttrTokenStream`.
            self.capture_state
                .parser_replacements
                .drain(parser_replacements_start..parser_replacements_end)
                .chain(inner_attr_parser_replacements)
                .map(|(parser_range, data)| {
                    (NodeRange::new(parser_range, collect_pos.start_pos), data)
                })
                .collect()
        };

        // What is the status here when parsing the example code at the top of this method?
        //
        // When parsing `g`:
        // - `start_pos..end_pos` is `12..33` (`fn g { ... }`, excluding the outer attr).
        // - `inner_attr_parser_replacements` has one entry (`ParserRange(17..27)`), to
        //   delete the inner attr's tokens.
        //   - This entry is converted to `NodeRange(5..15)` (relative to the `fn`) and put into
        //     the lazy tokens for `g`, i.e. deleting the inner attr from those tokens (if they get
        //     evaluated).
        //   - Those lazy tokens are also put into an `AttrsTarget` that is appended to `self`'s
        //     replace ranges at the bottom of this function, for processing when parsing `m`.
        // - `parser_replacements_start..parser_replacements_end` is empty.
        //
        // When parsing `m`:
        // - `start_pos..end_pos` is `0..34` (`mod m`, excluding the `#[cfg_eval]` attribute).
        // - `inner_attr_parser_replacements` is empty.
        // - `parser_replacements_start..parser_replacements_end` has one entry.
        //   - One `AttrsTarget` (added below when parsing `g`) to replace all of `g` (`3..33`,
        //     including its outer attribute), with:
        //     - `attrs`: includes the outer and the inner attr.
        //     - `tokens`: lazy tokens for `g` (with its inner attr deleted).

        let tokens = LazyAttrTokenStream::new(LazyAttrTokenStreamImpl {
            start_token: collect_pos.start_token,
            cursor_snapshot: collect_pos.cursor_snapshot,
            num_calls,
            break_last_token: self.break_last_token,
            node_replacements,
        });
        let mut tokens_used = false;

        // If in "definite capture mode" we need to register a replace range
        // for the `#[cfg]` and/or `#[cfg_attr]` attrs. This allows us to run
        // eager cfg-expansion on the captured token stream.
        if definite_capture_mode {
            assert!(self.break_last_token == 0, "Should not have unglued last token with cfg attr");

            // What is the status here when parsing the example code at the top of this method?
            //
            // When parsing `g`, we add one entry:
            // - The pushed entry (`ParserRange(3..33)`) has a new `AttrsTarget` with:
            //   - `attrs`: includes the outer and the inner attr.
            //   - `tokens`: lazy tokens for `g` (with its inner attr deleted).
            //
            // When parsing `m`, we do nothing here.

            // Set things up so that the entire AST node that we just parsed, including attributes,
            // will be replaced with `target` in the lazy token stream. This will allow us to
            // cfg-expand this AST node.
            let start_pos =
                if has_outer_attrs { attrs.start_pos.unwrap() } else { collect_pos.start_pos };
            let target =
                AttrsTarget { attrs: ret_attrs.iter().cloned().collect(), tokens: tokens.clone() };
            tokens_used = true;
            self.capture_state
                .parser_replacements
                .push((ParserRange(start_pos..end_pos), Some(target)));
        } else if matches!(self.capture_state.capturing, Capturing::No) {
            // Only clear the ranges once we've finished capturing entirely, i.e. we've finished
            // the outermost call to this method.
            self.capture_state.parser_replacements.clear();
            self.capture_state.inner_attr_parser_ranges.clear();
            self.capture_state.seen_attrs.clear();
        }

        // If we support tokens and don't already have them, store the newly captured tokens.
        if let Some(target_tokens @ None) = ret.tokens_mut() {
            tokens_used = true;
            *target_tokens = Some(tokens);
        }

        assert!(tokens_used); // check we didn't create `tokens` unnecessarily
        Ok(ret)
    }
}

/// Converts a flattened iterator of tokens (including open and close delimiter tokens) into an
/// `AttrTokenStream`, creating an `AttrTokenTree::Delimited` for each matching pair of open and
/// close delims.
fn make_attr_token_stream(
    iter: impl Iterator<Item = FlatToken>,
    break_last_token: u32,
) -> AttrTokenStream {
    #[derive(Debug)]
    struct FrameData {
        // This is `None` for the first frame, `Some` for all others.
        open_delim_sp: Option<(Delimiter, Span, Spacing)>,
        inner: Vec<AttrTokenTree>,
    }
    // The stack always has at least one element. Storing it separately makes for shorter code.
    let mut stack_top = FrameData { open_delim_sp: None, inner: vec![] };
    let mut stack_rest = vec![];
    for flat_token in iter {
        match flat_token {
            FlatToken::Token((Token { kind: TokenKind::OpenDelim(delim), span }, spacing)) => {
                stack_rest.push(mem::replace(&mut stack_top, FrameData {
                    open_delim_sp: Some((delim, span, spacing)),
                    inner: vec![],
                }));
            }
            FlatToken::Token((Token { kind: TokenKind::CloseDelim(delim), span }, spacing)) => {
                let frame_data = mem::replace(&mut stack_top, stack_rest.pop().unwrap());
                let (open_delim, open_sp, open_spacing) = frame_data.open_delim_sp.unwrap();
                assert_eq!(
                    open_delim, delim,
                    "Mismatched open/close delims: open={open_delim:?} close={span:?}"
                );
                let dspan = DelimSpan::from_pair(open_sp, span);
                let dspacing = DelimSpacing::new(open_spacing, spacing);
                let stream = AttrTokenStream::new(frame_data.inner);
                let delimited = AttrTokenTree::Delimited(dspan, dspacing, delim, stream);
                stack_top.inner.push(delimited);
            }
            FlatToken::Token((token, spacing)) => {
                stack_top.inner.push(AttrTokenTree::Token(token, spacing))
            }
            FlatToken::AttrsTarget(target) => {
                stack_top.inner.push(AttrTokenTree::AttrsTarget(target))
            }
            FlatToken::Empty => {}
        }
    }

    if break_last_token > 0 {
        let last_token = stack_top.inner.pop().unwrap();
        if let AttrTokenTree::Token(last_token, spacing) = last_token {
            let (unglued, _) = last_token.kind.break_two_token_op(break_last_token).unwrap();

            // Tokens are always ASCII chars, so we can use byte arithmetic here.
            let mut first_span = last_token.span.shrink_to_lo();
            first_span =
                first_span.with_hi(first_span.lo() + rustc_span::BytePos(break_last_token));

            stack_top.inner.push(AttrTokenTree::Token(Token::new(unglued, first_span), spacing));
        } else {
            panic!("Unexpected last token {last_token:?}")
        }
    }
    AttrTokenStream::new(stack_top.inner)
}

/// Tokens are needed if:
/// - any non-single-segment attributes (other than doc comments) are present,
///   e.g. `rustfmt::skip`; or
/// - any `cfg_attr` attributes are present; or
/// - any single-segment, non-builtin attributes are present, e.g. `derive`,
///   `test`, `global_allocator`.
fn needs_tokens(attrs: &[ast::Attribute]) -> bool {
    attrs.iter().any(|attr| match attr.ident() {
        None => !attr.is_doc_comment(),
        Some(ident) => {
            ident.name == sym::cfg_attr || !rustc_feature::is_builtin_attr_name(ident.name)
        }
    })
}

// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
mod size_asserts {
    use rustc_data_structures::static_assert_size;

    use super::*;
    // tidy-alphabetical-start
    static_assert_size!(LazyAttrTokenStreamImpl, 96);
    // tidy-alphabetical-end
}