rustc_symbol_mangling/v0.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
use std::fmt::Write;
use std::iter;
use std::ops::Range;
use rustc_data_structures::base_n::ToBaseN;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::intern::Interned;
use rustc_hir as hir;
use rustc_hir::def::CtorKind;
use rustc_hir::def_id::{CrateNum, DefId};
use rustc_hir::definitions::{DefPathData, DisambiguatedDefPathData};
use rustc_middle::bug;
use rustc_middle::ty::layout::IntegerExt;
use rustc_middle::ty::print::{Print, PrintError, Printer};
use rustc_middle::ty::{
self, EarlyBinder, FloatTy, GenericArg, GenericArgKind, Instance, IntTy, ReifyReason, Ty,
TyCtxt, TypeVisitable, TypeVisitableExt, UintTy,
};
use rustc_span::symbol::kw;
use rustc_target::abi::Integer;
use rustc_target::spec::abi::Abi;
pub(super) fn mangle<'tcx>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
instantiating_crate: Option<CrateNum>,
) -> String {
let def_id = instance.def_id();
// FIXME(eddyb) this should ideally not be needed.
let args = tcx.normalize_erasing_regions(ty::ParamEnv::reveal_all(), instance.args);
let prefix = "_R";
let mut cx: SymbolMangler<'_> = SymbolMangler {
tcx,
start_offset: prefix.len(),
paths: FxHashMap::default(),
types: FxHashMap::default(),
consts: FxHashMap::default(),
binders: vec![],
out: String::from(prefix),
};
// Append `::{shim:...#0}` to shims that can coexist with a non-shim instance.
let shim_kind = match instance.def {
ty::InstanceKind::ThreadLocalShim(_) => Some("tls"),
ty::InstanceKind::VTableShim(_) => Some("vtable"),
ty::InstanceKind::ReifyShim(_, None) => Some("reify"),
ty::InstanceKind::ReifyShim(_, Some(ReifyReason::FnPtr)) => Some("reify_fnptr"),
ty::InstanceKind::ReifyShim(_, Some(ReifyReason::Vtable)) => Some("reify_vtable"),
// FIXME(async_closures): This shouldn't be needed when we fix
// `Instance::ty`/`Instance::def_id`.
ty::InstanceKind::ConstructCoroutineInClosureShim { receiver_by_ref: true, .. } => {
Some("by_move")
}
ty::InstanceKind::ConstructCoroutineInClosureShim { receiver_by_ref: false, .. } => {
Some("by_ref")
}
_ => None,
};
if let Some(shim_kind) = shim_kind {
cx.path_append_ns(|cx| cx.print_def_path(def_id, args), 'S', 0, shim_kind).unwrap()
} else {
cx.print_def_path(def_id, args).unwrap()
};
if let Some(instantiating_crate) = instantiating_crate {
cx.print_def_path(instantiating_crate.as_def_id(), &[]).unwrap();
}
std::mem::take(&mut cx.out)
}
pub(super) fn mangle_typeid_for_trait_ref<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyExistentialTraitRef<'tcx>,
) -> String {
// FIXME(flip1995): See comment in `mangle_typeid_for_fnabi`.
let mut cx = SymbolMangler {
tcx,
start_offset: 0,
paths: FxHashMap::default(),
types: FxHashMap::default(),
consts: FxHashMap::default(),
binders: vec![],
out: String::new(),
};
cx.print_def_path(trait_ref.def_id(), &[]).unwrap();
std::mem::take(&mut cx.out)
}
struct BinderLevel {
/// The range of distances from the root of what's
/// being printed, to the lifetimes in a binder.
/// Specifically, a `BrAnon` lifetime has depth
/// `lifetime_depths.start + index`, going away from the
/// the root and towards its use site, as the var index increases.
/// This is used to flatten rustc's pairing of `BrAnon`
/// (intra-binder disambiguation) with a `DebruijnIndex`
/// (binder addressing), to "true" de Bruijn indices,
/// by subtracting the depth of a certain lifetime, from
/// the innermost depth at its use site.
lifetime_depths: Range<u32>,
}
struct SymbolMangler<'tcx> {
tcx: TyCtxt<'tcx>,
binders: Vec<BinderLevel>,
out: String,
/// The length of the prefix in `out` (e.g. 2 for `_R`).
start_offset: usize,
/// The values are start positions in `out`, in bytes.
paths: FxHashMap<(DefId, &'tcx [GenericArg<'tcx>]), usize>,
types: FxHashMap<Ty<'tcx>, usize>,
consts: FxHashMap<ty::Const<'tcx>, usize>,
}
impl<'tcx> SymbolMangler<'tcx> {
fn push(&mut self, s: &str) {
self.out.push_str(s);
}
/// Push a `_`-terminated base 62 integer, using the format
/// specified in the RFC as `<base-62-number>`, that is:
/// * `x = 0` is encoded as just the `"_"` terminator
/// * `x > 0` is encoded as `x - 1` in base 62, followed by `"_"`,
/// e.g. `1` becomes `"0_"`, `62` becomes `"Z_"`, etc.
fn push_integer_62(&mut self, x: u64) {
push_integer_62(x, &mut self.out)
}
/// Push a `tag`-prefixed base 62 integer, when larger than `0`, that is:
/// * `x = 0` is encoded as `""` (nothing)
/// * `x > 0` is encoded as the `tag` followed by `push_integer_62(x - 1)`
/// e.g. `1` becomes `tag + "_"`, `2` becomes `tag + "0_"`, etc.
fn push_opt_integer_62(&mut self, tag: &str, x: u64) {
if let Some(x) = x.checked_sub(1) {
self.push(tag);
self.push_integer_62(x);
}
}
fn push_disambiguator(&mut self, dis: u64) {
self.push_opt_integer_62("s", dis);
}
fn push_ident(&mut self, ident: &str) {
push_ident(ident, &mut self.out)
}
fn path_append_ns(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
ns: char,
disambiguator: u64,
name: &str,
) -> Result<(), PrintError> {
self.push("N");
self.out.push(ns);
print_prefix(self)?;
self.push_disambiguator(disambiguator);
self.push_ident(name);
Ok(())
}
fn print_backref(&mut self, i: usize) -> Result<(), PrintError> {
self.push("B");
self.push_integer_62((i - self.start_offset) as u64);
Ok(())
}
fn in_binder<T>(
&mut self,
value: &ty::Binder<'tcx, T>,
print_value: impl FnOnce(&mut Self, &T) -> Result<(), PrintError>,
) -> Result<(), PrintError>
where
T: TypeVisitable<TyCtxt<'tcx>>,
{
let mut lifetime_depths =
self.binders.last().map(|b| b.lifetime_depths.end).map_or(0..0, |i| i..i);
// FIXME(non-lifetime-binders): What to do here?
let lifetimes = value
.bound_vars()
.iter()
.filter(|var| matches!(var, ty::BoundVariableKind::Region(..)))
.count() as u32;
self.push_opt_integer_62("G", lifetimes as u64);
lifetime_depths.end += lifetimes;
self.binders.push(BinderLevel { lifetime_depths });
print_value(self, value.as_ref().skip_binder())?;
self.binders.pop();
Ok(())
}
}
impl<'tcx> Printer<'tcx> for SymbolMangler<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn print_def_path(
&mut self,
def_id: DefId,
args: &'tcx [GenericArg<'tcx>],
) -> Result<(), PrintError> {
if let Some(&i) = self.paths.get(&(def_id, args)) {
return self.print_backref(i);
}
let start = self.out.len();
self.default_print_def_path(def_id, args)?;
// Only cache paths that do not refer to an enclosing
// binder (which would change depending on context).
if !args.iter().any(|k| k.has_escaping_bound_vars()) {
self.paths.insert((def_id, args), start);
}
Ok(())
}
fn print_impl_path(
&mut self,
impl_def_id: DefId,
args: &'tcx [GenericArg<'tcx>],
mut self_ty: Ty<'tcx>,
mut impl_trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError> {
let key = self.tcx.def_key(impl_def_id);
let parent_def_id = DefId { index: key.parent.unwrap(), ..impl_def_id };
let mut param_env = self.tcx.param_env_reveal_all_normalized(impl_def_id);
if !args.is_empty() {
param_env = EarlyBinder::bind(param_env).instantiate(self.tcx, args);
}
match &mut impl_trait_ref {
Some(impl_trait_ref) => {
assert_eq!(impl_trait_ref.self_ty(), self_ty);
*impl_trait_ref = self.tcx.normalize_erasing_regions(param_env, *impl_trait_ref);
self_ty = impl_trait_ref.self_ty();
}
None => {
self_ty = self.tcx.normalize_erasing_regions(param_env, self_ty);
}
}
self.push(match impl_trait_ref {
Some(_) => "X",
None => "M",
});
// Encode impl generic params if the generic parameters contain non-region parameters
// (implying polymorphization is enabled) and this isn't an inherent impl.
if impl_trait_ref.is_some() && args.iter().any(|a| a.has_non_region_param()) {
self.path_generic_args(
|this| {
this.path_append_ns(
|cx| cx.print_def_path(parent_def_id, &[]),
'I',
key.disambiguated_data.disambiguator as u64,
"",
)
},
args,
)?;
} else {
self.push_disambiguator(key.disambiguated_data.disambiguator as u64);
self.print_def_path(parent_def_id, &[])?;
}
self_ty.print(self)?;
if let Some(trait_ref) = impl_trait_ref {
self.print_def_path(trait_ref.def_id, trait_ref.args)?;
}
Ok(())
}
fn print_region(&mut self, region: ty::Region<'_>) -> Result<(), PrintError> {
let i = match *region {
// Erased lifetimes use the index 0, for a
// shorter mangling of `L_`.
ty::ReErased => 0,
// Bound lifetimes use indices starting at 1,
// see `BinderLevel` for more details.
ty::ReBound(debruijn, ty::BoundRegion { var, kind: ty::BrAnon }) => {
let binder = &self.binders[self.binders.len() - 1 - debruijn.index()];
let depth = binder.lifetime_depths.start + var.as_u32();
1 + (self.binders.last().unwrap().lifetime_depths.end - 1 - depth)
}
_ => bug!("symbol_names: non-erased region `{:?}`", region),
};
self.push("L");
self.push_integer_62(i as u64);
Ok(())
}
fn print_type(&mut self, ty: Ty<'tcx>) -> Result<(), PrintError> {
// Basic types, never cached (single-character).
let basic_type = match ty.kind() {
ty::Bool => "b",
ty::Char => "c",
ty::Str => "e",
ty::Tuple(_) if ty.is_unit() => "u",
ty::Int(IntTy::I8) => "a",
ty::Int(IntTy::I16) => "s",
ty::Int(IntTy::I32) => "l",
ty::Int(IntTy::I64) => "x",
ty::Int(IntTy::I128) => "n",
ty::Int(IntTy::Isize) => "i",
ty::Uint(UintTy::U8) => "h",
ty::Uint(UintTy::U16) => "t",
ty::Uint(UintTy::U32) => "m",
ty::Uint(UintTy::U64) => "y",
ty::Uint(UintTy::U128) => "o",
ty::Uint(UintTy::Usize) => "j",
ty::Float(FloatTy::F16) => "C3f16",
ty::Float(FloatTy::F32) => "f",
ty::Float(FloatTy::F64) => "d",
ty::Float(FloatTy::F128) => "C4f128",
ty::Never => "z",
// Should only be encountered with polymorphization,
// or within the identity-substituted impl header of an
// item nested within an impl item.
ty::Param(_) => "p",
ty::Bound(..) | ty::Placeholder(_) | ty::Infer(_) | ty::Error(_) => bug!(),
_ => "",
};
if !basic_type.is_empty() {
self.push(basic_type);
return Ok(());
}
if let Some(&i) = self.types.get(&ty) {
return self.print_backref(i);
}
let start = self.out.len();
match *ty.kind() {
// Basic types, handled above.
ty::Bool | ty::Char | ty::Str | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never => {
unreachable!()
}
ty::Tuple(_) if ty.is_unit() => unreachable!(),
// Placeholders, also handled as part of basic types.
ty::Param(_) | ty::Bound(..) | ty::Placeholder(_) | ty::Infer(_) | ty::Error(_) => {
unreachable!()
}
ty::Ref(r, ty, mutbl) => {
self.push(match mutbl {
hir::Mutability::Not => "R",
hir::Mutability::Mut => "Q",
});
if !r.is_erased() {
r.print(self)?;
}
ty.print(self)?;
}
ty::RawPtr(ty, mutbl) => {
self.push(match mutbl {
hir::Mutability::Not => "P",
hir::Mutability::Mut => "O",
});
ty.print(self)?;
}
ty::Pat(ty, pat) => match *pat {
ty::PatternKind::Range { start, end, include_end } => {
let consts = [
start.unwrap_or(self.tcx.consts.unit),
end.unwrap_or(self.tcx.consts.unit),
ty::Const::from_bool(self.tcx, include_end),
];
// HACK: Represent as tuple until we have something better.
// HACK: constants are used in arrays, even if the types don't match.
self.push("T");
ty.print(self)?;
for ct in consts {
Ty::new_array_with_const_len(self.tcx, self.tcx.types.unit, ct)
.print(self)?;
}
self.push("E");
}
},
ty::Array(ty, len) => {
self.push("A");
ty.print(self)?;
self.print_const(len)?;
}
ty::Slice(ty) => {
self.push("S");
ty.print(self)?;
}
ty::Tuple(tys) => {
self.push("T");
for ty in tys.iter() {
ty.print(self)?;
}
self.push("E");
}
// Mangle all nominal types as paths.
ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), args)
| ty::FnDef(def_id, args)
| ty::Closure(def_id, args)
| ty::CoroutineClosure(def_id, args)
| ty::Coroutine(def_id, args) => {
self.print_def_path(def_id, args)?;
}
// We may still encounter projections here due to the printing
// logic sometimes passing identity-substituted impl headers.
ty::Alias(ty::Projection, ty::AliasTy { def_id, args, .. }) => {
self.print_def_path(def_id, args)?;
}
ty::Foreign(def_id) => {
self.print_def_path(def_id, &[])?;
}
ty::FnPtr(sig_tys, hdr) => {
let sig = sig_tys.with(hdr);
self.push("F");
self.in_binder(&sig, |cx, sig| {
if sig.safety == hir::Safety::Unsafe {
cx.push("U");
}
match sig.abi {
Abi::Rust => {}
Abi::C { unwind: false } => cx.push("KC"),
abi => {
cx.push("K");
let name = abi.name();
if name.contains('-') {
cx.push_ident(&name.replace('-', "_"));
} else {
cx.push_ident(name);
}
}
}
for &ty in sig.inputs() {
ty.print(cx)?;
}
if sig.c_variadic {
cx.push("v");
}
cx.push("E");
sig.output().print(cx)
})?;
}
ty::Dynamic(predicates, r, kind) => {
self.push(match kind {
ty::Dyn => "D",
// FIXME(dyn-star): need to update v0 mangling docs
ty::DynStar => "D*",
});
self.print_dyn_existential(predicates)?;
r.print(self)?;
}
ty::Alias(..) => bug!("symbol_names: unexpected alias"),
ty::CoroutineWitness(..) => bug!("symbol_names: unexpected `CoroutineWitness`"),
}
// Only cache types that do not refer to an enclosing
// binder (which would change depending on context).
if !ty.has_escaping_bound_vars() {
self.types.insert(ty, start);
}
Ok(())
}
fn print_dyn_existential(
&mut self,
predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
) -> Result<(), PrintError> {
// Okay, so this is a bit tricky. Imagine we have a trait object like
// `dyn for<'a> Foo<'a, Bar = &'a ()>`. When we mangle this, the
// output looks really close to the syntax, where the `Bar = &'a ()` bit
// is under the same binders (`['a]`) as the `Foo<'a>` bit. However, we
// actually desugar these into two separate `ExistentialPredicate`s. We
// can't enter/exit the "binder scope" twice though, because then we
// would mangle the binders twice. (Also, side note, we merging these
// two is kind of difficult, because of potential HRTBs in the Projection
// predicate.)
//
// Also worth mentioning: imagine that we instead had
// `dyn for<'a> Foo<'a, Bar = &'a ()> + Send`. In this case, `Send` is
// under the same binders as `Foo`. Currently, this doesn't matter,
// because only *auto traits* are allowed other than the principal trait
// and all auto traits don't have any generics. Two things could
// make this not an "okay" mangling:
// 1) Instead of mangling only *used*
// bound vars, we want to mangle *all* bound vars (`for<'b> Send` is a
// valid trait predicate);
// 2) We allow multiple "principal" traits in the future, or at least
// allow in any form another trait predicate that can take generics.
//
// Here we assume that predicates have the following structure:
// [<Trait> [{<Projection>}]] [{<Auto>}]
// Since any predicates after the first one shouldn't change the binders,
// just put them all in the binders of the first.
self.in_binder(&predicates[0], |cx, _| {
for predicate in predicates.iter() {
// It would be nice to be able to validate bound vars here, but
// projections can actually include bound vars from super traits
// because of HRTBs (only in the `Self` type). Also, auto traits
// could have different bound vars *anyways*.
match predicate.as_ref().skip_binder() {
ty::ExistentialPredicate::Trait(trait_ref) => {
// Use a type that can't appear in defaults of type parameters.
let dummy_self = Ty::new_fresh(cx.tcx, 0);
let trait_ref = trait_ref.with_self_ty(cx.tcx, dummy_self);
cx.print_def_path(trait_ref.def_id, trait_ref.args)?;
}
ty::ExistentialPredicate::Projection(projection) => {
let name = cx.tcx.associated_item(projection.def_id).name;
cx.push("p");
cx.push_ident(name.as_str());
match projection.term.unpack() {
ty::TermKind::Ty(ty) => ty.print(cx),
ty::TermKind::Const(c) => c.print(cx),
}?;
}
ty::ExistentialPredicate::AutoTrait(def_id) => {
cx.print_def_path(*def_id, &[])?;
}
}
}
Ok(())
})?;
self.push("E");
Ok(())
}
fn print_const(&mut self, ct: ty::Const<'tcx>) -> Result<(), PrintError> {
// We only mangle a typed value if the const can be evaluated.
let (ct_ty, valtree) = match ct.kind() {
ty::ConstKind::Value(ty, val) => (ty, val),
// Should only be encountered with polymorphization,
// or within the identity-substituted impl header of an
// item nested within an impl item.
ty::ConstKind::Param(_) => {
// Never cached (single-character).
self.push("p");
return Ok(());
}
// We may still encounter unevaluated consts due to the printing
// logic sometimes passing identity-substituted impl headers.
ty::Unevaluated(ty::UnevaluatedConst { def, args, .. }) => {
return self.print_def_path(def, args);
}
ty::ConstKind::Expr(_)
| ty::ConstKind::Infer(_)
| ty::ConstKind::Bound(..)
| ty::ConstKind::Placeholder(_)
| ty::ConstKind::Error(_) => bug!(),
};
if let Some(&i) = self.consts.get(&ct) {
self.print_backref(i)?;
return Ok(());
}
let start = self.out.len();
match ct_ty.kind() {
ty::Uint(_) | ty::Int(_) | ty::Bool | ty::Char => {
ct_ty.print(self)?;
let mut bits = ct
.try_to_bits(self.tcx, ty::ParamEnv::reveal_all())
.expect("expected const to be monomorphic");
// Negative integer values are mangled using `n` as a "sign prefix".
if let ty::Int(ity) = ct_ty.kind() {
let val =
Integer::from_int_ty(&self.tcx, *ity).size().sign_extend(bits) as i128;
if val < 0 {
self.push("n");
}
bits = val.unsigned_abs();
}
let _ = write!(self.out, "{bits:x}_");
}
// Handle `str` as partial support for unsized constants
ty::Str => {
let tcx = self.tcx();
// HACK(jaic1): hide the `str` type behind a reference
// for the following transformation from valtree to raw bytes
let ref_ty = Ty::new_imm_ref(tcx, tcx.lifetimes.re_static, ct_ty);
let slice = valtree.try_to_raw_bytes(tcx, ref_ty).unwrap_or_else(|| {
bug!("expected to get raw bytes from valtree {:?} for type {:}", valtree, ct_ty)
});
let s = std::str::from_utf8(slice).expect("non utf8 str from MIR interpreter");
// "e" for str as a basic type
self.push("e");
// FIXME(eddyb) use a specialized hex-encoding loop.
for byte in s.bytes() {
let _ = write!(self.out, "{byte:02x}");
}
self.push("_");
}
// FIXME(valtrees): Remove the special case for `str`
// here and fully support unsized constants.
ty::Ref(_, _, mutbl) => {
self.push(match mutbl {
hir::Mutability::Not => "R",
hir::Mutability::Mut => "Q",
});
let pointee_ty =
ct_ty.builtin_deref(true).expect("tried to dereference on non-ptr type");
let dereferenced_const = ty::Const::new_value(self.tcx, valtree, pointee_ty);
dereferenced_const.print(self)?;
}
ty::Array(..) | ty::Tuple(..) | ty::Adt(..) | ty::Slice(_) => {
let contents = self.tcx.destructure_const(ct);
let fields = contents.fields.iter().copied();
let print_field_list = |this: &mut Self| {
for field in fields.clone() {
field.print(this)?;
}
this.push("E");
Ok(())
};
match *ct_ty.kind() {
ty::Array(..) | ty::Slice(_) => {
self.push("A");
print_field_list(self)?;
}
ty::Tuple(..) => {
self.push("T");
print_field_list(self)?;
}
ty::Adt(def, args) => {
let variant_idx =
contents.variant.expect("destructed const of adt without variant idx");
let variant_def = &def.variant(variant_idx);
self.push("V");
self.print_def_path(variant_def.def_id, args)?;
match variant_def.ctor_kind() {
Some(CtorKind::Const) => {
self.push("U");
}
Some(CtorKind::Fn) => {
self.push("T");
print_field_list(self)?;
}
None => {
self.push("S");
for (field_def, field) in iter::zip(&variant_def.fields, fields) {
// HACK(eddyb) this mimics `path_append`,
// instead of simply using `field_def.ident`,
// just to be able to handle disambiguators.
let disambiguated_field =
self.tcx.def_key(field_def.did).disambiguated_data;
let field_name = disambiguated_field.data.get_opt_name();
self.push_disambiguator(
disambiguated_field.disambiguator as u64,
);
self.push_ident(field_name.unwrap_or(kw::Empty).as_str());
field.print(self)?;
}
self.push("E");
}
}
}
_ => unreachable!(),
}
}
_ => {
bug!("symbol_names: unsupported constant of type `{}` ({:?})", ct_ty, ct);
}
}
// Only cache consts that do not refer to an enclosing
// binder (which would change depending on context).
if !ct.has_escaping_bound_vars() {
self.consts.insert(ct, start);
}
Ok(())
}
fn path_crate(&mut self, cnum: CrateNum) -> Result<(), PrintError> {
self.push("C");
let stable_crate_id = self.tcx.def_path_hash(cnum.as_def_id()).stable_crate_id();
self.push_disambiguator(stable_crate_id.as_u64());
let name = self.tcx.crate_name(cnum);
self.push_ident(name.as_str());
Ok(())
}
fn path_qualified(
&mut self,
self_ty: Ty<'tcx>,
trait_ref: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError> {
assert!(trait_ref.is_some());
let trait_ref = trait_ref.unwrap();
self.push("Y");
self_ty.print(self)?;
self.print_def_path(trait_ref.def_id, trait_ref.args)
}
fn path_append_impl(
&mut self,
_: impl FnOnce(&mut Self) -> Result<(), PrintError>,
_: &DisambiguatedDefPathData,
_: Ty<'tcx>,
_: Option<ty::TraitRef<'tcx>>,
) -> Result<(), PrintError> {
// Inlined into `print_impl_path`
unreachable!()
}
fn path_append(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
disambiguated_data: &DisambiguatedDefPathData,
) -> Result<(), PrintError> {
let ns = match disambiguated_data.data {
// Extern block segments can be skipped, names from extern blocks
// are effectively living in their parent modules.
DefPathData::ForeignMod => return print_prefix(self),
// Uppercase categories are more stable than lowercase ones.
DefPathData::TypeNs(_) => 't',
DefPathData::ValueNs(_) => 'v',
DefPathData::Closure => 'C',
DefPathData::Ctor => 'c',
DefPathData::AnonConst => 'k',
DefPathData::OpaqueTy => 'i',
// These should never show up as `path_append` arguments.
DefPathData::CrateRoot
| DefPathData::Use
| DefPathData::GlobalAsm
| DefPathData::Impl
| DefPathData::MacroNs(_)
| DefPathData::LifetimeNs(_)
| DefPathData::AnonAdt => {
bug!("symbol_names: unexpected DefPathData: {:?}", disambiguated_data.data)
}
};
let name = disambiguated_data.data.get_opt_name();
self.path_append_ns(
print_prefix,
ns,
disambiguated_data.disambiguator as u64,
name.unwrap_or(kw::Empty).as_str(),
)
}
fn path_generic_args(
&mut self,
print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
args: &[GenericArg<'tcx>],
) -> Result<(), PrintError> {
// Don't print any regions if they're all erased.
let print_regions = args.iter().any(|arg| match arg.unpack() {
GenericArgKind::Lifetime(r) => !r.is_erased(),
_ => false,
});
let args = args.iter().cloned().filter(|arg| match arg.unpack() {
GenericArgKind::Lifetime(_) => print_regions,
_ => true,
});
if args.clone().next().is_none() {
return print_prefix(self);
}
self.push("I");
print_prefix(self)?;
for arg in args {
match arg.unpack() {
GenericArgKind::Lifetime(lt) => {
lt.print(self)?;
}
GenericArgKind::Type(ty) => {
ty.print(self)?;
}
GenericArgKind::Const(c) => {
self.push("K");
c.print(self)?;
}
}
}
self.push("E");
Ok(())
}
}
/// Push a `_`-terminated base 62 integer, using the format
/// specified in the RFC as `<base-62-number>`, that is:
/// * `x = 0` is encoded as just the `"_"` terminator
/// * `x > 0` is encoded as `x - 1` in base 62, followed by `"_"`,
/// e.g. `1` becomes `"0_"`, `62` becomes `"Z_"`, etc.
pub(crate) fn push_integer_62(x: u64, output: &mut String) {
if let Some(x) = x.checked_sub(1) {
output.push_str(&x.to_base(62));
}
output.push('_');
}
pub(crate) fn encode_integer_62(x: u64) -> String {
let mut output = String::new();
push_integer_62(x, &mut output);
output
}
pub(crate) fn push_ident(ident: &str, output: &mut String) {
let mut use_punycode = false;
for b in ident.bytes() {
match b {
b'_' | b'a'..=b'z' | b'A'..=b'Z' | b'0'..=b'9' => {}
0x80..=0xff => use_punycode = true,
_ => bug!("symbol_names: bad byte {} in ident {:?}", b, ident),
}
}
let punycode_string;
let ident = if use_punycode {
output.push('u');
// FIXME(eddyb) we should probably roll our own punycode implementation.
let mut punycode_bytes = match punycode::encode(ident) {
Ok(s) => s.into_bytes(),
Err(()) => bug!("symbol_names: punycode encoding failed for ident {:?}", ident),
};
// Replace `-` with `_`.
if let Some(c) = punycode_bytes.iter_mut().rfind(|&&mut c| c == b'-') {
*c = b'_';
}
// FIXME(eddyb) avoid rechecking UTF-8 validity.
punycode_string = String::from_utf8(punycode_bytes).unwrap();
&punycode_string
} else {
ident
};
let _ = write!(output, "{}", ident.len());
// Write a separating `_` if necessary (leading digit or `_`).
if let Some('_' | '0'..='9') = ident.chars().next() {
output.push('_');
}
output.push_str(ident);
}