rustc_trait_selection/traits/
fulfill.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
use std::marker::PhantomData;

use rustc_data_structures::captures::Captures;
use rustc_data_structures::obligation_forest::{
    Error, ForestObligation, ObligationForest, ObligationProcessor, Outcome, ProcessResult,
};
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_infer::traits::{
    FromSolverError, PolyTraitObligation, PredicateObligations, ProjectionCacheKey, SelectionError,
    TraitEngine,
};
use rustc_middle::bug;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::{self, Binder, Const, GenericArgsRef, TypeVisitableExt};
use thin_vec::ThinVec;
use tracing::{debug, debug_span, instrument};

use super::project::{self, ProjectAndUnifyResult};
use super::select::SelectionContext;
use super::{
    EvaluationResult, FulfillmentError, FulfillmentErrorCode, PredicateObligation,
    ScrubbedTraitError, Unimplemented, const_evaluatable, wf,
};
use crate::error_reporting::InferCtxtErrorExt;
use crate::infer::{InferCtxt, TyOrConstInferVar};
use crate::traits::normalize::normalize_with_depth_to;
use crate::traits::project::{PolyProjectionObligation, ProjectionCacheKeyExt as _};
use crate::traits::query::evaluate_obligation::InferCtxtExt;

pub(crate) type PendingPredicateObligations<'tcx> = ThinVec<PendingPredicateObligation<'tcx>>;

impl<'tcx> ForestObligation for PendingPredicateObligation<'tcx> {
    /// Note that we include both the `ParamEnv` and the `Predicate`,
    /// as the `ParamEnv` can influence whether fulfillment succeeds
    /// or fails.
    type CacheKey = ty::ParamEnvAnd<'tcx, ty::Predicate<'tcx>>;

    fn as_cache_key(&self) -> Self::CacheKey {
        self.obligation.param_env.and(self.obligation.predicate)
    }
}

/// The fulfillment context is used to drive trait resolution. It
/// consists of a list of obligations that must be (eventually)
/// satisfied. The job is to track which are satisfied, which yielded
/// errors, and which are still pending. At any point, users can call
/// `select_where_possible`, and the fulfillment context will try to do
/// selection, retaining only those obligations that remain
/// ambiguous. This may be helpful in pushing type inference
/// along. Once all type inference constraints have been generated, the
/// method `select_all_or_error` can be used to report any remaining
/// ambiguous cases as errors.
pub struct FulfillmentContext<'tcx, E: 'tcx> {
    /// A list of all obligations that have been registered with this
    /// fulfillment context.
    predicates: ObligationForest<PendingPredicateObligation<'tcx>>,

    /// The snapshot in which this context was created. Using the context
    /// outside of this snapshot leads to subtle bugs if the snapshot
    /// gets rolled back. Because of this we explicitly check that we only
    /// use the context in exactly this snapshot.
    usable_in_snapshot: usize,

    _errors: PhantomData<E>,
}

#[derive(Clone, Debug)]
pub struct PendingPredicateObligation<'tcx> {
    pub obligation: PredicateObligation<'tcx>,
    // This is far more often read than modified, meaning that we
    // should mostly optimize for reading speed, while modifying is not as relevant.
    //
    // For whatever reason using a boxed slice is slower than using a `Vec` here.
    pub stalled_on: Vec<TyOrConstInferVar>,
}

// `PendingPredicateObligation` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(PendingPredicateObligation<'_>, 72);

impl<'tcx, E> FulfillmentContext<'tcx, E>
where
    E: FromSolverError<'tcx, OldSolverError<'tcx>>,
{
    /// Creates a new fulfillment context.
    pub(super) fn new(infcx: &InferCtxt<'tcx>) -> FulfillmentContext<'tcx, E> {
        assert!(
            !infcx.next_trait_solver(),
            "old trait solver fulfillment context created when \
            infcx is set up for new trait solver"
        );
        FulfillmentContext {
            predicates: ObligationForest::new(),
            usable_in_snapshot: infcx.num_open_snapshots(),
            _errors: PhantomData,
        }
    }

    /// Attempts to select obligations using `selcx`.
    fn select(&mut self, selcx: SelectionContext<'_, 'tcx>) -> Vec<E> {
        let span = debug_span!("select", obligation_forest_size = ?self.predicates.len());
        let _enter = span.enter();
        let infcx = selcx.infcx;

        // Process pending obligations.
        let outcome: Outcome<_, _> =
            self.predicates.process_obligations(&mut FulfillProcessor { selcx });

        // FIXME: if we kept the original cache key, we could mark projection
        // obligations as complete for the projection cache here.

        let errors: Vec<E> = outcome
            .errors
            .into_iter()
            .map(|err| E::from_solver_error(infcx, OldSolverError(err)))
            .collect();

        debug!(
            "select({} predicates remaining, {} errors) done",
            self.predicates.len(),
            errors.len()
        );

        errors
    }
}

impl<'tcx, E> TraitEngine<'tcx, E> for FulfillmentContext<'tcx, E>
where
    E: FromSolverError<'tcx, OldSolverError<'tcx>>,
{
    #[inline]
    fn register_predicate_obligation(
        &mut self,
        infcx: &InferCtxt<'tcx>,
        mut obligation: PredicateObligation<'tcx>,
    ) {
        assert_eq!(self.usable_in_snapshot, infcx.num_open_snapshots());
        // this helps to reduce duplicate errors, as well as making
        // debug output much nicer to read and so on.
        debug_assert!(!obligation.param_env.has_non_region_infer());
        obligation.predicate = infcx.resolve_vars_if_possible(obligation.predicate);

        debug!(?obligation, "register_predicate_obligation");

        self.predicates
            .register_obligation(PendingPredicateObligation { obligation, stalled_on: vec![] });
    }

    fn collect_remaining_errors(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<E> {
        self.predicates
            .to_errors(FulfillmentErrorCode::Ambiguity { overflow: None })
            .into_iter()
            .map(|err| E::from_solver_error(infcx, OldSolverError(err)))
            .collect()
    }

    fn select_where_possible(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<E> {
        let selcx = SelectionContext::new(infcx);
        self.select(selcx)
    }

    fn drain_unstalled_obligations(
        &mut self,
        infcx: &InferCtxt<'tcx>,
    ) -> PredicateObligations<'tcx> {
        let mut processor =
            DrainProcessor { removed_predicates: PredicateObligations::new(), infcx };
        let outcome: Outcome<_, _> = self.predicates.process_obligations(&mut processor);
        assert!(outcome.errors.is_empty());
        return processor.removed_predicates;

        struct DrainProcessor<'a, 'tcx> {
            infcx: &'a InferCtxt<'tcx>,
            removed_predicates: PredicateObligations<'tcx>,
        }

        impl<'tcx> ObligationProcessor for DrainProcessor<'_, 'tcx> {
            type Obligation = PendingPredicateObligation<'tcx>;
            type Error = !;
            type OUT = Outcome<Self::Obligation, Self::Error>;

            fn needs_process_obligation(&self, pending_obligation: &Self::Obligation) -> bool {
                pending_obligation
                    .stalled_on
                    .iter()
                    .any(|&var| self.infcx.ty_or_const_infer_var_changed(var))
            }

            fn process_obligation(
                &mut self,
                pending_obligation: &mut PendingPredicateObligation<'tcx>,
            ) -> ProcessResult<PendingPredicateObligation<'tcx>, !> {
                assert!(self.needs_process_obligation(pending_obligation));
                self.removed_predicates.push(pending_obligation.obligation.clone());
                ProcessResult::Changed(Default::default())
            }

            fn process_backedge<'c, I>(
                &mut self,
                cycle: I,
                _marker: PhantomData<&'c PendingPredicateObligation<'tcx>>,
            ) -> Result<(), !>
            where
                I: Clone + Iterator<Item = &'c PendingPredicateObligation<'tcx>>,
            {
                self.removed_predicates.extend(cycle.map(|c| c.obligation.clone()));
                Ok(())
            }
        }
    }

    fn pending_obligations(&self) -> PredicateObligations<'tcx> {
        self.predicates.map_pending_obligations(|o| o.obligation.clone())
    }
}

struct FulfillProcessor<'a, 'tcx> {
    selcx: SelectionContext<'a, 'tcx>,
}

fn mk_pending<'tcx>(os: PredicateObligations<'tcx>) -> PendingPredicateObligations<'tcx> {
    os.into_iter()
        .map(|o| PendingPredicateObligation { obligation: o, stalled_on: vec![] })
        .collect()
}

impl<'a, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'tcx> {
    type Obligation = PendingPredicateObligation<'tcx>;
    type Error = FulfillmentErrorCode<'tcx>;
    type OUT = Outcome<Self::Obligation, Self::Error>;

    /// Compared to `needs_process_obligation` this and its callees
    /// contain some optimizations that come at the price of false negatives.
    ///
    /// They
    /// - reduce branching by covering only the most common case
    /// - take a read-only view of the unification tables which allows skipping undo_log
    ///   construction.
    /// - bail out on value-cache misses in ena to avoid pointer chasing
    /// - hoist RefCell locking out of the loop
    #[inline]
    fn skippable_obligations<'b>(
        &'b self,
        it: impl Iterator<Item = &'b Self::Obligation>,
    ) -> usize {
        let is_unchanged = self.selcx.infcx.is_ty_infer_var_definitely_unchanged();

        it.take_while(|o| match o.stalled_on.as_slice() {
            [o] => is_unchanged(*o),
            _ => false,
        })
        .count()
    }

    /// Identifies whether a predicate obligation needs processing.
    ///
    /// This is always inlined because it has a single callsite and it is
    /// called *very* frequently. Be careful modifying this code! Several
    /// compile-time benchmarks are very sensitive to even small changes.
    #[inline(always)]
    fn needs_process_obligation(&self, pending_obligation: &Self::Obligation) -> bool {
        // If we were stalled on some unresolved variables, first check whether
        // any of them have been resolved; if not, don't bother doing more work
        // yet.
        let stalled_on = &pending_obligation.stalled_on;
        match stalled_on.len() {
            // This case is the hottest most of the time, being hit up to 99%
            // of the time. `keccak` and `cranelift-codegen-0.82.1` are
            // benchmarks that particularly stress this path.
            1 => self.selcx.infcx.ty_or_const_infer_var_changed(stalled_on[0]),

            // In this case we haven't changed, but wish to make a change. Note
            // that this is a special case, and is not equivalent to the `_`
            // case below, which would return `false` for an empty `stalled_on`
            // vector.
            //
            // This case is usually hit only 1% of the time or less, though it
            // reaches 20% in `wasmparser-0.101.0`.
            0 => true,

            // This case is usually hit only 1% of the time or less, though it
            // reaches 95% in `mime-0.3.16`, 64% in `wast-54.0.0`, and 12% in
            // `inflate-0.4.5`.
            //
            // The obvious way of writing this, with a call to `any()` and no
            // closure, is currently slower than this version.
            _ => (|| {
                for &infer_var in stalled_on {
                    if self.selcx.infcx.ty_or_const_infer_var_changed(infer_var) {
                        return true;
                    }
                }
                false
            })(),
        }
    }

    /// Processes a predicate obligation and returns either:
    /// - `Changed(v)` if the predicate is true, presuming that `v` are also true
    /// - `Unchanged` if we don't have enough info to be sure
    /// - `Error(e)` if the predicate does not hold
    ///
    /// This is called much less often than `needs_process_obligation`, so we
    /// never inline it.
    #[inline(never)]
    #[instrument(level = "debug", skip(self, pending_obligation))]
    fn process_obligation(
        &mut self,
        pending_obligation: &mut PendingPredicateObligation<'tcx>,
    ) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
        pending_obligation.stalled_on.truncate(0);

        let obligation = &mut pending_obligation.obligation;

        debug!(?obligation, "pre-resolve");

        if obligation.predicate.has_non_region_infer() {
            obligation.predicate = self.selcx.infcx.resolve_vars_if_possible(obligation.predicate);
        }

        let obligation = &pending_obligation.obligation;

        let infcx = self.selcx.infcx;

        if obligation.predicate.has_aliases() {
            let mut obligations = PredicateObligations::new();
            let predicate = normalize_with_depth_to(
                &mut self.selcx,
                obligation.param_env,
                obligation.cause.clone(),
                obligation.recursion_depth + 1,
                obligation.predicate,
                &mut obligations,
            );
            if predicate != obligation.predicate {
                obligations.push(obligation.with(infcx.tcx, predicate));
                return ProcessResult::Changed(mk_pending(obligations));
            }
        }
        let binder = obligation.predicate.kind();
        match binder.no_bound_vars() {
            None => match binder.skip_binder() {
                // Evaluation will discard candidates using the leak check.
                // This means we need to pass it the bound version of our
                // predicate.
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_ref)) => {
                    let trait_obligation = obligation.with(infcx.tcx, binder.rebind(trait_ref));

                    self.process_trait_obligation(
                        obligation,
                        trait_obligation,
                        &mut pending_obligation.stalled_on,
                    )
                }
                ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
                    let project_obligation = obligation.with(infcx.tcx, binder.rebind(data));

                    self.process_projection_obligation(
                        obligation,
                        project_obligation,
                        &mut pending_obligation.stalled_on,
                    )
                }
                ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(_))
                | ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(_))
                | ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(..))
                | ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_))
                | ty::PredicateKind::DynCompatible(_)
                | ty::PredicateKind::Subtype(_)
                | ty::PredicateKind::Coerce(_)
                | ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
                | ty::PredicateKind::ConstEquate(..) => {
                    let pred = ty::Binder::dummy(infcx.enter_forall_and_leak_universe(binder));
                    let mut obligations = PredicateObligations::with_capacity(1);
                    obligations.push(obligation.with(infcx.tcx, pred));

                    ProcessResult::Changed(mk_pending(obligations))
                }
                ty::PredicateKind::Ambiguous => ProcessResult::Unchanged,
                ty::PredicateKind::NormalizesTo(..) => {
                    bug!("NormalizesTo is only used by the new solver")
                }
                ty::PredicateKind::AliasRelate(..) => {
                    bug!("AliasRelate is only used by the new solver")
                }
            },
            Some(pred) => match pred {
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
                    let trait_obligation = obligation.with(infcx.tcx, Binder::dummy(data));

                    self.process_trait_obligation(
                        obligation,
                        trait_obligation,
                        &mut pending_obligation.stalled_on,
                    )
                }

                ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(data)) => {
                    if infcx.considering_regions {
                        infcx.region_outlives_predicate(&obligation.cause, Binder::dummy(data));
                    }

                    ProcessResult::Changed(Default::default())
                }

                ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(
                    t_a,
                    r_b,
                ))) => {
                    if infcx.considering_regions {
                        infcx.register_region_obligation_with_cause(t_a, r_b, &obligation.cause);
                    }
                    ProcessResult::Changed(Default::default())
                }

                ty::PredicateKind::Clause(ty::ClauseKind::Projection(ref data)) => {
                    let project_obligation = obligation.with(infcx.tcx, Binder::dummy(*data));

                    self.process_projection_obligation(
                        obligation,
                        project_obligation,
                        &mut pending_obligation.stalled_on,
                    )
                }

                ty::PredicateKind::DynCompatible(trait_def_id) => {
                    if !self.selcx.tcx().is_dyn_compatible(trait_def_id) {
                        ProcessResult::Error(FulfillmentErrorCode::Select(Unimplemented))
                    } else {
                        ProcessResult::Changed(Default::default())
                    }
                }

                ty::PredicateKind::Ambiguous => ProcessResult::Unchanged,
                ty::PredicateKind::NormalizesTo(..) => {
                    bug!("NormalizesTo is only used by the new solver")
                }
                ty::PredicateKind::AliasRelate(..) => {
                    bug!("AliasRelate is only used by the new solver")
                }
                // Compute `ConstArgHasType` above the overflow check below.
                // This is because this is not ever a useful obligation to report
                // as the cause of an overflow.
                ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
                    let ct = infcx.shallow_resolve_const(ct);
                    let ct_ty = match ct.kind() {
                        ty::ConstKind::Infer(var) => {
                            let var = match var {
                                ty::InferConst::Var(vid) => TyOrConstInferVar::Const(vid),
                                ty::InferConst::EffectVar(vid) => TyOrConstInferVar::Effect(vid),
                                ty::InferConst::Fresh(_) => {
                                    bug!("encountered fresh const in fulfill")
                                }
                            };
                            pending_obligation.stalled_on.clear();
                            pending_obligation.stalled_on.extend([var]);
                            return ProcessResult::Unchanged;
                        }
                        ty::ConstKind::Error(_) => {
                            return ProcessResult::Changed(PendingPredicateObligations::new());
                        }
                        ty::ConstKind::Value(ty, _) => ty,
                        ty::ConstKind::Unevaluated(uv) => {
                            infcx.tcx.type_of(uv.def).instantiate(infcx.tcx, uv.args)
                        }
                        // FIXME(generic_const_exprs): we should construct an alias like
                        // `<lhs_ty as Add<rhs_ty>>::Output` when this is an `Expr` representing
                        // `lhs + rhs`.
                        ty::ConstKind::Expr(_) => {
                            return ProcessResult::Changed(mk_pending(PredicateObligations::new()));
                        }
                        ty::ConstKind::Placeholder(_) => {
                            bug!("placeholder const {:?} in old solver", ct)
                        }
                        ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
                        ty::ConstKind::Param(param_ct) => {
                            param_ct.find_ty_from_env(obligation.param_env)
                        }
                    };

                    match infcx.at(&obligation.cause, obligation.param_env).eq(
                        // Only really exercised by generic_const_exprs
                        DefineOpaqueTypes::Yes,
                        ct_ty,
                        ty,
                    ) {
                        Ok(inf_ok) => ProcessResult::Changed(mk_pending(inf_ok.into_obligations())),
                        Err(_) => ProcessResult::Error(FulfillmentErrorCode::Select(
                            SelectionError::ConstArgHasWrongType { ct, ct_ty, expected_ty: ty },
                        )),
                    }
                }

                // General case overflow check. Allow `process_trait_obligation`
                // and `process_projection_obligation` to handle checking for
                // the recursion limit themselves. Also don't check some
                // predicate kinds that don't give further obligations.
                _ if !self
                    .selcx
                    .tcx()
                    .recursion_limit()
                    .value_within_limit(obligation.recursion_depth) =>
                {
                    self.selcx.infcx.err_ctxt().report_overflow_obligation(&obligation, false);
                }

                ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
                    match wf::obligations(
                        self.selcx.infcx,
                        obligation.param_env,
                        obligation.cause.body_id,
                        obligation.recursion_depth + 1,
                        arg,
                        obligation.cause.span,
                    ) {
                        None => {
                            pending_obligation.stalled_on =
                                vec![TyOrConstInferVar::maybe_from_generic_arg(arg).unwrap()];
                            ProcessResult::Unchanged
                        }
                        Some(os) => ProcessResult::Changed(mk_pending(os)),
                    }
                }

                ty::PredicateKind::Subtype(subtype) => {
                    match self.selcx.infcx.subtype_predicate(
                        &obligation.cause,
                        obligation.param_env,
                        Binder::dummy(subtype),
                    ) {
                        Err((a, b)) => {
                            // None means that both are unresolved.
                            pending_obligation.stalled_on =
                                vec![TyOrConstInferVar::Ty(a), TyOrConstInferVar::Ty(b)];
                            ProcessResult::Unchanged
                        }
                        Ok(Ok(mut ok)) => {
                            for subobligation in &mut ok.obligations {
                                subobligation.set_depth_from_parent(obligation.recursion_depth);
                            }
                            ProcessResult::Changed(mk_pending(ok.obligations))
                        }
                        Ok(Err(err)) => {
                            let expected_found =
                                ExpectedFound::new(subtype.a_is_expected, subtype.a, subtype.b);
                            ProcessResult::Error(FulfillmentErrorCode::Subtype(expected_found, err))
                        }
                    }
                }

                ty::PredicateKind::Coerce(coerce) => {
                    match self.selcx.infcx.coerce_predicate(
                        &obligation.cause,
                        obligation.param_env,
                        Binder::dummy(coerce),
                    ) {
                        Err((a, b)) => {
                            // None means that both are unresolved.
                            pending_obligation.stalled_on =
                                vec![TyOrConstInferVar::Ty(a), TyOrConstInferVar::Ty(b)];
                            ProcessResult::Unchanged
                        }
                        Ok(Ok(ok)) => ProcessResult::Changed(mk_pending(ok.obligations)),
                        Ok(Err(err)) => {
                            let expected_found = ExpectedFound::new(false, coerce.a, coerce.b);
                            ProcessResult::Error(FulfillmentErrorCode::Subtype(expected_found, err))
                        }
                    }
                }

                ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
                    match const_evaluatable::is_const_evaluatable(
                        self.selcx.infcx,
                        uv,
                        obligation.param_env,
                        obligation.cause.span,
                    ) {
                        Ok(()) => ProcessResult::Changed(Default::default()),
                        Err(NotConstEvaluatable::MentionsInfer) => {
                            pending_obligation.stalled_on.clear();
                            pending_obligation.stalled_on.extend(
                                uv.walk().filter_map(TyOrConstInferVar::maybe_from_generic_arg),
                            );
                            ProcessResult::Unchanged
                        }
                        Err(
                            e @ NotConstEvaluatable::MentionsParam
                            | e @ NotConstEvaluatable::Error(_),
                        ) => ProcessResult::Error(FulfillmentErrorCode::Select(
                            SelectionError::NotConstEvaluatable(e),
                        )),
                    }
                }

                ty::PredicateKind::ConstEquate(c1, c2) => {
                    let tcx = self.selcx.tcx();
                    assert!(
                        tcx.features().generic_const_exprs,
                        "`ConstEquate` without a feature gate: {c1:?} {c2:?}",
                    );
                    // FIXME: we probably should only try to unify abstract constants
                    // if the constants depend on generic parameters.
                    //
                    // Let's just see where this breaks :shrug:
                    {
                        let c1 = tcx.expand_abstract_consts(c1);
                        let c2 = tcx.expand_abstract_consts(c2);
                        debug!("equating consts:\nc1= {:?}\nc2= {:?}", c1, c2);

                        use rustc_hir::def::DefKind;
                        use ty::Unevaluated;
                        match (c1.kind(), c2.kind()) {
                            (Unevaluated(a), Unevaluated(b))
                                if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
                            {
                                if let Ok(new_obligations) = infcx
                                    .at(&obligation.cause, obligation.param_env)
                                    // Can define opaque types as this is only reachable with
                                    // `generic_const_exprs`
                                    .eq(
                                        DefineOpaqueTypes::Yes,
                                        ty::AliasTerm::from(a),
                                        ty::AliasTerm::from(b),
                                    )
                                {
                                    return ProcessResult::Changed(mk_pending(
                                        new_obligations.into_obligations(),
                                    ));
                                }
                            }
                            (_, Unevaluated(_)) | (Unevaluated(_), _) => (),
                            (_, _) => {
                                if let Ok(new_obligations) = infcx
                                    .at(&obligation.cause, obligation.param_env)
                                    // Can define opaque types as this is only reachable with
                                    // `generic_const_exprs`
                                    .eq(DefineOpaqueTypes::Yes, c1, c2)
                                {
                                    return ProcessResult::Changed(mk_pending(
                                        new_obligations.into_obligations(),
                                    ));
                                }
                            }
                        }
                    }

                    let stalled_on = &mut pending_obligation.stalled_on;

                    let mut evaluate = |c: Const<'tcx>| {
                        if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
                            match self.selcx.infcx.try_const_eval_resolve(
                                obligation.param_env,
                                unevaluated,
                                obligation.cause.span,
                            ) {
                                Ok(val) => Ok(val),
                                Err(e) => {
                                    match e {
                                        ErrorHandled::TooGeneric(..) => {
                                            stalled_on.extend(unevaluated.args.iter().filter_map(
                                                TyOrConstInferVar::maybe_from_generic_arg,
                                            ));
                                        }
                                        _ => {}
                                    }
                                    Err(e)
                                }
                            }
                        } else {
                            Ok(c)
                        }
                    };

                    match (evaluate(c1), evaluate(c2)) {
                        (Ok(c1), Ok(c2)) => {
                            match self.selcx.infcx.at(&obligation.cause, obligation.param_env).eq(
                                // Can define opaque types as this is only reachable with
                                // `generic_const_exprs`
                                DefineOpaqueTypes::Yes,
                                c1,
                                c2,
                            ) {
                                Ok(inf_ok) => {
                                    ProcessResult::Changed(mk_pending(inf_ok.into_obligations()))
                                }
                                Err(err) => {
                                    ProcessResult::Error(FulfillmentErrorCode::ConstEquate(
                                        ExpectedFound::new(true, c1, c2),
                                        err,
                                    ))
                                }
                            }
                        }
                        (Err(ErrorHandled::Reported(reported, _)), _)
                        | (_, Err(ErrorHandled::Reported(reported, _))) => ProcessResult::Error(
                            FulfillmentErrorCode::Select(SelectionError::NotConstEvaluatable(
                                NotConstEvaluatable::Error(reported.into()),
                            )),
                        ),
                        (Err(ErrorHandled::TooGeneric(_)), _)
                        | (_, Err(ErrorHandled::TooGeneric(_))) => {
                            if c1.has_non_region_infer() || c2.has_non_region_infer() {
                                ProcessResult::Unchanged
                            } else {
                                // Two different constants using generic parameters ~> error.
                                let expected_found = ExpectedFound::new(true, c1, c2);
                                ProcessResult::Error(FulfillmentErrorCode::ConstEquate(
                                    expected_found,
                                    TypeError::ConstMismatch(expected_found),
                                ))
                            }
                        }
                    }
                }
            },
        }
    }

    #[inline(never)]
    fn process_backedge<'c, I>(
        &mut self,
        cycle: I,
        _marker: PhantomData<&'c PendingPredicateObligation<'tcx>>,
    ) -> Result<(), FulfillmentErrorCode<'tcx>>
    where
        I: Clone + Iterator<Item = &'c PendingPredicateObligation<'tcx>>,
    {
        if self.selcx.coinductive_match(cycle.clone().map(|s| s.obligation.predicate)) {
            debug!("process_child_obligations: coinductive match");
            Ok(())
        } else {
            let cycle = cycle.map(|c| c.obligation.clone()).collect();
            Err(FulfillmentErrorCode::Cycle(cycle))
        }
    }
}

impl<'a, 'tcx> FulfillProcessor<'a, 'tcx> {
    #[instrument(level = "debug", skip(self, obligation, stalled_on))]
    fn process_trait_obligation(
        &mut self,
        obligation: &PredicateObligation<'tcx>,
        trait_obligation: PolyTraitObligation<'tcx>,
        stalled_on: &mut Vec<TyOrConstInferVar>,
    ) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
        let infcx = self.selcx.infcx;
        if obligation.predicate.is_global() && !self.selcx.is_intercrate() {
            // no type variables present, can use evaluation for better caching.
            // FIXME: consider caching errors too.
            if infcx.predicate_must_hold_considering_regions(obligation) {
                debug!(
                    "selecting trait at depth {} evaluated to holds",
                    obligation.recursion_depth
                );
                return ProcessResult::Changed(Default::default());
            }
        }

        match self.selcx.poly_select(&trait_obligation) {
            Ok(Some(impl_source)) => {
                debug!("selecting trait at depth {} yielded Ok(Some)", obligation.recursion_depth);
                ProcessResult::Changed(mk_pending(impl_source.nested_obligations()))
            }
            Ok(None) => {
                debug!("selecting trait at depth {} yielded Ok(None)", obligation.recursion_depth);

                // This is a bit subtle: for the most part, the
                // only reason we can fail to make progress on
                // trait selection is because we don't have enough
                // information about the types in the trait.
                stalled_on.clear();
                stalled_on.extend(args_infer_vars(
                    &self.selcx,
                    trait_obligation.predicate.map_bound(|pred| pred.trait_ref.args),
                ));

                debug!(
                    "process_predicate: pending obligation {:?} now stalled on {:?}",
                    infcx.resolve_vars_if_possible(obligation.clone()),
                    stalled_on
                );

                ProcessResult::Unchanged
            }
            Err(selection_err) => {
                debug!("selecting trait at depth {} yielded Err", obligation.recursion_depth);

                ProcessResult::Error(FulfillmentErrorCode::Select(selection_err))
            }
        }
    }

    fn process_projection_obligation(
        &mut self,
        obligation: &PredicateObligation<'tcx>,
        project_obligation: PolyProjectionObligation<'tcx>,
        stalled_on: &mut Vec<TyOrConstInferVar>,
    ) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
        let tcx = self.selcx.tcx();

        if obligation.predicate.is_global() && !self.selcx.is_intercrate() {
            // no type variables present, can use evaluation for better caching.
            // FIXME: consider caching errors too.
            if self.selcx.infcx.predicate_must_hold_considering_regions(obligation) {
                if let Some(key) = ProjectionCacheKey::from_poly_projection_obligation(
                    &mut self.selcx,
                    &project_obligation,
                ) {
                    // If `predicate_must_hold_considering_regions` succeeds, then we've
                    // evaluated all sub-obligations. We can therefore mark the 'root'
                    // obligation as complete, and skip evaluating sub-obligations.
                    self.selcx
                        .infcx
                        .inner
                        .borrow_mut()
                        .projection_cache()
                        .complete(key, EvaluationResult::EvaluatedToOk);
                }
                return ProcessResult::Changed(Default::default());
            } else {
                debug!("Does NOT hold: {:?}", obligation);
            }
        }

        match project::poly_project_and_unify_term(&mut self.selcx, &project_obligation) {
            ProjectAndUnifyResult::Holds(os) => ProcessResult::Changed(mk_pending(os)),
            ProjectAndUnifyResult::FailedNormalization => {
                stalled_on.clear();
                stalled_on.extend(args_infer_vars(
                    &self.selcx,
                    project_obligation.predicate.map_bound(|pred| pred.projection_term.args),
                ));
                ProcessResult::Unchanged
            }
            // Let the caller handle the recursion
            ProjectAndUnifyResult::Recursive => {
                let mut obligations = PredicateObligations::with_capacity(1);
                obligations.push(project_obligation.with(tcx, project_obligation.predicate));

                ProcessResult::Changed(mk_pending(obligations))
            }
            ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
                ProcessResult::Error(FulfillmentErrorCode::Project(e))
            }
        }
    }
}

/// Returns the set of inference variables contained in `args`.
fn args_infer_vars<'a, 'tcx>(
    selcx: &SelectionContext<'a, 'tcx>,
    args: ty::Binder<'tcx, GenericArgsRef<'tcx>>,
) -> impl Iterator<Item = TyOrConstInferVar> + Captures<'tcx> {
    selcx
        .infcx
        .resolve_vars_if_possible(args)
        .skip_binder() // ok because this check doesn't care about regions
        .iter()
        .filter(|arg| arg.has_non_region_infer())
        .flat_map(|arg| {
            let mut walker = arg.walk();
            while let Some(c) = walker.next() {
                if !c.has_non_region_infer() {
                    walker.visited.remove(&c);
                    walker.skip_current_subtree();
                }
            }
            walker.visited.into_iter()
        })
        .filter_map(TyOrConstInferVar::maybe_from_generic_arg)
}

#[derive(Debug)]
pub struct OldSolverError<'tcx>(
    Error<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>>,
);

impl<'tcx> FromSolverError<'tcx, OldSolverError<'tcx>> for FulfillmentError<'tcx> {
    fn from_solver_error(_infcx: &InferCtxt<'tcx>, error: OldSolverError<'tcx>) -> Self {
        let mut iter = error.0.backtrace.into_iter();
        let obligation = iter.next().unwrap().obligation;
        // The root obligation is the last item in the backtrace - if there's only
        // one item, then it's the same as the main obligation
        let root_obligation = iter.next_back().map_or_else(|| obligation.clone(), |e| e.obligation);
        FulfillmentError::new(obligation, error.0.error, root_obligation)
    }
}

impl<'tcx> FromSolverError<'tcx, OldSolverError<'tcx>> for ScrubbedTraitError<'tcx> {
    fn from_solver_error(_infcx: &InferCtxt<'tcx>, error: OldSolverError<'tcx>) -> Self {
        match error.0.error {
            FulfillmentErrorCode::Select(_)
            | FulfillmentErrorCode::Project(_)
            | FulfillmentErrorCode::Subtype(_, _)
            | FulfillmentErrorCode::ConstEquate(_, _) => ScrubbedTraitError::TrueError,
            FulfillmentErrorCode::Ambiguity { overflow: _ } => ScrubbedTraitError::Ambiguity,
            FulfillmentErrorCode::Cycle(cycle) => ScrubbedTraitError::Cycle(cycle),
        }
    }
}