rustc_trait_selection/traits/select/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
//! Candidate selection. See the [rustc dev guide] for more information on how this works.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
use std::cell::{Cell, RefCell};
use std::fmt::{self, Display};
use std::ops::ControlFlow;
use std::{cmp, iter};
use hir::def::DefKind;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::{Diag, EmissionGuarantee};
use rustc_hir as hir;
use rustc_hir::LangItem;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::BoundRegionConversionTime::{self, HigherRankedType};
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_infer::infer::at::ToTrace;
use rustc_infer::infer::relate::TypeRelation;
use rustc_infer::traits::{PredicateObligations, TraitObligation};
use rustc_middle::bug;
use rustc_middle::dep_graph::{DepNodeIndex, dep_kinds};
use rustc_middle::mir::interpret::ErrorHandled;
pub use rustc_middle::traits::select::*;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::error::TypeErrorToStringExt;
use rustc_middle::ty::print::{PrintTraitRefExt as _, with_no_trimmed_paths};
use rustc_middle::ty::{
self, GenericArgsRef, PolyProjectionPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitableExt,
Upcast,
};
use rustc_span::Symbol;
use rustc_span::symbol::sym;
use tracing::{debug, instrument, trace};
use self::EvaluationResult::*;
use self::SelectionCandidate::*;
use super::coherence::{self, Conflict};
use super::project::ProjectionTermObligation;
use super::util::closure_trait_ref_and_return_type;
use super::{
ImplDerivedCause, Normalized, Obligation, ObligationCause, ObligationCauseCode, Overflow,
PolyTraitObligation, PredicateObligation, Selection, SelectionError, SelectionResult,
TraitQueryMode, const_evaluatable, project, util, wf,
};
use crate::error_reporting::InferCtxtErrorExt;
use crate::infer::{InferCtxt, InferOk, TypeFreshener};
use crate::solve::InferCtxtSelectExt as _;
use crate::traits::normalize::{normalize_with_depth, normalize_with_depth_to};
use crate::traits::project::{ProjectAndUnifyResult, ProjectionCacheKeyExt};
use crate::traits::{ProjectionCacheKey, Unimplemented};
mod _match;
mod candidate_assembly;
mod confirmation;
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum IntercrateAmbiguityCause<'tcx> {
DownstreamCrate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
UpstreamCrateUpdate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
ReservationImpl { message: Symbol },
}
impl<'tcx> IntercrateAmbiguityCause<'tcx> {
/// Emits notes when the overlap is caused by complex intercrate ambiguities.
/// See #23980 for details.
pub fn add_intercrate_ambiguity_hint<G: EmissionGuarantee>(&self, err: &mut Diag<'_, G>) {
err.note(self.intercrate_ambiguity_hint());
}
pub fn intercrate_ambiguity_hint(&self) -> String {
with_no_trimmed_paths!(match self {
IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } => {
format!(
"downstream crates may implement trait `{trait_desc}`{self_desc}",
trait_desc = trait_ref.print_trait_sugared(),
self_desc = if let Some(self_ty) = self_ty {
format!(" for type `{self_ty}`")
} else {
String::new()
}
)
}
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } => {
format!(
"upstream crates may add a new impl of trait `{trait_desc}`{self_desc} \
in future versions",
trait_desc = trait_ref.print_trait_sugared(),
self_desc = if let Some(self_ty) = self_ty {
format!(" for type `{self_ty}`")
} else {
String::new()
}
)
}
IntercrateAmbiguityCause::ReservationImpl { message } => message.to_string(),
})
}
}
pub struct SelectionContext<'cx, 'tcx> {
pub infcx: &'cx InferCtxt<'tcx>,
/// Freshener used specifically for entries on the obligation
/// stack. This ensures that all entries on the stack at one time
/// will have the same set of placeholder entries, which is
/// important for checking for trait bounds that recursively
/// require themselves.
freshener: TypeFreshener<'cx, 'tcx>,
/// If `intercrate` is set, we remember predicates which were
/// considered ambiguous because of impls potentially added in other crates.
/// This is used in coherence to give improved diagnostics.
/// We don't do his until we detect a coherence error because it can
/// lead to false overflow results (#47139) and because always
/// computing it may negatively impact performance.
intercrate_ambiguity_causes: Option<FxIndexSet<IntercrateAmbiguityCause<'tcx>>>,
/// The mode that trait queries run in, which informs our error handling
/// policy. In essence, canonicalized queries need their errors propagated
/// rather than immediately reported because we do not have accurate spans.
query_mode: TraitQueryMode,
}
// A stack that walks back up the stack frame.
struct TraitObligationStack<'prev, 'tcx> {
obligation: &'prev PolyTraitObligation<'tcx>,
/// The trait predicate from `obligation` but "freshened" with the
/// selection-context's freshener. Used to check for recursion.
fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
/// Starts out equal to `depth` -- if, during evaluation, we
/// encounter a cycle, then we will set this flag to the minimum
/// depth of that cycle for all participants in the cycle. These
/// participants will then forego caching their results. This is
/// not the most efficient solution, but it addresses #60010. The
/// problem we are trying to prevent:
///
/// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
/// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
/// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
///
/// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
/// is `EvaluatedToOk`; this is because they were only considered
/// ok on the premise that if `A: AutoTrait` held, but we indeed
/// encountered a problem (later on) with `A: AutoTrait`. So we
/// currently set a flag on the stack node for `B: AutoTrait` (as
/// well as the second instance of `A: AutoTrait`) to suppress
/// caching.
///
/// This is a simple, targeted fix. A more-performant fix requires
/// deeper changes, but would permit more caching: we could
/// basically defer caching until we have fully evaluated the
/// tree, and then cache the entire tree at once. In any case, the
/// performance impact here shouldn't be so horrible: every time
/// this is hit, we do cache at least one trait, so we only
/// evaluate each member of a cycle up to N times, where N is the
/// length of the cycle. This means the performance impact is
/// bounded and we shouldn't have any terrible worst-cases.
reached_depth: Cell<usize>,
previous: TraitObligationStackList<'prev, 'tcx>,
/// The number of parent frames plus one (thus, the topmost frame has depth 1).
depth: usize,
/// The depth-first number of this node in the search graph -- a
/// pre-order index. Basically, a freshly incremented counter.
dfn: usize,
}
struct SelectionCandidateSet<'tcx> {
/// A list of candidates that definitely apply to the current
/// obligation (meaning: types unify).
vec: Vec<SelectionCandidate<'tcx>>,
/// If `true`, then there were candidates that might or might
/// not have applied, but we couldn't tell. This occurs when some
/// of the input types are type variables, in which case there are
/// various "builtin" rules that might or might not trigger.
ambiguous: bool,
}
#[derive(PartialEq, Eq, Debug, Clone)]
struct EvaluatedCandidate<'tcx> {
candidate: SelectionCandidate<'tcx>,
evaluation: EvaluationResult,
}
/// When does the builtin impl for `T: Trait` apply?
#[derive(Debug)]
enum BuiltinImplConditions<'tcx> {
/// The impl is conditional on `T1, T2, ...: Trait`.
Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
/// There is no built-in impl. There may be some other
/// candidate (a where-clause or user-defined impl).
None,
/// It is unknown whether there is an impl.
Ambiguous,
}
impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
pub fn new(infcx: &'cx InferCtxt<'tcx>) -> SelectionContext<'cx, 'tcx> {
SelectionContext {
infcx,
freshener: infcx.freshener(),
intercrate_ambiguity_causes: None,
query_mode: TraitQueryMode::Standard,
}
}
pub fn with_query_mode(
infcx: &'cx InferCtxt<'tcx>,
query_mode: TraitQueryMode,
) -> SelectionContext<'cx, 'tcx> {
debug!(?query_mode, "with_query_mode");
SelectionContext { query_mode, ..SelectionContext::new(infcx) }
}
/// Enables tracking of intercrate ambiguity causes. See
/// the documentation of [`Self::intercrate_ambiguity_causes`] for more.
pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
assert!(self.is_intercrate());
assert!(self.intercrate_ambiguity_causes.is_none());
self.intercrate_ambiguity_causes = Some(FxIndexSet::default());
debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
}
/// Gets the intercrate ambiguity causes collected since tracking
/// was enabled and disables tracking at the same time. If
/// tracking is not enabled, just returns an empty vector.
pub fn take_intercrate_ambiguity_causes(
&mut self,
) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
assert!(self.is_intercrate());
self.intercrate_ambiguity_causes.take().unwrap_or_default()
}
pub fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
pub fn is_intercrate(&self) -> bool {
self.infcx.intercrate
}
///////////////////////////////////////////////////////////////////////////
// Selection
//
// The selection phase tries to identify *how* an obligation will
// be resolved. For example, it will identify which impl or
// parameter bound is to be used. The process can be inconclusive
// if the self type in the obligation is not fully inferred. Selection
// can result in an error in one of two ways:
//
// 1. If no applicable impl or parameter bound can be found.
// 2. If the output type parameters in the obligation do not match
// those specified by the impl/bound. For example, if the obligation
// is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
// `impl<T> Iterable<T> for Vec<T>`, than an error would result.
/// Attempts to satisfy the obligation. If successful, this will affect the surrounding
/// type environment by performing unification.
#[instrument(level = "debug", skip(self), ret)]
pub fn poly_select(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
) -> SelectionResult<'tcx, Selection<'tcx>> {
if self.infcx.next_trait_solver() {
return self.infcx.select_in_new_trait_solver(obligation);
}
let candidate = match self.select_from_obligation(obligation) {
Err(SelectionError::Overflow(OverflowError::Canonical)) => {
// In standard mode, overflow must have been caught and reported
// earlier.
assert!(self.query_mode == TraitQueryMode::Canonical);
return Err(SelectionError::Overflow(OverflowError::Canonical));
}
Err(e) => {
return Err(e);
}
Ok(None) => {
return Ok(None);
}
Ok(Some(candidate)) => candidate,
};
match self.confirm_candidate(obligation, candidate) {
Err(SelectionError::Overflow(OverflowError::Canonical)) => {
assert!(self.query_mode == TraitQueryMode::Canonical);
Err(SelectionError::Overflow(OverflowError::Canonical))
}
Err(e) => Err(e),
Ok(candidate) => Ok(Some(candidate)),
}
}
pub fn select(
&mut self,
obligation: &TraitObligation<'tcx>,
) -> SelectionResult<'tcx, Selection<'tcx>> {
self.poly_select(&Obligation {
cause: obligation.cause.clone(),
param_env: obligation.param_env,
predicate: ty::Binder::dummy(obligation.predicate),
recursion_depth: obligation.recursion_depth,
})
}
fn select_from_obligation(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
debug_assert!(!obligation.predicate.has_escaping_bound_vars());
let pec = &ProvisionalEvaluationCache::default();
let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
self.candidate_from_obligation(&stack)
}
#[instrument(level = "debug", skip(self), ret)]
fn candidate_from_obligation<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
debug_assert!(!self.infcx.next_trait_solver());
// Watch out for overflow. This intentionally bypasses (and does
// not update) the cache.
self.check_recursion_limit(stack.obligation, stack.obligation)?;
// Check the cache. Note that we freshen the trait-ref
// separately rather than using `stack.fresh_trait_ref` --
// this is because we want the unbound variables to be
// replaced with fresh types starting from index 0.
let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
debug!(?cache_fresh_trait_pred);
debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
if let Some(c) =
self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
{
debug!("CACHE HIT");
return c;
}
// If no match, compute result and insert into cache.
//
// FIXME(nikomatsakis) -- this cache is not taking into
// account cycles that may have occurred in forming the
// candidate. I don't know of any specific problems that
// result but it seems awfully suspicious.
let (candidate, dep_node) =
self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
debug!("CACHE MISS");
self.insert_candidate_cache(
stack.obligation.param_env,
cache_fresh_trait_pred,
dep_node,
candidate.clone(),
);
candidate
}
fn candidate_from_obligation_no_cache<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
if let Err(conflict) = self.is_knowable(stack) {
debug!("coherence stage: not knowable");
if self.intercrate_ambiguity_causes.is_some() {
debug!("evaluate_stack: intercrate_ambiguity_causes is some");
// Heuristics: show the diagnostics when there are no candidates in crate.
if let Ok(candidate_set) = self.assemble_candidates(stack) {
let mut no_candidates_apply = true;
for c in candidate_set.vec.iter() {
if self.evaluate_candidate(stack, c)?.may_apply() {
no_candidates_apply = false;
break;
}
}
if !candidate_set.ambiguous && no_candidates_apply {
let trait_ref = self.infcx.resolve_vars_if_possible(
stack.obligation.predicate.skip_binder().trait_ref,
);
if !trait_ref.references_error() {
let self_ty = trait_ref.self_ty();
let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
let cause = if let Conflict::Upstream = conflict {
IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty }
} else {
IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty }
};
debug!(?cause, "evaluate_stack: pushing cause");
self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
}
}
}
}
return Ok(None);
}
let candidate_set = self.assemble_candidates(stack)?;
if candidate_set.ambiguous {
debug!("candidate set contains ambig");
return Ok(None);
}
let candidates = candidate_set.vec;
debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
// At this point, we know that each of the entries in the
// candidate set is *individually* applicable. Now we have to
// figure out if they contain mutual incompatibilities. This
// frequently arises if we have an unconstrained input type --
// for example, we are looking for `$0: Eq` where `$0` is some
// unconstrained type variable. In that case, we'll get a
// candidate which assumes $0 == int, one that assumes `$0 ==
// usize`, etc. This spells an ambiguity.
let mut candidates = self.filter_impls(candidates, stack.obligation);
// If there is more than one candidate, first winnow them down
// by considering extra conditions (nested obligations and so
// forth). We don't winnow if there is exactly one
// candidate. This is a relatively minor distinction but it
// can lead to better inference and error-reporting. An
// example would be if there was an impl:
//
// impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
//
// and we were to see some code `foo.push_clone()` where `boo`
// is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
// we were to winnow, we'd wind up with zero candidates.
// Instead, we select the right impl now but report "`Bar` does
// not implement `Clone`".
if candidates.len() == 1 {
return self.filter_reservation_impls(candidates.pop().unwrap());
}
// Winnow, but record the exact outcome of evaluation, which
// is needed for specialization. Propagate overflow if it occurs.
let mut candidates = candidates
.into_iter()
.map(|c| match self.evaluate_candidate(stack, &c) {
Ok(eval) if eval.may_apply() => {
Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
}
Ok(_) => Ok(None),
Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
})
.flat_map(Result::transpose)
.collect::<Result<Vec<_>, _>>()?;
debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());
let has_non_region_infer = stack.obligation.predicate.has_non_region_infer();
// If there are STILL multiple candidates, we can further
// reduce the list by dropping duplicates -- including
// resolving specializations.
if candidates.len() > 1 {
let mut i = 0;
while i < candidates.len() {
let should_drop_i = (0..candidates.len()).filter(|&j| i != j).any(|j| {
self.candidate_should_be_dropped_in_favor_of(
&candidates[i],
&candidates[j],
has_non_region_infer,
) == DropVictim::Yes
});
if should_drop_i {
debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
candidates.swap_remove(i);
} else {
debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
i += 1;
// If there are *STILL* multiple candidates, give up
// and report ambiguity.
if i > 1 {
debug!("multiple matches, ambig");
return Ok(None);
}
}
}
}
// If there are *NO* candidates, then there are no impls --
// that we know of, anyway. Note that in the case where there
// are unbound type variables within the obligation, it might
// be the case that you could still satisfy the obligation
// from another crate by instantiating the type variables with
// a type from another crate that does have an impl. This case
// is checked for in `evaluate_stack` (and hence users
// who might care about this case, like coherence, should use
// that function).
if candidates.is_empty() {
// If there's an error type, 'downgrade' our result from
// `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
// emitting additional spurious errors, since we're guaranteed
// to have emitted at least one.
if stack.obligation.predicate.references_error() {
debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
return Ok(None);
}
return Err(Unimplemented);
}
// Just one candidate left.
self.filter_reservation_impls(candidates.pop().unwrap().candidate)
}
///////////////////////////////////////////////////////////////////////////
// EVALUATION
//
// Tests whether an obligation can be selected or whether an impl
// can be applied to particular types. It skips the "confirmation"
// step and hence completely ignores output type parameters.
//
// The result is "true" if the obligation *may* hold and "false" if
// we can be sure it does not.
/// Evaluates whether the obligation `obligation` can be satisfied
/// and returns an `EvaluationResult`. This is meant for the
/// *initial* call.
///
/// Do not use this directly, use `infcx.evaluate_obligation` instead.
pub fn evaluate_root_obligation(
&mut self,
obligation: &PredicateObligation<'tcx>,
) -> Result<EvaluationResult, OverflowError> {
debug_assert!(!self.infcx.next_trait_solver());
self.evaluation_probe(|this| {
let goal =
this.infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
let mut result = this.evaluate_predicate_recursively(
TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
obligation.clone(),
)?;
// If the predicate has done any inference, then downgrade the
// result to ambiguous.
if this.infcx.resolve_vars_if_possible(goal) != goal {
result = result.max(EvaluatedToAmbig);
}
Ok(result)
})
}
/// Computes the evaluation result of `op`, discarding any constraints.
///
/// This also runs for leak check to allow higher ranked region errors to impact
/// selection. By default it checks for leaks from all universes created inside of
/// `op`, but this can be overwritten if necessary.
fn evaluation_probe(
&mut self,
op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
) -> Result<EvaluationResult, OverflowError> {
self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
let outer_universe = self.infcx.universe();
let result = op(self)?;
match self.infcx.leak_check(outer_universe, Some(snapshot)) {
Ok(()) => {}
Err(_) => return Ok(EvaluatedToErr),
}
if self.infcx.opaque_types_added_in_snapshot(snapshot) {
return Ok(result.max(EvaluatedToOkModuloOpaqueTypes));
}
if self.infcx.region_constraints_added_in_snapshot(snapshot) {
Ok(result.max(EvaluatedToOkModuloRegions))
} else {
Ok(result)
}
})
}
/// Evaluates the predicates in `predicates` recursively. This may
/// guide inference. If this is not desired, run it inside of a
/// is run within an inference probe.
/// `probe`.
#[instrument(skip(self, stack), level = "debug")]
fn evaluate_predicates_recursively<'o, I>(
&mut self,
stack: TraitObligationStackList<'o, 'tcx>,
predicates: I,
) -> Result<EvaluationResult, OverflowError>
where
I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
{
let mut result = EvaluatedToOk;
for mut obligation in predicates {
obligation.set_depth_from_parent(stack.depth());
let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
if let EvaluatedToErr = eval {
// fast-path - EvaluatedToErr is the top of the lattice,
// so we don't need to look on the other predicates.
return Ok(EvaluatedToErr);
} else {
result = cmp::max(result, eval);
}
}
Ok(result)
}
#[instrument(
level = "debug",
skip(self, previous_stack),
fields(previous_stack = ?previous_stack.head())
ret,
)]
fn evaluate_predicate_recursively<'o>(
&mut self,
previous_stack: TraitObligationStackList<'o, 'tcx>,
obligation: PredicateObligation<'tcx>,
) -> Result<EvaluationResult, OverflowError> {
debug_assert!(!self.infcx.next_trait_solver());
// `previous_stack` stores a `PolyTraitObligation`, while `obligation` is
// a `PredicateObligation`. These are distinct types, so we can't
// use any `Option` combinator method that would force them to be
// the same.
match previous_stack.head() {
Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
None => self.check_recursion_limit(&obligation, &obligation)?,
}
ensure_sufficient_stack(|| {
let bound_predicate = obligation.predicate.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(t)) => {
let t = bound_predicate.rebind(t);
debug_assert!(!t.has_escaping_bound_vars());
let obligation = obligation.with(self.tcx(), t);
self.evaluate_trait_predicate_recursively(previous_stack, obligation)
}
ty::PredicateKind::Subtype(p) => {
let p = bound_predicate.rebind(p);
// Does this code ever run?
match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
Ok(Ok(InferOk { obligations, .. })) => {
self.evaluate_predicates_recursively(previous_stack, obligations)
}
Ok(Err(_)) => Ok(EvaluatedToErr),
Err(..) => Ok(EvaluatedToAmbig),
}
}
ty::PredicateKind::Coerce(p) => {
let p = bound_predicate.rebind(p);
// Does this code ever run?
match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
Ok(Ok(InferOk { obligations, .. })) => {
self.evaluate_predicates_recursively(previous_stack, obligations)
}
Ok(Err(_)) => Ok(EvaluatedToErr),
Err(..) => Ok(EvaluatedToAmbig),
}
}
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
// So, there is a bit going on here. First, `WellFormed` predicates
// are coinductive, like trait predicates with auto traits.
// This means that we need to detect if we have recursively
// evaluated `WellFormed(X)`. Otherwise, we would run into
// a "natural" overflow error.
//
// Now, the next question is whether we need to do anything
// special with caching. Considering the following tree:
// - `WF(Foo<T>)`
// - `Bar<T>: Send`
// - `WF(Foo<T>)`
// - `Foo<T>: Trait`
// In this case, the innermost `WF(Foo<T>)` should return
// `EvaluatedToOk`, since it's coinductive. Then if
// `Bar<T>: Send` is resolved to `EvaluatedToOk`, it can be
// inserted into a cache (because without thinking about `WF`
// goals, it isn't in a cycle). If `Foo<T>: Trait` later doesn't
// hold, then `Bar<T>: Send` shouldn't hold. Therefore, we
// *do* need to keep track of coinductive cycles.
let cache = previous_stack.cache;
let dfn = cache.next_dfn();
for stack_arg in previous_stack.cache.wf_args.borrow().iter().rev() {
if stack_arg.0 != arg {
continue;
}
debug!("WellFormed({:?}) on stack", arg);
if let Some(stack) = previous_stack.head {
// Okay, let's imagine we have two different stacks:
// `T: NonAutoTrait -> WF(T) -> T: NonAutoTrait`
// `WF(T) -> T: NonAutoTrait -> WF(T)`
// Because of this, we need to check that all
// predicates between the WF goals are coinductive.
// Otherwise, we can say that `T: NonAutoTrait` is
// true.
// Let's imagine we have a predicate stack like
// `Foo: Bar -> WF(T) -> T: NonAutoTrait -> T: Auto`
// depth ^1 ^2 ^3
// and the current predicate is `WF(T)`. `wf_args`
// would contain `(T, 1)`. We want to check all
// trait predicates greater than `1`. The previous
// stack would be `T: Auto`.
let cycle = stack.iter().take_while(|s| s.depth > stack_arg.1);
let tcx = self.tcx();
let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
if self.coinductive_match(cycle) {
stack.update_reached_depth(stack_arg.1);
return Ok(EvaluatedToOk);
} else {
return Ok(EvaluatedToAmbigStackDependent);
}
}
return Ok(EvaluatedToOk);
}
match wf::obligations(
self.infcx,
obligation.param_env,
obligation.cause.body_id,
obligation.recursion_depth + 1,
arg,
obligation.cause.span,
) {
Some(obligations) => {
cache.wf_args.borrow_mut().push((arg, previous_stack.depth()));
let result =
self.evaluate_predicates_recursively(previous_stack, obligations);
cache.wf_args.borrow_mut().pop();
let result = result?;
if !result.must_apply_modulo_regions() {
cache.on_failure(dfn);
}
cache.on_completion(dfn);
Ok(result)
}
None => Ok(EvaluatedToAmbig),
}
}
ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(pred)) => {
// A global type with no free lifetimes or generic parameters
// outlives anything.
if pred.0.has_free_regions()
|| pred.0.has_bound_regions()
|| pred.0.has_non_region_infer()
|| pred.0.has_non_region_infer()
{
Ok(EvaluatedToOkModuloRegions)
} else {
Ok(EvaluatedToOk)
}
}
ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..)) => {
// We do not consider region relationships when evaluating trait matches.
Ok(EvaluatedToOkModuloRegions)
}
ty::PredicateKind::DynCompatible(trait_def_id) => {
if self.tcx().is_dyn_compatible(trait_def_id) {
Ok(EvaluatedToOk)
} else {
Ok(EvaluatedToErr)
}
}
ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
let data = bound_predicate.rebind(data);
let project_obligation = obligation.with(self.tcx(), data);
match project::poly_project_and_unify_term(self, &project_obligation) {
ProjectAndUnifyResult::Holds(mut subobligations) => {
'compute_res: {
// If we've previously marked this projection as 'complete', then
// use the final cached result (either `EvaluatedToOk` or
// `EvaluatedToOkModuloRegions`), and skip re-evaluating the
// sub-obligations.
if let Some(key) =
ProjectionCacheKey::from_poly_projection_obligation(
self,
&project_obligation,
)
{
if let Some(cached_res) = self
.infcx
.inner
.borrow_mut()
.projection_cache()
.is_complete(key)
{
break 'compute_res Ok(cached_res);
}
}
// Need to explicitly set the depth of nested goals here as
// projection obligations can cycle by themselves and in
// `evaluate_predicates_recursively` we only add the depth
// for parent trait goals because only these get added to the
// `TraitObligationStackList`.
for subobligation in subobligations.iter_mut() {
subobligation.set_depth_from_parent(obligation.recursion_depth);
}
let res = self.evaluate_predicates_recursively(
previous_stack,
subobligations,
);
if let Ok(eval_rslt) = res
&& (eval_rslt == EvaluatedToOk
|| eval_rslt == EvaluatedToOkModuloRegions)
&& let Some(key) =
ProjectionCacheKey::from_poly_projection_obligation(
self,
&project_obligation,
)
{
// If the result is something that we can cache, then mark this
// entry as 'complete'. This will allow us to skip evaluating the
// subobligations at all the next time we evaluate the projection
// predicate.
self.infcx
.inner
.borrow_mut()
.projection_cache()
.complete(key, eval_rslt);
}
res
}
}
ProjectAndUnifyResult::FailedNormalization => Ok(EvaluatedToAmbig),
ProjectAndUnifyResult::Recursive => Ok(EvaluatedToAmbigStackDependent),
ProjectAndUnifyResult::MismatchedProjectionTypes(_) => Ok(EvaluatedToErr),
}
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
match const_evaluatable::is_const_evaluatable(
self.infcx,
uv,
obligation.param_env,
obligation.cause.span,
) {
Ok(()) => Ok(EvaluatedToOk),
Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
Err(_) => Ok(EvaluatedToErr),
}
}
ty::PredicateKind::ConstEquate(c1, c2) => {
let tcx = self.tcx();
assert!(
tcx.features().generic_const_exprs,
"`ConstEquate` without a feature gate: {c1:?} {c2:?}",
);
{
let c1 = tcx.expand_abstract_consts(c1);
let c2 = tcx.expand_abstract_consts(c2);
debug!(
"evaluate_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
c1, c2
);
use rustc_hir::def::DefKind;
use ty::Unevaluated;
match (c1.kind(), c2.kind()) {
(Unevaluated(a), Unevaluated(b))
if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
{
if let Ok(InferOk { obligations, value: () }) = self
.infcx
.at(&obligation.cause, obligation.param_env)
// Can define opaque types as this is only reachable with
// `generic_const_exprs`
.eq(
DefineOpaqueTypes::Yes,
ty::AliasTerm::from(a),
ty::AliasTerm::from(b),
)
{
return self.evaluate_predicates_recursively(
previous_stack,
obligations,
);
}
}
(_, Unevaluated(_)) | (Unevaluated(_), _) => (),
(_, _) => {
if let Ok(InferOk { obligations, value: () }) = self
.infcx
.at(&obligation.cause, obligation.param_env)
// Can define opaque types as this is only reachable with
// `generic_const_exprs`
.eq(DefineOpaqueTypes::Yes, c1, c2)
{
return self.evaluate_predicates_recursively(
previous_stack,
obligations,
);
}
}
}
}
let evaluate = |c: ty::Const<'tcx>| {
if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
match self.infcx.try_const_eval_resolve(
obligation.param_env,
unevaluated,
obligation.cause.span,
) {
Ok(val) => Ok(val),
Err(e) => Err(e),
}
} else {
Ok(c)
}
};
match (evaluate(c1), evaluate(c2)) {
(Ok(c1), Ok(c2)) => {
match self.infcx.at(&obligation.cause, obligation.param_env).eq(
// Can define opaque types as this is only reachable with
// `generic_const_exprs`
DefineOpaqueTypes::Yes,
c1,
c2,
) {
Ok(inf_ok) => self.evaluate_predicates_recursively(
previous_stack,
inf_ok.into_obligations(),
),
Err(_) => Ok(EvaluatedToErr),
}
}
(Err(ErrorHandled::Reported(..)), _)
| (_, Err(ErrorHandled::Reported(..))) => Ok(EvaluatedToErr),
(Err(ErrorHandled::TooGeneric(..)), _)
| (_, Err(ErrorHandled::TooGeneric(..))) => {
if c1.has_non_region_infer() || c2.has_non_region_infer() {
Ok(EvaluatedToAmbig)
} else {
// Two different constants using generic parameters ~> error.
Ok(EvaluatedToErr)
}
}
}
}
ty::PredicateKind::NormalizesTo(..) => {
bug!("NormalizesTo is only used by the new solver")
}
ty::PredicateKind::AliasRelate(..) => {
bug!("AliasRelate is only used by the new solver")
}
ty::PredicateKind::Ambiguous => Ok(EvaluatedToAmbig),
ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
let ct = self.infcx.shallow_resolve_const(ct);
let ct_ty = match ct.kind() {
ty::ConstKind::Infer(_) => {
return Ok(EvaluatedToAmbig);
}
ty::ConstKind::Error(_) => return Ok(EvaluatedToOk),
ty::ConstKind::Value(ty, _) => ty,
ty::ConstKind::Unevaluated(uv) => {
self.tcx().type_of(uv.def).instantiate(self.tcx(), uv.args)
}
// FIXME(generic_const_exprs): See comment in `fulfill.rs`
ty::ConstKind::Expr(_) => return Ok(EvaluatedToOk),
ty::ConstKind::Placeholder(_) => {
bug!("placeholder const {:?} in old solver", ct)
}
ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
ty::ConstKind::Param(param_ct) => {
param_ct.find_ty_from_env(obligation.param_env)
}
};
match self.infcx.at(&obligation.cause, obligation.param_env).eq(
// Only really exercised by generic_const_exprs
DefineOpaqueTypes::Yes,
ct_ty,
ty,
) {
Ok(inf_ok) => self.evaluate_predicates_recursively(
previous_stack,
inf_ok.into_obligations(),
),
Err(_) => Ok(EvaluatedToErr),
}
}
}
})
}
#[instrument(skip(self, previous_stack), level = "debug", ret)]
fn evaluate_trait_predicate_recursively<'o>(
&mut self,
previous_stack: TraitObligationStackList<'o, 'tcx>,
mut obligation: PolyTraitObligation<'tcx>,
) -> Result<EvaluationResult, OverflowError> {
if !self.is_intercrate()
&& obligation.is_global()
&& obligation.param_env.caller_bounds().iter().all(|bound| bound.has_param())
{
// If a param env has no global bounds, global obligations do not
// depend on its particular value in order to work, so we can clear
// out the param env and get better caching.
debug!("in global");
obligation.param_env = obligation.param_env.without_caller_bounds();
}
let stack = self.push_stack(previous_stack, &obligation);
let fresh_trait_pred = stack.fresh_trait_pred;
let param_env = obligation.param_env;
debug!(?fresh_trait_pred);
// If a trait predicate is in the (local or global) evaluation cache,
// then we know it holds without cycles.
if let Some(result) = self.check_evaluation_cache(param_env, fresh_trait_pred) {
debug!("CACHE HIT");
return Ok(result);
}
if let Some(result) = stack.cache().get_provisional(fresh_trait_pred) {
debug!("PROVISIONAL CACHE HIT");
stack.update_reached_depth(result.reached_depth);
return Ok(result.result);
}
// Check if this is a match for something already on the
// stack. If so, we don't want to insert the result into the
// main cache (it is cycle dependent) nor the provisional
// cache (which is meant for things that have completed but
// for a "backedge" -- this result *is* the backedge).
if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
return Ok(cycle_result);
}
let (result, dep_node) = self.in_task(|this| {
let mut result = this.evaluate_stack(&stack)?;
// fix issue #103563, we don't normalize
// nested obligations which produced by `TraitDef` candidate
// (i.e. using bounds on assoc items as assumptions).
// because we don't have enough information to
// normalize these obligations before evaluating.
// so we will try to normalize the obligation and evaluate again.
// we will replace it with new solver in the future.
if EvaluationResult::EvaluatedToErr == result
&& fresh_trait_pred.has_aliases()
&& fresh_trait_pred.is_global()
{
let mut nested_obligations = PredicateObligations::new();
let predicate = normalize_with_depth_to(
this,
param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.predicate,
&mut nested_obligations,
);
if predicate != obligation.predicate {
let mut nested_result = EvaluationResult::EvaluatedToOk;
for obligation in nested_obligations {
nested_result = cmp::max(
this.evaluate_predicate_recursively(previous_stack, obligation)?,
nested_result,
);
}
if nested_result.must_apply_modulo_regions() {
let obligation = obligation.with(this.tcx(), predicate);
result = cmp::max(
nested_result,
this.evaluate_trait_predicate_recursively(previous_stack, obligation)?,
);
}
}
}
Ok::<_, OverflowError>(result)
});
let result = result?;
if !result.must_apply_modulo_regions() {
stack.cache().on_failure(stack.dfn);
}
let reached_depth = stack.reached_depth.get();
if reached_depth >= stack.depth {
debug!("CACHE MISS");
self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
stack.cache().on_completion(stack.dfn);
} else {
debug!("PROVISIONAL");
debug!(
"caching provisionally because {:?} \
is a cycle participant (at depth {}, reached depth {})",
fresh_trait_pred, stack.depth, reached_depth,
);
stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_pred, result);
}
Ok(result)
}
/// If there is any previous entry on the stack that precisely
/// matches this obligation, then we can assume that the
/// obligation is satisfied for now (still all other conditions
/// must be met of course). One obvious case this comes up is
/// marker traits like `Send`. Think of a linked list:
///
/// struct List<T> { data: T, next: Option<Box<List<T>>> }
///
/// `Box<List<T>>` will be `Send` if `T` is `Send` and
/// `Option<Box<List<T>>>` is `Send`, and in turn
/// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
/// `Send`.
///
/// Note that we do this comparison using the `fresh_trait_ref`
/// fields. Because these have all been freshened using
/// `self.freshener`, we can be sure that (a) this will not
/// affect the inferencer state and (b) that if we see two
/// fresh regions with the same index, they refer to the same
/// unbound type variable.
fn check_evaluation_cycle(
&mut self,
stack: &TraitObligationStack<'_, 'tcx>,
) -> Option<EvaluationResult> {
if let Some(cycle_depth) = stack
.iter()
.skip(1) // Skip top-most frame.
.find(|prev| {
stack.obligation.param_env == prev.obligation.param_env
&& stack.fresh_trait_pred == prev.fresh_trait_pred
})
.map(|stack| stack.depth)
{
debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
// If we have a stack like `A B C D E A`, where the top of
// the stack is the final `A`, then this will iterate over
// `A, E, D, C, B` -- i.e., all the participants apart
// from the cycle head. We mark them as participating in a
// cycle. This suppresses caching for those nodes. See
// `in_cycle` field for more details.
stack.update_reached_depth(cycle_depth);
// Subtle: when checking for a coinductive cycle, we do
// not compare using the "freshened trait refs" (which
// have erased regions) but rather the fully explicit
// trait refs. This is important because it's only a cycle
// if the regions match exactly.
let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
let tcx = self.tcx();
let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
if self.coinductive_match(cycle) {
debug!("evaluate_stack --> recursive, coinductive");
Some(EvaluatedToOk)
} else {
debug!("evaluate_stack --> recursive, inductive");
Some(EvaluatedToAmbigStackDependent)
}
} else {
None
}
}
fn evaluate_stack<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
) -> Result<EvaluationResult, OverflowError> {
debug_assert!(!self.infcx.next_trait_solver());
// In intercrate mode, whenever any of the generics are unbound,
// there can always be an impl. Even if there are no impls in
// this crate, perhaps the type would be unified with
// something from another crate that does provide an impl.
//
// In intra mode, we must still be conservative. The reason is
// that we want to avoid cycles. Imagine an impl like:
//
// impl<T:Eq> Eq for Vec<T>
//
// and a trait reference like `$0 : Eq` where `$0` is an
// unbound variable. When we evaluate this trait-reference, we
// will unify `$0` with `Vec<$1>` (for some fresh variable
// `$1`), on the condition that `$1 : Eq`. We will then wind
// up with many candidates (since that are other `Eq` impls
// that apply) and try to winnow things down. This results in
// a recursive evaluation that `$1 : Eq` -- as you can
// imagine, this is just where we started. To avoid that, we
// check for unbound variables and return an ambiguous (hence possible)
// match if we've seen this trait before.
//
// This suffices to allow chains like `FnMut` implemented in
// terms of `Fn` etc, but we could probably make this more
// precise still.
let unbound_input_types =
stack.fresh_trait_pred.skip_binder().trait_ref.args.types().any(|ty| ty.is_fresh());
if unbound_input_types
&& stack.iter().skip(1).any(|prev| {
stack.obligation.param_env == prev.obligation.param_env
&& self.match_fresh_trait_refs(stack.fresh_trait_pred, prev.fresh_trait_pred)
})
{
debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
return Ok(EvaluatedToAmbigStackDependent);
}
match self.candidate_from_obligation(stack) {
Ok(Some(c)) => self.evaluate_candidate(stack, &c),
Ok(None) => Ok(EvaluatedToAmbig),
Err(Overflow(OverflowError::Canonical)) => Err(OverflowError::Canonical),
Err(..) => Ok(EvaluatedToErr),
}
}
/// For defaulted traits, we use a co-inductive strategy to solve, so
/// that recursion is ok. This routine returns `true` if the top of the
/// stack (`cycle[0]`):
///
/// - is a defaulted trait,
/// - it also appears in the backtrace at some position `X`,
/// - all the predicates at positions `X..` between `X` and the top are
/// also defaulted traits.
pub(crate) fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
where
I: Iterator<Item = ty::Predicate<'tcx>>,
{
cycle.all(|predicate| predicate.is_coinductive(self.tcx()))
}
/// Further evaluates `candidate` to decide whether all type parameters match and whether nested
/// obligations are met. Returns whether `candidate` remains viable after this further
/// scrutiny.
#[instrument(
level = "debug",
skip(self, stack),
fields(depth = stack.obligation.recursion_depth),
ret
)]
fn evaluate_candidate<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
candidate: &SelectionCandidate<'tcx>,
) -> Result<EvaluationResult, OverflowError> {
let mut result = self.evaluation_probe(|this| {
match this.confirm_candidate(stack.obligation, candidate.clone()) {
Ok(selection) => {
debug!(?selection);
this.evaluate_predicates_recursively(
stack.list(),
selection.nested_obligations().into_iter(),
)
}
Err(..) => Ok(EvaluatedToErr),
}
})?;
// If we erased any lifetimes, then we want to use
// `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
// as your final result. The result will be cached using
// the freshened trait predicate as a key, so we need
// our result to be correct by *any* choice of original lifetimes,
// not just the lifetime choice for this particular (non-erased)
// predicate.
// See issue #80691
if stack.fresh_trait_pred.has_erased_regions() {
result = result.max(EvaluatedToOkModuloRegions);
}
Ok(result)
}
fn check_evaluation_cache(
&self,
param_env: ty::ParamEnv<'tcx>,
trait_pred: ty::PolyTraitPredicate<'tcx>,
) -> Option<EvaluationResult> {
// Neither the global nor local cache is aware of intercrate
// mode, so don't do any caching. In particular, we might
// re-use the same `InferCtxt` with both an intercrate
// and non-intercrate `SelectionContext`
if self.is_intercrate() {
return None;
}
let tcx = self.tcx();
if self.can_use_global_caches(param_env) {
if let Some(res) = tcx.evaluation_cache.get(&(param_env, trait_pred), tcx) {
return Some(res);
}
}
self.infcx.evaluation_cache.get(&(param_env, trait_pred), tcx)
}
fn insert_evaluation_cache(
&mut self,
param_env: ty::ParamEnv<'tcx>,
trait_pred: ty::PolyTraitPredicate<'tcx>,
dep_node: DepNodeIndex,
result: EvaluationResult,
) {
// Avoid caching results that depend on more than just the trait-ref
// - the stack can create recursion.
if result.is_stack_dependent() {
return;
}
// Neither the global nor local cache is aware of intercrate
// mode, so don't do any caching. In particular, we might
// re-use the same `InferCtxt` with both an intercrate
// and non-intercrate `SelectionContext`
if self.is_intercrate() {
return;
}
if self.can_use_global_caches(param_env) && !trait_pred.has_infer() {
debug!(?trait_pred, ?result, "insert_evaluation_cache global");
// This may overwrite the cache with the same value
// FIXME: Due to #50507 this overwrites the different values
// This should be changed to use HashMapExt::insert_same
// when that is fixed
self.tcx().evaluation_cache.insert((param_env, trait_pred), dep_node, result);
return;
}
debug!(?trait_pred, ?result, "insert_evaluation_cache");
self.infcx.evaluation_cache.insert((param_env, trait_pred), dep_node, result);
}
fn check_recursion_depth<T>(
&self,
depth: usize,
error_obligation: &Obligation<'tcx, T>,
) -> Result<(), OverflowError>
where
T: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
{
if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
match self.query_mode {
TraitQueryMode::Standard => {
if let Some(e) = self.infcx.tainted_by_errors() {
return Err(OverflowError::Error(e));
}
self.infcx.err_ctxt().report_overflow_obligation(error_obligation, true);
}
TraitQueryMode::Canonical => {
return Err(OverflowError::Canonical);
}
}
}
Ok(())
}
/// Checks that the recursion limit has not been exceeded.
///
/// The weird return type of this function allows it to be used with the `try` (`?`)
/// operator within certain functions.
#[inline(always)]
fn check_recursion_limit<T: Display + TypeFoldable<TyCtxt<'tcx>>, V>(
&self,
obligation: &Obligation<'tcx, T>,
error_obligation: &Obligation<'tcx, V>,
) -> Result<(), OverflowError>
where
V: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
{
self.check_recursion_depth(obligation.recursion_depth, error_obligation)
}
fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
where
OP: FnOnce(&mut Self) -> R,
{
let (result, dep_node) =
self.tcx().dep_graph.with_anon_task(self.tcx(), dep_kinds::TraitSelect, || op(self));
self.tcx().dep_graph.read_index(dep_node);
(result, dep_node)
}
/// filter_impls filters candidates that have a positive impl for a negative
/// goal and a negative impl for a positive goal
#[instrument(level = "debug", skip(self, candidates))]
fn filter_impls(
&mut self,
candidates: Vec<SelectionCandidate<'tcx>>,
obligation: &PolyTraitObligation<'tcx>,
) -> Vec<SelectionCandidate<'tcx>> {
trace!("{candidates:#?}");
let tcx = self.tcx();
let mut result = Vec::with_capacity(candidates.len());
for candidate in candidates {
if let ImplCandidate(def_id) = candidate {
match (tcx.impl_polarity(def_id), obligation.polarity()) {
(ty::ImplPolarity::Reservation, _)
| (ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
| (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => {
result.push(candidate);
}
_ => {}
}
} else {
result.push(candidate);
}
}
trace!("{result:#?}");
result
}
/// filter_reservation_impls filter reservation impl for any goal as ambiguous
#[instrument(level = "debug", skip(self))]
fn filter_reservation_impls(
&mut self,
candidate: SelectionCandidate<'tcx>,
) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
let tcx = self.tcx();
// Treat reservation impls as ambiguity.
if let ImplCandidate(def_id) = candidate {
if let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id) {
if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
let message = tcx
.get_attr(def_id, sym::rustc_reservation_impl)
.and_then(|a| a.value_str());
if let Some(message) = message {
debug!(
"filter_reservation_impls: \
reservation impl ambiguity on {:?}",
def_id
);
intercrate_ambiguity_clauses
.insert(IntercrateAmbiguityCause::ReservationImpl { message });
}
}
return Ok(None);
}
}
Ok(Some(candidate))
}
fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Result<(), Conflict> {
debug!("is_knowable(intercrate={:?})", self.is_intercrate());
if !self.is_intercrate() {
return Ok(());
}
let obligation = &stack.obligation;
let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
// Okay to skip binder because of the nature of the
// trait-ref-is-knowable check, which does not care about
// bound regions.
let trait_ref = predicate.skip_binder().trait_ref;
coherence::trait_ref_is_knowable(self.infcx, trait_ref, |ty| Ok::<_, !>(ty)).into_ok()
}
/// Returns `true` if the global caches can be used.
fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
// If there are any inference variables in the `ParamEnv`, then we
// always use a cache local to this particular scope. Otherwise, we
// switch to a global cache.
if param_env.has_infer() {
return false;
}
// Avoid using the global cache during coherence and just rely
// on the local cache. This effectively disables caching
// during coherence. It is really just a simplification to
// avoid us having to fear that coherence results "pollute"
// the master cache. Since coherence executes pretty quickly,
// it's not worth going to more trouble to increase the
// hit-rate, I don't think.
if self.is_intercrate() {
return false;
}
// Avoid using the global cache when we're defining opaque types
// as their hidden type may impact the result of candidate selection.
if !self.infcx.defining_opaque_types().is_empty() {
return false;
}
// Otherwise, we can use the global cache.
true
}
fn check_candidate_cache(
&mut self,
param_env: ty::ParamEnv<'tcx>,
cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
// Neither the global nor local cache is aware of intercrate
// mode, so don't do any caching. In particular, we might
// re-use the same `InferCtxt` with both an intercrate
// and non-intercrate `SelectionContext`
if self.is_intercrate() {
return None;
}
let tcx = self.tcx();
let pred = cache_fresh_trait_pred.skip_binder();
if self.can_use_global_caches(param_env) {
if let Some(res) = tcx.selection_cache.get(&(param_env, pred), tcx) {
return Some(res);
}
}
self.infcx.selection_cache.get(&(param_env, pred), tcx)
}
/// Determines whether can we safely cache the result
/// of selecting an obligation. This is almost always `true`,
/// except when dealing with certain `ParamCandidate`s.
///
/// Ordinarily, a `ParamCandidate` will contain no inference variables,
/// since it was usually produced directly from a `DefId`. However,
/// certain cases (currently only librustdoc's blanket impl finder),
/// a `ParamEnv` may be explicitly constructed with inference types.
/// When this is the case, we do *not* want to cache the resulting selection
/// candidate. This is due to the fact that it might not always be possible
/// to equate the obligation's trait ref and the candidate's trait ref,
/// if more constraints end up getting added to an inference variable.
///
/// Because of this, we always want to re-run the full selection
/// process for our obligation the next time we see it, since
/// we might end up picking a different `SelectionCandidate` (or none at all).
fn can_cache_candidate(
&self,
result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
) -> bool {
// Neither the global nor local cache is aware of intercrate
// mode, so don't do any caching. In particular, we might
// re-use the same `InferCtxt` with both an intercrate
// and non-intercrate `SelectionContext`
if self.is_intercrate() {
return false;
}
match result {
Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.has_infer(),
_ => true,
}
}
#[instrument(skip(self, param_env, cache_fresh_trait_pred, dep_node), level = "debug")]
fn insert_candidate_cache(
&mut self,
param_env: ty::ParamEnv<'tcx>,
cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
dep_node: DepNodeIndex,
candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
) {
let tcx = self.tcx();
let pred = cache_fresh_trait_pred.skip_binder();
if !self.can_cache_candidate(&candidate) {
debug!(?pred, ?candidate, "insert_candidate_cache - candidate is not cacheable");
return;
}
if self.can_use_global_caches(param_env) {
if let Err(Overflow(OverflowError::Canonical)) = candidate {
// Don't cache overflow globally; we only produce this in certain modes.
} else if !pred.has_infer() && !candidate.has_infer() {
debug!(?pred, ?candidate, "insert_candidate_cache global");
// This may overwrite the cache with the same value.
tcx.selection_cache.insert((param_env, pred), dep_node, candidate);
return;
}
}
debug!(?pred, ?candidate, "insert_candidate_cache local");
self.infcx.selection_cache.insert((param_env, pred), dep_node, candidate);
}
/// Looks at the item bounds of the projection or opaque type.
/// If this is a nested rigid projection, such as
/// `<<T as Tr1>::Assoc as Tr2>::Assoc`, consider the item bounds
/// on both `Tr1::Assoc` and `Tr2::Assoc`, since we may encounter
/// relative bounds on both via the `associated_type_bounds` feature.
pub(super) fn for_each_item_bound<T>(
&mut self,
mut self_ty: Ty<'tcx>,
mut for_each: impl FnMut(&mut Self, ty::Clause<'tcx>, usize) -> ControlFlow<T, ()>,
on_ambiguity: impl FnOnce(),
) -> ControlFlow<T, ()> {
let mut idx = 0;
let mut in_parent_alias_type = false;
loop {
let (kind, alias_ty) = match *self_ty.kind() {
ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty),
ty::Infer(ty::TyVar(_)) => {
on_ambiguity();
return ControlFlow::Continue(());
}
_ => return ControlFlow::Continue(()),
};
// HACK: On subsequent recursions, we only care about bounds that don't
// share the same type as `self_ty`. This is because for truly rigid
// projections, we will never be able to equate, e.g. `<T as Tr>::A`
// with `<<T as Tr>::A as Tr>::A`.
let relevant_bounds = if in_parent_alias_type {
self.tcx().item_non_self_assumptions(alias_ty.def_id)
} else {
self.tcx().item_super_predicates(alias_ty.def_id)
};
for bound in relevant_bounds.instantiate(self.tcx(), alias_ty.args) {
for_each(self, bound, idx)?;
idx += 1;
}
if kind == ty::Projection {
self_ty = alias_ty.self_ty();
} else {
return ControlFlow::Continue(());
}
in_parent_alias_type = true;
}
}
/// Equates the trait in `obligation` with trait bound. If the two traits
/// can be equated and the normalized trait bound doesn't contain inference
/// variables or placeholders, the normalized bound is returned.
fn match_normalize_trait_ref(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
placeholder_trait_ref: ty::TraitRef<'tcx>,
trait_bound: ty::PolyTraitRef<'tcx>,
) -> Result<Option<ty::TraitRef<'tcx>>, ()> {
debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
if placeholder_trait_ref.def_id != trait_bound.def_id() {
// Avoid unnecessary normalization
return Err(());
}
let trait_bound = self.infcx.instantiate_binder_with_fresh_vars(
obligation.cause.span,
HigherRankedType,
trait_bound,
);
let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
normalize_with_depth(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
trait_bound,
)
});
self.infcx
.at(&obligation.cause, obligation.param_env)
.eq(DefineOpaqueTypes::No, placeholder_trait_ref, trait_bound)
.map(|InferOk { obligations: _, value: () }| {
// This method is called within a probe, so we can't have
// inference variables and placeholders escape.
if !trait_bound.has_infer() && !trait_bound.has_placeholders() {
Some(trait_bound)
} else {
None
}
})
.map_err(|_| ())
}
fn where_clause_may_apply<'o>(
&mut self,
stack: &TraitObligationStack<'o, 'tcx>,
where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
) -> Result<EvaluationResult, OverflowError> {
self.evaluation_probe(|this| {
match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
Err(()) => Ok(EvaluatedToErr),
}
})
}
/// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
/// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
/// and applying this env_predicate constrains any of the obligation's GAT parameters.
///
/// This behavior is a somewhat of a hack to prevent over-constraining inference variables
/// in cases like #91762.
pub(super) fn match_projection_projections(
&mut self,
obligation: &ProjectionTermObligation<'tcx>,
env_predicate: PolyProjectionPredicate<'tcx>,
potentially_unnormalized_candidates: bool,
) -> ProjectionMatchesProjection {
debug_assert_eq!(obligation.predicate.def_id, env_predicate.projection_def_id());
let mut nested_obligations = PredicateObligations::new();
let infer_predicate = self.infcx.instantiate_binder_with_fresh_vars(
obligation.cause.span,
BoundRegionConversionTime::HigherRankedType,
env_predicate,
);
let infer_projection = if potentially_unnormalized_candidates {
ensure_sufficient_stack(|| {
normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
infer_predicate.projection_term,
&mut nested_obligations,
)
})
} else {
infer_predicate.projection_term
};
let is_match = self
.infcx
.at(&obligation.cause, obligation.param_env)
.eq(DefineOpaqueTypes::No, obligation.predicate, infer_projection)
.is_ok_and(|InferOk { obligations, value: () }| {
self.evaluate_predicates_recursively(
TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
nested_obligations.into_iter().chain(obligations),
)
.is_ok_and(|res| res.may_apply())
});
if is_match {
let generics = self.tcx().generics_of(obligation.predicate.def_id);
// FIXME(generic-associated-types): Addresses aggressive inference in #92917.
// If this type is a GAT, and of the GAT args resolve to something new,
// that means that we must have newly inferred something about the GAT.
// We should give up in that case.
// FIXME(generic-associated-types): This only detects one layer of inference,
// which is probably not what we actually want, but fixing it causes some ambiguity:
// <https://github.com/rust-lang/rust/issues/125196>.
if !generics.is_own_empty()
&& obligation.predicate.args[generics.parent_count..].iter().any(|&p| {
p.has_non_region_infer()
&& match p.unpack() {
ty::GenericArgKind::Const(ct) => {
self.infcx.shallow_resolve_const(ct) != ct
}
ty::GenericArgKind::Type(ty) => self.infcx.shallow_resolve(ty) != ty,
ty::GenericArgKind::Lifetime(_) => false,
}
})
{
ProjectionMatchesProjection::Ambiguous
} else {
ProjectionMatchesProjection::Yes
}
} else {
ProjectionMatchesProjection::No
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum DropVictim {
Yes,
No,
}
impl DropVictim {
fn drop_if(should_drop: bool) -> DropVictim {
if should_drop { DropVictim::Yes } else { DropVictim::No }
}
}
/// ## Winnowing
///
/// Winnowing is the process of attempting to resolve ambiguity by
/// probing further. During the winnowing process, we unify all
/// type variables and then we also attempt to evaluate recursive
/// bounds to see if they are satisfied.
impl<'tcx> SelectionContext<'_, 'tcx> {
/// Returns `DropVictim::Yes` if `victim` should be dropped in favor of
/// `other`. Generally speaking we will drop duplicate
/// candidates and prefer where-clause candidates.
///
/// See the comment for "SelectionCandidate" for more details.
#[instrument(level = "debug", skip(self))]
fn candidate_should_be_dropped_in_favor_of(
&mut self,
victim: &EvaluatedCandidate<'tcx>,
other: &EvaluatedCandidate<'tcx>,
has_non_region_infer: bool,
) -> DropVictim {
if victim.candidate == other.candidate {
return DropVictim::Yes;
}
// Check if a bound would previously have been removed when normalizing
// the param_env so that it can be given the lowest priority. See
// #50825 for the motivation for this.
let is_global =
|cand: ty::PolyTraitPredicate<'tcx>| cand.is_global() && !cand.has_bound_vars();
// (*) Prefer `BuiltinCandidate { has_nested: false }`, `PointeeCandidate`,
// `DiscriminantKindCandidate`, `ConstDestructCandidate`
// to anything else.
//
// This is a fix for #53123 and prevents winnowing from accidentally extending the
// lifetime of a variable.
match (&other.candidate, &victim.candidate) {
// FIXME(@jswrenn): this should probably be more sophisticated
(TransmutabilityCandidate, _) | (_, TransmutabilityCandidate) => DropVictim::No,
// (*)
(BuiltinCandidate { has_nested: false }, _) => DropVictim::Yes,
(_, BuiltinCandidate { has_nested: false }) => DropVictim::No,
(ParamCandidate(other), ParamCandidate(victim)) => {
let same_except_bound_vars = other.skip_binder().trait_ref
== victim.skip_binder().trait_ref
&& other.skip_binder().polarity == victim.skip_binder().polarity
&& !other.skip_binder().trait_ref.has_escaping_bound_vars();
if same_except_bound_vars {
// See issue #84398. In short, we can generate multiple ParamCandidates which are
// the same except for unused bound vars. Just pick the one with the fewest bound vars
// or the current one if tied (they should both evaluate to the same answer). This is
// probably best characterized as a "hack", since we might prefer to just do our
// best to *not* create essentially duplicate candidates in the first place.
DropVictim::drop_if(other.bound_vars().len() <= victim.bound_vars().len())
} else {
DropVictim::No
}
}
(
ParamCandidate(other_cand),
ImplCandidate(..)
| AutoImplCandidate
| ClosureCandidate { .. }
| AsyncClosureCandidate
| AsyncFnKindHelperCandidate
| CoroutineCandidate
| FutureCandidate
| IteratorCandidate
| AsyncIteratorCandidate
| FnPointerCandidate { .. }
| BuiltinObjectCandidate
| BuiltinUnsizeCandidate
| TraitUpcastingUnsizeCandidate(_)
| BuiltinCandidate { .. }
| TraitAliasCandidate
| ObjectCandidate(_)
| ProjectionCandidate(_),
) => {
// We have a where clause so don't go around looking
// for impls. Arbitrarily give param candidates priority
// over projection and object candidates.
//
// Global bounds from the where clause should be ignored
// here (see issue #50825).
DropVictim::drop_if(!is_global(*other_cand))
}
(ObjectCandidate(_) | ProjectionCandidate(_), ParamCandidate(victim_cand)) => {
// Prefer these to a global where-clause bound
// (see issue #50825).
if is_global(*victim_cand) { DropVictim::Yes } else { DropVictim::No }
}
(
ImplCandidate(_)
| AutoImplCandidate
| ClosureCandidate { .. }
| AsyncClosureCandidate
| AsyncFnKindHelperCandidate
| CoroutineCandidate
| FutureCandidate
| IteratorCandidate
| AsyncIteratorCandidate
| FnPointerCandidate { .. }
| BuiltinObjectCandidate
| BuiltinUnsizeCandidate
| TraitUpcastingUnsizeCandidate(_)
| BuiltinCandidate { has_nested: true }
| TraitAliasCandidate,
ParamCandidate(victim_cand),
) => {
// Prefer these to a global where-clause bound
// (see issue #50825).
DropVictim::drop_if(
is_global(*victim_cand) && other.evaluation.must_apply_modulo_regions(),
)
}
(ProjectionCandidate(i), ProjectionCandidate(j))
| (ObjectCandidate(i), ObjectCandidate(j)) => {
// Arbitrarily pick the lower numbered candidate for backwards
// compatibility reasons. Don't let this affect inference.
DropVictim::drop_if(i < j && !has_non_region_infer)
}
(ObjectCandidate(_), ProjectionCandidate(_))
| (ProjectionCandidate(_), ObjectCandidate(_)) => {
bug!("Have both object and projection candidate")
}
// Arbitrarily give projection and object candidates priority.
(
ObjectCandidate(_) | ProjectionCandidate(_),
ImplCandidate(..)
| AutoImplCandidate
| ClosureCandidate { .. }
| AsyncClosureCandidate
| AsyncFnKindHelperCandidate
| CoroutineCandidate
| FutureCandidate
| IteratorCandidate
| AsyncIteratorCandidate
| FnPointerCandidate { .. }
| BuiltinObjectCandidate
| BuiltinUnsizeCandidate
| TraitUpcastingUnsizeCandidate(_)
| BuiltinCandidate { .. }
| TraitAliasCandidate,
) => DropVictim::Yes,
(
ImplCandidate(..)
| AutoImplCandidate
| ClosureCandidate { .. }
| AsyncClosureCandidate
| AsyncFnKindHelperCandidate
| CoroutineCandidate
| FutureCandidate
| IteratorCandidate
| AsyncIteratorCandidate
| FnPointerCandidate { .. }
| BuiltinObjectCandidate
| BuiltinUnsizeCandidate
| TraitUpcastingUnsizeCandidate(_)
| BuiltinCandidate { .. }
| TraitAliasCandidate,
ObjectCandidate(_) | ProjectionCandidate(_),
) => DropVictim::No,
(&ImplCandidate(other_def), &ImplCandidate(victim_def)) => {
// See if we can toss out `victim` based on specialization.
// While this requires us to know *for sure* that the `other` impl applies
// we still use modulo regions here.
//
// This is fine as specialization currently assumes that specializing
// impls have to be always applicable, meaning that the only allowed
// region constraints may be constraints also present on the default impl.
let tcx = self.tcx();
if other.evaluation.must_apply_modulo_regions()
&& tcx.specializes((other_def, victim_def))
{
return DropVictim::Yes;
}
match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
// For #33140 the impl headers must be exactly equal, the trait must not have
// any associated items and there are no where-clauses.
//
// We can just arbitrarily drop one of the impls.
Some(ty::ImplOverlapKind::FutureCompatOrderDepTraitObjects) => {
assert_eq!(other.evaluation, victim.evaluation);
DropVictim::Yes
}
// For candidates which already reference errors it doesn't really
// matter what we do 🤷
Some(ty::ImplOverlapKind::Permitted { marker: false }) => {
DropVictim::drop_if(other.evaluation.must_apply_considering_regions())
}
Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
// Subtle: If the predicate we are evaluating has inference
// variables, do *not* allow discarding candidates due to
// marker trait impls.
//
// Without this restriction, we could end up accidentally
// constraining inference variables based on an arbitrarily
// chosen trait impl.
//
// Imagine we have the following code:
//
// ```rust
// #[marker] trait MyTrait {}
// impl MyTrait for u8 {}
// impl MyTrait for bool {}
// ```
//
// And we are evaluating the predicate `<_#0t as MyTrait>`.
//
// During selection, we will end up with one candidate for each
// impl of `MyTrait`. If we were to discard one impl in favor
// of the other, we would be left with one candidate, causing
// us to "successfully" select the predicate, unifying
// _#0t with (for example) `u8`.
//
// However, we have no reason to believe that this unification
// is correct - we've essentially just picked an arbitrary
// *possibility* for _#0t, and required that this be the *only*
// possibility.
//
// Eventually, we will either:
// 1) Unify all inference variables in the predicate through
// some other means (e.g. type-checking of a function). We will
// then be in a position to drop marker trait candidates
// without constraining inference variables (since there are
// none left to constrain)
// 2) Be left with some unconstrained inference variables. We
// will then correctly report an inference error, since the
// existence of multiple marker trait impls tells us nothing
// about which one should actually apply.
DropVictim::drop_if(
!has_non_region_infer
&& other.evaluation.must_apply_considering_regions(),
)
}
None => DropVictim::No,
}
}
(AutoImplCandidate, ImplCandidate(_)) | (ImplCandidate(_), AutoImplCandidate) => {
DropVictim::No
}
(AutoImplCandidate, _) | (_, AutoImplCandidate) => {
bug!(
"default implementations shouldn't be recorded \
when there are other global candidates: {:?} {:?}",
other,
victim
);
}
// Everything else is ambiguous
(
ImplCandidate(_)
| ClosureCandidate { .. }
| AsyncClosureCandidate
| AsyncFnKindHelperCandidate
| CoroutineCandidate
| FutureCandidate
| IteratorCandidate
| AsyncIteratorCandidate
| FnPointerCandidate { .. }
| BuiltinObjectCandidate
| BuiltinUnsizeCandidate
| TraitUpcastingUnsizeCandidate(_)
| BuiltinCandidate { has_nested: true }
| TraitAliasCandidate,
ImplCandidate(_)
| ClosureCandidate { .. }
| AsyncClosureCandidate
| AsyncFnKindHelperCandidate
| CoroutineCandidate
| FutureCandidate
| IteratorCandidate
| AsyncIteratorCandidate
| FnPointerCandidate { .. }
| BuiltinObjectCandidate
| BuiltinUnsizeCandidate
| TraitUpcastingUnsizeCandidate(_)
| BuiltinCandidate { has_nested: true }
| TraitAliasCandidate,
) => DropVictim::No,
}
}
}
impl<'tcx> SelectionContext<'_, 'tcx> {
fn sized_conditions(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
) -> BuiltinImplConditions<'tcx> {
use self::BuiltinImplConditions::{Ambiguous, None, Where};
// NOTE: binder moved to (*)
let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
match self_ty.kind() {
ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::RawPtr(..)
| ty::Char
| ty::Ref(..)
| ty::Coroutine(..)
| ty::CoroutineWitness(..)
| ty::Array(..)
| ty::Closure(..)
| ty::CoroutineClosure(..)
| ty::Never
| ty::Dynamic(_, _, ty::DynStar)
| ty::Error(_) => {
// safe for everything
Where(ty::Binder::dummy(Vec::new()))
}
ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
ty::Tuple(tys) => Where(
obligation.predicate.rebind(tys.last().map_or_else(Vec::new, |&last| vec![last])),
),
ty::Pat(ty, _) => Where(obligation.predicate.rebind(vec![*ty])),
ty::Adt(def, args) => {
if let Some(sized_crit) = def.sized_constraint(self.tcx()) {
// (*) binder moved here
Where(
obligation.predicate.rebind(vec![sized_crit.instantiate(self.tcx(), args)]),
)
} else {
Where(ty::Binder::dummy(Vec::new()))
}
}
ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => None,
ty::Infer(ty::TyVar(_)) => Ambiguous,
// We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
ty::Bound(..) => None,
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
}
}
}
fn copy_clone_conditions(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
) -> BuiltinImplConditions<'tcx> {
// NOTE: binder moved to (*)
let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
use self::BuiltinImplConditions::{Ambiguous, None, Where};
match *self_ty.kind() {
ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
ty::Uint(_)
| ty::Int(_)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Bool
| ty::Float(_)
| ty::Char
| ty::RawPtr(..)
| ty::Never
| ty::Ref(_, _, hir::Mutability::Not)
| ty::Array(..) => {
// Implementations provided in libcore
None
}
ty::Dynamic(..)
| ty::Str
| ty::Slice(..)
| ty::Foreign(..)
| ty::Ref(_, _, hir::Mutability::Mut) => None,
ty::Tuple(tys) => {
// (*) binder moved here
Where(obligation.predicate.rebind(tys.iter().collect()))
}
ty::Pat(ty, _) => {
// (*) binder moved here
Where(obligation.predicate.rebind(vec![ty]))
}
ty::Coroutine(coroutine_def_id, args) => {
match self.tcx().coroutine_movability(coroutine_def_id) {
hir::Movability::Static => None,
hir::Movability::Movable => {
if self.tcx().features().coroutine_clone {
let resolved_upvars =
self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
let resolved_witness =
self.infcx.shallow_resolve(args.as_coroutine().witness());
if resolved_upvars.is_ty_var() || resolved_witness.is_ty_var() {
// Not yet resolved.
Ambiguous
} else {
let all = args
.as_coroutine()
.upvar_tys()
.iter()
.chain([args.as_coroutine().witness()])
.collect::<Vec<_>>();
Where(obligation.predicate.rebind(all))
}
} else {
None
}
}
}
}
ty::CoroutineWitness(def_id, args) => {
let hidden_types = bind_coroutine_hidden_types_above(
self.infcx,
def_id,
args,
obligation.predicate.bound_vars(),
);
Where(hidden_types)
}
ty::Closure(_, args) => {
// (*) binder moved here
let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
if let ty::Infer(ty::TyVar(_)) = ty.kind() {
// Not yet resolved.
Ambiguous
} else {
Where(obligation.predicate.rebind(args.as_closure().upvar_tys().to_vec()))
}
}
ty::CoroutineClosure(_, args) => {
// (*) binder moved here
let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
if let ty::Infer(ty::TyVar(_)) = ty.kind() {
// Not yet resolved.
Ambiguous
} else {
Where(
obligation
.predicate
.rebind(args.as_coroutine_closure().upvar_tys().to_vec()),
)
}
}
// `Copy` and `Clone` are automatically implemented for an anonymous adt
// if all of its fields are `Copy` and `Clone`
ty::Adt(adt, args) if adt.is_anonymous() => {
// (*) binder moved here
Where(obligation.predicate.rebind(
adt.non_enum_variant().fields.iter().map(|f| f.ty(self.tcx(), args)).collect(),
))
}
ty::Adt(..) | ty::Alias(..) | ty::Param(..) | ty::Placeholder(..) => {
// Fallback to whatever user-defined impls exist in this case.
None
}
ty::Infer(ty::TyVar(_)) => {
// Unbound type variable. Might or might not have
// applicable impls and so forth, depending on what
// those type variables wind up being bound to.
Ambiguous
}
// We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
ty::Bound(..) => None,
ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
}
}
}
fn fused_iterator_conditions(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
) -> BuiltinImplConditions<'tcx> {
let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
if let ty::Coroutine(did, ..) = *self_ty.kind()
&& self.tcx().coroutine_is_gen(did)
{
BuiltinImplConditions::Where(ty::Binder::dummy(Vec::new()))
} else {
BuiltinImplConditions::None
}
}
/// For default impls, we need to break apart a type into its
/// "constituent types" -- meaning, the types that it contains.
///
/// Here are some (simple) examples:
///
/// ```ignore (illustrative)
/// (i32, u32) -> [i32, u32]
/// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
/// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
/// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
/// ```
#[instrument(level = "debug", skip(self), ret)]
fn constituent_types_for_ty(
&self,
t: ty::Binder<'tcx, Ty<'tcx>>,
) -> Result<ty::Binder<'tcx, Vec<Ty<'tcx>>>, SelectionError<'tcx>> {
Ok(match *t.skip_binder().kind() {
ty::Uint(_)
| ty::Int(_)
| ty::Bool
| ty::Float(_)
| ty::FnDef(..)
| ty::FnPtr(..)
| ty::Error(_)
| ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
| ty::Never
| ty::Char => ty::Binder::dummy(Vec::new()),
// Treat this like `struct str([u8]);`
ty::Str => ty::Binder::dummy(vec![Ty::new_slice(self.tcx(), self.tcx().types.u8)]),
ty::Placeholder(..)
| ty::Dynamic(..)
| ty::Param(..)
| ty::Foreign(..)
| ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..)
| ty::Bound(..)
| ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
bug!("asked to assemble constituent types of unexpected type: {:?}", t);
}
ty::RawPtr(element_ty, _) | ty::Ref(_, element_ty, _) => t.rebind(vec![element_ty]),
ty::Pat(ty, _) | ty::Array(ty, _) | ty::Slice(ty) => t.rebind(vec![ty]),
ty::Tuple(tys) => {
// (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
t.rebind(tys.iter().collect())
}
ty::Closure(_, args) => {
let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
t.rebind(vec![ty])
}
ty::CoroutineClosure(_, args) => {
let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
t.rebind(vec![ty])
}
ty::Coroutine(_, args) => {
let ty = self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
let witness = args.as_coroutine().witness();
t.rebind([ty].into_iter().chain(iter::once(witness)).collect())
}
ty::CoroutineWitness(def_id, args) => {
bind_coroutine_hidden_types_above(self.infcx, def_id, args, t.bound_vars())
}
// For `PhantomData<T>`, we pass `T`.
ty::Adt(def, args) if def.is_phantom_data() => t.rebind(args.types().collect()),
ty::Adt(def, args) => {
t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), args)).collect())
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
if self.infcx.can_define_opaque_ty(def_id) {
unreachable!()
} else {
// We can resolve the `impl Trait` to its concrete type,
// which enforces a DAG between the functions requiring
// the auto trait bounds in question.
match self.tcx().type_of_opaque(def_id) {
Ok(ty) => t.rebind(vec![ty.instantiate(self.tcx(), args)]),
Err(_) => {
return Err(SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id));
}
}
}
}
})
}
fn collect_predicates_for_types(
&mut self,
param_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
recursion_depth: usize,
trait_def_id: DefId,
types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
) -> PredicateObligations<'tcx> {
// Because the types were potentially derived from
// higher-ranked obligations they may reference late-bound
// regions. For example, `for<'a> Foo<&'a i32> : Copy` would
// yield a type like `for<'a> &'a i32`. In general, we
// maintain the invariant that we never manipulate bound
// regions, so we have to process these bound regions somehow.
//
// The strategy is to:
//
// 1. Instantiate those regions to placeholder regions (e.g.,
// `for<'a> &'a i32` becomes `&0 i32`.
// 2. Produce something like `&'0 i32 : Copy`
// 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
types
.as_ref()
.skip_binder() // binder moved -\
.iter()
.flat_map(|ty| {
let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(*ty); // <----/
let placeholder_ty = self.infcx.enter_forall_and_leak_universe(ty);
let Normalized { value: normalized_ty, mut obligations } =
ensure_sufficient_stack(|| {
normalize_with_depth(
self,
param_env,
cause.clone(),
recursion_depth,
placeholder_ty,
)
});
let tcx = self.tcx();
let trait_ref = if tcx.generics_of(trait_def_id).own_params.len() == 1 {
ty::TraitRef::new(tcx, trait_def_id, [normalized_ty])
} else {
// If this is an ill-formed auto/built-in trait, then synthesize
// new error args for the missing generics.
let err_args = ty::GenericArgs::extend_with_error(tcx, trait_def_id, &[
normalized_ty.into(),
]);
ty::TraitRef::new_from_args(tcx, trait_def_id, err_args)
};
let obligation = Obligation::new(self.tcx(), cause.clone(), param_env, trait_ref);
obligations.push(obligation);
obligations
})
.collect()
}
///////////////////////////////////////////////////////////////////////////
// Matching
//
// Matching is a common path used for both evaluation and
// confirmation. It basically unifies types that appear in impls
// and traits. This does affect the surrounding environment;
// therefore, when used during evaluation, match routines must be
// run inside of a `probe()` so that their side-effects are
// contained.
fn rematch_impl(
&mut self,
impl_def_id: DefId,
obligation: &PolyTraitObligation<'tcx>,
) -> Normalized<'tcx, GenericArgsRef<'tcx>> {
let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
match self.match_impl(impl_def_id, impl_trait_header, obligation) {
Ok(args) => args,
Err(()) => {
let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
bug!("impl {impl_def_id:?} was matchable against {predicate:?} but now is not")
}
}
}
#[instrument(level = "debug", skip(self), ret)]
fn match_impl(
&mut self,
impl_def_id: DefId,
impl_trait_header: ty::ImplTraitHeader<'tcx>,
obligation: &PolyTraitObligation<'tcx>,
) -> Result<Normalized<'tcx, GenericArgsRef<'tcx>>, ()> {
let placeholder_obligation =
self.infcx.enter_forall_and_leak_universe(obligation.predicate);
let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
let impl_args = self.infcx.fresh_args_for_item(obligation.cause.span, impl_def_id);
let trait_ref = impl_trait_header.trait_ref.instantiate(self.tcx(), impl_args);
if trait_ref.references_error() {
return Err(());
}
debug!(?impl_trait_header);
let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
ensure_sufficient_stack(|| {
normalize_with_depth(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
trait_ref,
)
});
debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
let cause = ObligationCause::new(
obligation.cause.span,
obligation.cause.body_id,
ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
);
let InferOk { obligations, .. } = self
.infcx
.at(&cause, obligation.param_env)
.eq(DefineOpaqueTypes::No, placeholder_obligation_trait_ref, impl_trait_ref)
.map_err(|e| {
debug!("match_impl: failed eq_trait_refs due to `{}`", e.to_string(self.tcx()))
})?;
nested_obligations.extend(obligations);
if !self.is_intercrate() && impl_trait_header.polarity == ty::ImplPolarity::Reservation {
debug!("reservation impls only apply in intercrate mode");
return Err(());
}
Ok(Normalized { value: impl_args, obligations: nested_obligations })
}
fn match_upcast_principal(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
unnormalized_upcast_principal: ty::PolyTraitRef<'tcx>,
a_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
b_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
a_region: ty::Region<'tcx>,
b_region: ty::Region<'tcx>,
) -> SelectionResult<'tcx, PredicateObligations<'tcx>> {
let tcx = self.tcx();
let mut nested = PredicateObligations::new();
// We may upcast to auto traits that are either explicitly listed in
// the object type's bounds, or implied by the principal trait ref's
// supertraits.
let a_auto_traits: FxIndexSet<DefId> = a_data
.auto_traits()
.chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
tcx.supertrait_def_ids(principal_def_id).filter(|def_id| tcx.trait_is_auto(*def_id))
}))
.collect();
let upcast_principal = normalize_with_depth_to(
self,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
unnormalized_upcast_principal,
&mut nested,
);
for bound in b_data {
match bound.skip_binder() {
// Check that a_ty's supertrait (upcast_principal) is compatible
// with the target (b_ty).
ty::ExistentialPredicate::Trait(target_principal) => {
let hr_source_principal = upcast_principal.map_bound(|trait_ref| {
ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
});
let hr_target_principal = bound.rebind(target_principal);
nested.extend(
self.infcx
.enter_forall(hr_target_principal, |target_principal| {
let source_principal =
self.infcx.instantiate_binder_with_fresh_vars(
obligation.cause.span,
HigherRankedType,
hr_source_principal,
);
self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
DefineOpaqueTypes::Yes,
ToTrace::to_trace(
&obligation.cause,
hr_target_principal,
hr_source_principal,
),
target_principal,
source_principal,
)
})
.map_err(|_| SelectionError::Unimplemented)?
.into_obligations(),
);
}
// Check that b_ty's projection is satisfied by exactly one of
// a_ty's projections. First, we look through the list to see if
// any match. If not, error. Then, if *more* than one matches, we
// return ambiguity. Otherwise, if exactly one matches, equate
// it with b_ty's projection.
ty::ExistentialPredicate::Projection(target_projection) => {
let hr_target_projection = bound.rebind(target_projection);
let mut matching_projections =
a_data.projection_bounds().filter(|&hr_source_projection| {
// Eager normalization means that we can just use can_eq
// here instead of equating and processing obligations.
hr_source_projection.item_def_id() == hr_target_projection.item_def_id()
&& self.infcx.probe(|_| {
self.infcx
.enter_forall(hr_target_projection, |target_projection| {
let source_projection =
self.infcx.instantiate_binder_with_fresh_vars(
obligation.cause.span,
HigherRankedType,
hr_source_projection,
);
self.infcx
.at(&obligation.cause, obligation.param_env)
.eq_trace(
DefineOpaqueTypes::Yes,
ToTrace::to_trace(
&obligation.cause,
hr_target_projection,
hr_source_projection,
),
target_projection,
source_projection,
)
})
.is_ok()
})
});
let Some(hr_source_projection) = matching_projections.next() else {
return Err(SelectionError::Unimplemented);
};
if matching_projections.next().is_some() {
return Ok(None);
}
nested.extend(
self.infcx
.enter_forall(hr_target_projection, |target_projection| {
let source_projection =
self.infcx.instantiate_binder_with_fresh_vars(
obligation.cause.span,
HigherRankedType,
hr_source_projection,
);
self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
DefineOpaqueTypes::Yes,
ToTrace::to_trace(
&obligation.cause,
hr_target_projection,
hr_source_projection,
),
target_projection,
source_projection,
)
})
.map_err(|_| SelectionError::Unimplemented)?
.into_obligations(),
);
}
// Check that b_ty's auto traits are present in a_ty's bounds.
ty::ExistentialPredicate::AutoTrait(def_id) => {
if !a_auto_traits.contains(&def_id) {
return Err(SelectionError::Unimplemented);
}
}
}
}
nested.push(Obligation::with_depth(
tcx,
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.param_env,
ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region)),
));
Ok(Some(nested))
}
/// Normalize `where_clause_trait_ref` and try to match it against
/// `obligation`. If successful, return any predicates that
/// result from the normalization.
fn match_where_clause_trait_ref(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
) -> Result<PredicateObligations<'tcx>, ()> {
self.match_poly_trait_ref(obligation, where_clause_trait_ref)
}
/// Returns `Ok` if `poly_trait_ref` being true implies that the
/// obligation is satisfied.
#[instrument(skip(self), level = "debug")]
fn match_poly_trait_ref(
&mut self,
obligation: &PolyTraitObligation<'tcx>,
poly_trait_ref: ty::PolyTraitRef<'tcx>,
) -> Result<PredicateObligations<'tcx>, ()> {
let predicate = self.infcx.enter_forall_and_leak_universe(obligation.predicate);
let trait_ref = self.infcx.instantiate_binder_with_fresh_vars(
obligation.cause.span,
HigherRankedType,
poly_trait_ref,
);
self.infcx
.at(&obligation.cause, obligation.param_env)
.eq(DefineOpaqueTypes::No, predicate.trait_ref, trait_ref)
.map(|InferOk { obligations, .. }| obligations)
.map_err(|_| ())
}
///////////////////////////////////////////////////////////////////////////
// Miscellany
fn match_fresh_trait_refs(
&self,
previous: ty::PolyTraitPredicate<'tcx>,
current: ty::PolyTraitPredicate<'tcx>,
) -> bool {
let mut matcher = _match::MatchAgainstFreshVars::new(self.tcx());
matcher.relate(previous, current).is_ok()
}
fn push_stack<'o>(
&mut self,
previous_stack: TraitObligationStackList<'o, 'tcx>,
obligation: &'o PolyTraitObligation<'tcx>,
) -> TraitObligationStack<'o, 'tcx> {
let fresh_trait_pred = obligation.predicate.fold_with(&mut self.freshener);
let dfn = previous_stack.cache.next_dfn();
let depth = previous_stack.depth() + 1;
TraitObligationStack {
obligation,
fresh_trait_pred,
reached_depth: Cell::new(depth),
previous: previous_stack,
dfn,
depth,
}
}
#[instrument(skip(self), level = "debug")]
fn closure_trait_ref_unnormalized(
&mut self,
self_ty: Ty<'tcx>,
fn_trait_def_id: DefId,
) -> ty::PolyTraitRef<'tcx> {
let ty::Closure(_, args) = *self_ty.kind() else {
bug!("expected closure, found {self_ty}");
};
let closure_sig = args.as_closure().sig();
closure_trait_ref_and_return_type(
self.tcx(),
fn_trait_def_id,
self_ty,
closure_sig,
util::TupleArgumentsFlag::No,
)
.map_bound(|(trait_ref, _)| trait_ref)
}
/// Returns the obligations that are implied by instantiating an
/// impl or trait. The obligations are instantiated and fully
/// normalized. This is used when confirming an impl or default
/// impl.
#[instrument(level = "debug", skip(self, cause, param_env))]
fn impl_or_trait_obligations(
&mut self,
cause: &ObligationCause<'tcx>,
recursion_depth: usize,
param_env: ty::ParamEnv<'tcx>,
def_id: DefId, // of impl or trait
args: GenericArgsRef<'tcx>, // for impl or trait
parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
) -> PredicateObligations<'tcx> {
let tcx = self.tcx();
// To allow for one-pass evaluation of the nested obligation,
// each predicate must be preceded by the obligations required
// to normalize it.
// for example, if we have:
// impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
// the impl will have the following predicates:
// <V as Iterator>::Item = U,
// U: Iterator, U: Sized,
// V: Iterator, V: Sized,
// <U as Iterator>::Item: Copy
// When we instantiate, say, `V => IntoIter<u32>, U => $0`, the last
// obligation will normalize to `<$0 as Iterator>::Item = $1` and
// `$1: Copy`, so we must ensure the obligations are emitted in
// that order.
let predicates = tcx.predicates_of(def_id);
assert_eq!(predicates.parent, None);
let predicates = predicates.instantiate_own(tcx, args);
let mut obligations = PredicateObligations::with_capacity(predicates.len());
for (index, (predicate, span)) in predicates.into_iter().enumerate() {
let cause = if tcx.is_lang_item(parent_trait_pred.def_id(), LangItem::CoerceUnsized) {
cause.clone()
} else {
cause.clone().derived_cause(parent_trait_pred, |derived| {
ObligationCauseCode::ImplDerived(Box::new(ImplDerivedCause {
derived,
impl_or_alias_def_id: def_id,
impl_def_predicate_index: Some(index),
span,
}))
})
};
let clause = normalize_with_depth_to(
self,
param_env,
cause.clone(),
recursion_depth,
predicate,
&mut obligations,
);
obligations.push(Obligation {
cause,
recursion_depth,
param_env,
predicate: clause.as_predicate(),
});
}
// Register any outlives obligations from the trait here, cc #124336.
if matches!(tcx.def_kind(def_id), DefKind::Impl { of_trait: true }) {
for clause in tcx.impl_super_outlives(def_id).iter_instantiated(tcx, args) {
let clause = normalize_with_depth_to(
self,
param_env,
cause.clone(),
recursion_depth,
clause,
&mut obligations,
);
obligations.push(Obligation {
cause: cause.clone(),
recursion_depth,
param_env,
predicate: clause.as_predicate(),
});
}
}
obligations
}
}
impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
TraitObligationStackList::with(self)
}
fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
self.previous.cache
}
fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
self.list()
}
/// Indicates that attempting to evaluate this stack entry
/// required accessing something from the stack at depth `reached_depth`.
fn update_reached_depth(&self, reached_depth: usize) {
assert!(
self.depth >= reached_depth,
"invoked `update_reached_depth` with something under this stack: \
self.depth={} reached_depth={}",
self.depth,
reached_depth,
);
debug!(reached_depth, "update_reached_depth");
let mut p = self;
while reached_depth < p.depth {
debug!(?p.fresh_trait_pred, "update_reached_depth: marking as cycle participant");
p.reached_depth.set(p.reached_depth.get().min(reached_depth));
p = p.previous.head.unwrap();
}
}
}
/// The "provisional evaluation cache" is used to store intermediate cache results
/// when solving auto traits. Auto traits are unusual in that they can support
/// cycles. So, for example, a "proof tree" like this would be ok:
///
/// - `Foo<T>: Send` :-
/// - `Bar<T>: Send` :-
/// - `Foo<T>: Send` -- cycle, but ok
/// - `Baz<T>: Send`
///
/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
/// For non-auto traits, this cycle would be an error, but for auto traits (because
/// they are coinductive) it is considered ok.
///
/// However, there is a complication: at the point where we have
/// "proven" `Bar<T>: Send`, we have in fact only proven it
/// *provisionally*. In particular, we proved that `Bar<T>: Send`
/// *under the assumption* that `Foo<T>: Send`. But what if we later
/// find out this assumption is wrong? Specifically, we could
/// encounter some kind of error proving `Baz<T>: Send`. In that case,
/// `Bar<T>: Send` didn't turn out to be true.
///
/// In Issue #60010, we found a bug in rustc where it would cache
/// these intermediate results. This was fixed in #60444 by disabling
/// *all* caching for things involved in a cycle -- in our example,
/// that would mean we don't cache that `Bar<T>: Send`. But this led
/// to large slowdowns.
///
/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
/// first requires proving `Bar<T>: Send` (which is true:
///
/// - `Foo<T>: Send` :-
/// - `Bar<T>: Send` :-
/// - `Foo<T>: Send` -- cycle, but ok
/// - `Baz<T>: Send`
/// - `Bar<T>: Send` -- would be nice for this to be a cache hit!
/// - `*const T: Send` -- but what if we later encounter an error?
///
/// The *provisional evaluation cache* resolves this issue. It stores
/// cache results that we've proven but which were involved in a cycle
/// in some way. We track the minimal stack depth (i.e., the
/// farthest from the top of the stack) that we are dependent on.
/// The idea is that the cache results within are all valid -- so long as
/// none of the nodes in between the current node and the node at that minimum
/// depth result in an error (in which case the cached results are just thrown away).
///
/// During evaluation, we consult this provisional cache and rely on
/// it. Accessing a cached value is considered equivalent to accessing
/// a result at `reached_depth`, so it marks the *current* solution as
/// provisional as well. If an error is encountered, we toss out any
/// provisional results added from the subtree that encountered the
/// error. When we pop the node at `reached_depth` from the stack, we
/// can commit all the things that remain in the provisional cache.
struct ProvisionalEvaluationCache<'tcx> {
/// next "depth first number" to issue -- just a counter
dfn: Cell<usize>,
/// Map from cache key to the provisionally evaluated thing.
/// The cache entries contain the result but also the DFN in which they
/// were added. The DFN is used to clear out values on failure.
///
/// Imagine we have a stack like:
///
/// - `A B C` and we add a cache for the result of C (DFN 2)
/// - Then we have a stack `A B D` where `D` has DFN 3
/// - We try to solve D by evaluating E: `A B D E` (DFN 4)
/// - `E` generates various cache entries which have cyclic dependencies on `B`
/// - `A B D E F` and so forth
/// - the DFN of `F` for example would be 5
/// - then we determine that `E` is in error -- we will then clear
/// all cache values whose DFN is >= 4 -- in this case, that
/// means the cached value for `F`.
map: RefCell<FxIndexMap<ty::PolyTraitPredicate<'tcx>, ProvisionalEvaluation>>,
/// The stack of args that we assume to be true because a `WF(arg)` predicate
/// is on the stack above (and because of wellformedness is coinductive).
/// In an "ideal" world, this would share a stack with trait predicates in
/// `TraitObligationStack`. However, trait predicates are *much* hotter than
/// `WellFormed` predicates, and it's very likely that the additional matches
/// will have a perf effect. The value here is the well-formed `GenericArg`
/// and the depth of the trait predicate *above* that well-formed predicate.
wf_args: RefCell<Vec<(ty::GenericArg<'tcx>, usize)>>,
}
/// A cache value for the provisional cache: contains the depth-first
/// number (DFN) and result.
#[derive(Copy, Clone, Debug)]
struct ProvisionalEvaluation {
from_dfn: usize,
reached_depth: usize,
result: EvaluationResult,
}
impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
fn default() -> Self {
Self { dfn: Cell::new(0), map: Default::default(), wf_args: Default::default() }
}
}
impl<'tcx> ProvisionalEvaluationCache<'tcx> {
/// Get the next DFN in sequence (basically a counter).
fn next_dfn(&self) -> usize {
let result = self.dfn.get();
self.dfn.set(result + 1);
result
}
/// Check the provisional cache for any result for
/// `fresh_trait_ref`. If there is a hit, then you must consider
/// it an access to the stack slots at depth
/// `reached_depth` (from the returned value).
fn get_provisional(
&self,
fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
) -> Option<ProvisionalEvaluation> {
debug!(
?fresh_trait_pred,
"get_provisional = {:#?}",
self.map.borrow().get(&fresh_trait_pred),
);
Some(*self.map.borrow().get(&fresh_trait_pred)?)
}
/// Insert a provisional result into the cache. The result came
/// from the node with the given DFN. It accessed a minimum depth
/// of `reached_depth` to compute. It evaluated `fresh_trait_pred`
/// and resulted in `result`.
fn insert_provisional(
&self,
from_dfn: usize,
reached_depth: usize,
fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
result: EvaluationResult,
) {
debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");
let mut map = self.map.borrow_mut();
// Subtle: when we complete working on the DFN `from_dfn`, anything
// that remains in the provisional cache must be dependent on some older
// stack entry than `from_dfn`. We have to update their depth with our transitive
// depth in that case or else it would be referring to some popped note.
//
// Example:
// A (reached depth 0)
// ...
// B // depth 1 -- reached depth = 0
// C // depth 2 -- reached depth = 1 (should be 0)
// B
// A // depth 0
// D (reached depth 1)
// C (cache -- reached depth = 2)
for (_k, v) in &mut *map {
if v.from_dfn >= from_dfn {
v.reached_depth = reached_depth.min(v.reached_depth);
}
}
map.insert(fresh_trait_pred, ProvisionalEvaluation { from_dfn, reached_depth, result });
}
/// Invoked when the node with dfn `dfn` does not get a successful
/// result. This will clear out any provisional cache entries
/// that were added since `dfn` was created. This is because the
/// provisional entries are things which must assume that the
/// things on the stack at the time of their creation succeeded --
/// since the failing node is presently at the top of the stack,
/// these provisional entries must either depend on it or some
/// ancestor of it.
fn on_failure(&self, dfn: usize) {
debug!(?dfn, "on_failure");
self.map.borrow_mut().retain(|key, eval| {
if !eval.from_dfn >= dfn {
debug!("on_failure: removing {:?}", key);
false
} else {
true
}
});
}
/// Invoked when the node at depth `depth` completed without
/// depending on anything higher in the stack (if that completion
/// was a failure, then `on_failure` should have been invoked
/// already).
///
/// Note that we may still have provisional cache items remaining
/// in the cache when this is done. For example, if there is a
/// cycle:
///
/// * A depends on...
/// * B depends on A
/// * C depends on...
/// * D depends on C
/// * ...
///
/// Then as we complete the C node we will have a provisional cache
/// with results for A, B, C, and D. This method would clear out
/// the C and D results, but leave A and B provisional.
///
/// This is determined based on the DFN: we remove any provisional
/// results created since `dfn` started (e.g., in our example, dfn
/// would be 2, representing the C node, and hence we would
/// remove the result for D, which has DFN 3, but not the results for
/// A and B, which have DFNs 0 and 1 respectively).
///
/// Note that we *do not* attempt to cache these cycle participants
/// in the evaluation cache. Doing so would require carefully computing
/// the correct `DepNode` to store in the cache entry:
/// cycle participants may implicitly depend on query results
/// related to other participants in the cycle, due to our logic
/// which examines the evaluation stack.
///
/// We used to try to perform this caching,
/// but it lead to multiple incremental compilation ICEs
/// (see #92987 and #96319), and was very hard to understand.
/// Fortunately, removing the caching didn't seem to
/// have a performance impact in practice.
fn on_completion(&self, dfn: usize) {
debug!(?dfn, "on_completion");
self.map.borrow_mut().retain(|fresh_trait_pred, eval| {
if eval.from_dfn >= dfn {
debug!(?fresh_trait_pred, ?eval, "on_completion");
return false;
}
true
});
}
}
#[derive(Copy, Clone)]
struct TraitObligationStackList<'o, 'tcx> {
cache: &'o ProvisionalEvaluationCache<'tcx>,
head: Option<&'o TraitObligationStack<'o, 'tcx>>,
}
impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
TraitObligationStackList { cache, head: None }
}
fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
TraitObligationStackList { cache: r.cache(), head: Some(r) }
}
fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
self.head
}
fn depth(&self) -> usize {
if let Some(head) = self.head { head.depth } else { 0 }
}
}
impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
type Item = &'o TraitObligationStack<'o, 'tcx>;
fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
let o = self.head?;
*self = o.previous;
Some(o)
}
}
impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "TraitObligationStack({:?})", self.obligation)
}
}
pub(crate) enum ProjectionMatchesProjection {
Yes,
Ambiguous,
No,
}
/// Replace all regions inside the coroutine interior with late bound regions.
/// Note that each region slot in the types gets a new fresh late bound region, which means that
/// none of the regions inside relate to any other, even if typeck had previously found constraints
/// that would cause them to be related.
#[instrument(level = "trace", skip(infcx), ret)]
fn bind_coroutine_hidden_types_above<'tcx>(
infcx: &InferCtxt<'tcx>,
def_id: DefId,
args: ty::GenericArgsRef<'tcx>,
bound_vars: &ty::List<ty::BoundVariableKind>,
) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
let tcx = infcx.tcx;
let mut seen_tys = FxHashSet::default();
let considering_regions = infcx.considering_regions;
let num_bound_variables = bound_vars.len() as u32;
let mut counter = num_bound_variables;
let hidden_types: Vec<_> = tcx
.coroutine_hidden_types(def_id)
// Deduplicate tys to avoid repeated work.
.filter(|bty| seen_tys.insert(*bty))
.map(|mut bty| {
// Only remap erased regions if we use them.
if considering_regions {
bty = bty.map_bound(|ty| {
tcx.fold_regions(ty, |r, current_depth| match r.kind() {
ty::ReErased => {
let br = ty::BoundRegion {
var: ty::BoundVar::from_u32(counter),
kind: ty::BrAnon,
};
counter += 1;
ty::Region::new_bound(tcx, current_depth, br)
}
r => bug!("unexpected region: {r:?}"),
})
})
}
bty.instantiate(tcx, args)
})
.collect();
let bound_vars =
tcx.mk_bound_variable_kinds_from_iter(bound_vars.iter().chain(
(num_bound_variables..counter).map(|_| ty::BoundVariableKind::Region(ty::BrAnon)),
));
ty::Binder::bind_with_vars(hidden_types, bound_vars)
}