rustc_ty_utils/abi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
use std::iter;
use rustc_abi::Float::*;
use rustc_abi::Primitive::{Float, Pointer};
use rustc_abi::{Abi, AddressSpace, PointerKind, Scalar, Size};
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_middle::bug;
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
FnAbiError, HasParamEnv, HasTyCtxt, LayoutCx, LayoutOf, TyAndLayout, fn_can_unwind,
};
use rustc_middle::ty::{self, InstanceKind, Ty, TyCtxt};
use rustc_session::config::OptLevel;
use rustc_span::def_id::DefId;
use rustc_target::abi::call::{
ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind,
RiscvInterruptKind,
};
use rustc_target::spec::abi::Abi as SpecAbi;
use tracing::debug;
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers };
}
// NOTE(eddyb) this is private to avoid using it from outside of
// `fn_abi_of_instance` - any other uses are either too high-level
// for `Instance` (e.g. typeck would use `Ty::fn_sig` instead),
// or should go through `FnAbi` instead, to avoid losing any
// adjustments `fn_abi_of_instance` might be performing.
#[tracing::instrument(level = "debug", skip(tcx, param_env))]
fn fn_sig_for_fn_abi<'tcx>(
tcx: TyCtxt<'tcx>,
instance: ty::Instance<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> ty::PolyFnSig<'tcx> {
if let InstanceKind::ThreadLocalShim(..) = instance.def {
return ty::Binder::dummy(tcx.mk_fn_sig(
[],
tcx.thread_local_ptr_ty(instance.def_id()),
false,
hir::Safety::Safe,
rustc_target::spec::abi::Abi::Unadjusted,
));
}
let ty = instance.ty(tcx, param_env);
match *ty.kind() {
ty::FnDef(..) => {
// HACK(davidtwco,eddyb): This is a workaround for polymorphization considering
// parameters unused if they show up in the signature, but not in the `mir::Body`
// (i.e. due to being inside a projection that got normalized, see
// `tests/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping
// track of a polymorphization `ParamEnv` to allow normalizing later.
//
// We normalize the `fn_sig` again after instantiating at a later point.
let mut sig = match *ty.kind() {
ty::FnDef(def_id, args) => tcx
.fn_sig(def_id)
.map_bound(|fn_sig| {
tcx.normalize_erasing_regions(tcx.param_env(def_id), fn_sig)
})
.instantiate(tcx, args),
_ => unreachable!(),
};
if let ty::InstanceKind::VTableShim(..) = instance.def {
// Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`.
sig = sig.map_bound(|mut sig| {
let mut inputs_and_output = sig.inputs_and_output.to_vec();
inputs_and_output[0] = Ty::new_mut_ptr(tcx, inputs_and_output[0]);
sig.inputs_and_output = tcx.mk_type_list(&inputs_and_output);
sig
});
}
sig
}
ty::Closure(def_id, args) => {
let sig = args.as_closure().sig();
let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
);
let br = ty::BoundRegion {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind: ty::BoundRegionKind::BrEnv,
};
let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
let env_ty = tcx.closure_env_ty(
Ty::new_closure(tcx, def_id, args),
args.as_closure().kind(),
env_region,
);
let sig = sig.skip_binder();
ty::Binder::bind_with_vars(
tcx.mk_fn_sig(
iter::once(env_ty).chain(sig.inputs().iter().cloned()),
sig.output(),
sig.c_variadic,
sig.safety,
sig.abi,
),
bound_vars,
)
}
ty::CoroutineClosure(def_id, args) => {
let coroutine_ty = Ty::new_coroutine_closure(tcx, def_id, args);
let sig = args.as_coroutine_closure().coroutine_closure_sig();
let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
);
let br = ty::BoundRegion {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind: ty::BoundRegionKind::BrEnv,
};
let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
// When this `CoroutineClosure` comes from a `ConstructCoroutineInClosureShim`,
// make sure we respect the `target_kind` in that shim.
// FIXME(async_closures): This shouldn't be needed, and we should be populating
// a separate def-id for these bodies.
let mut coroutine_kind = args.as_coroutine_closure().kind();
let env_ty =
if let InstanceKind::ConstructCoroutineInClosureShim { receiver_by_ref, .. } =
instance.def
{
coroutine_kind = ty::ClosureKind::FnOnce;
// Implementations of `FnMut` and `Fn` for coroutine-closures
// still take their receiver by ref.
if receiver_by_ref {
Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, coroutine_ty)
} else {
coroutine_ty
}
} else {
tcx.closure_env_ty(coroutine_ty, coroutine_kind, env_region)
};
let sig = sig.skip_binder();
ty::Binder::bind_with_vars(
tcx.mk_fn_sig(
iter::once(env_ty).chain([sig.tupled_inputs_ty]),
sig.to_coroutine_given_kind_and_upvars(
tcx,
args.as_coroutine_closure().parent_args(),
tcx.coroutine_for_closure(def_id),
coroutine_kind,
env_region,
args.as_coroutine_closure().tupled_upvars_ty(),
args.as_coroutine_closure().coroutine_captures_by_ref_ty(),
),
sig.c_variadic,
sig.safety,
sig.abi,
),
bound_vars,
)
}
ty::Coroutine(did, args) => {
let coroutine_kind = tcx.coroutine_kind(did).unwrap();
let sig = args.as_coroutine().sig();
let bound_vars = tcx.mk_bound_variable_kinds_from_iter(iter::once(
ty::BoundVariableKind::Region(ty::BrEnv),
));
let br = ty::BoundRegion {
var: ty::BoundVar::from_usize(bound_vars.len() - 1),
kind: ty::BoundRegionKind::BrEnv,
};
let env_ty = Ty::new_mut_ref(tcx, ty::Region::new_bound(tcx, ty::INNERMOST, br), ty);
let pin_did = tcx.require_lang_item(LangItem::Pin, None);
let pin_adt_ref = tcx.adt_def(pin_did);
let pin_args = tcx.mk_args(&[env_ty.into()]);
let env_ty = match coroutine_kind {
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _) => {
// Iterator::next doesn't accept a pinned argument,
// unlike for all other coroutine kinds.
env_ty
}
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _)
| hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _)
| hir::CoroutineKind::Coroutine(_) => Ty::new_adt(tcx, pin_adt_ref, pin_args),
};
// The `FnSig` and the `ret_ty` here is for a coroutines main
// `Coroutine::resume(...) -> CoroutineState` function in case we
// have an ordinary coroutine, the `Future::poll(...) -> Poll`
// function in case this is a special coroutine backing an async construct
// or the `Iterator::next(...) -> Option` function in case this is a
// special coroutine backing a gen construct.
let (resume_ty, ret_ty) = match coroutine_kind {
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _) => {
// The signature should be `Future::poll(_, &mut Context<'_>) -> Poll<Output>`
assert_eq!(sig.yield_ty, tcx.types.unit);
let poll_did = tcx.require_lang_item(LangItem::Poll, None);
let poll_adt_ref = tcx.adt_def(poll_did);
let poll_args = tcx.mk_args(&[sig.return_ty.into()]);
let ret_ty = Ty::new_adt(tcx, poll_adt_ref, poll_args);
// We have to replace the `ResumeTy` that is used for type and borrow checking
// with `&mut Context<'_>` which is used in codegen.
#[cfg(debug_assertions)]
{
if let ty::Adt(resume_ty_adt, _) = sig.resume_ty.kind() {
let expected_adt =
tcx.adt_def(tcx.require_lang_item(LangItem::ResumeTy, None));
assert_eq!(*resume_ty_adt, expected_adt);
} else {
panic!("expected `ResumeTy`, found `{:?}`", sig.resume_ty);
};
}
let context_mut_ref = Ty::new_task_context(tcx);
(Some(context_mut_ref), ret_ty)
}
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _) => {
// The signature should be `Iterator::next(_) -> Option<Yield>`
let option_did = tcx.require_lang_item(LangItem::Option, None);
let option_adt_ref = tcx.adt_def(option_did);
let option_args = tcx.mk_args(&[sig.yield_ty.into()]);
let ret_ty = Ty::new_adt(tcx, option_adt_ref, option_args);
assert_eq!(sig.return_ty, tcx.types.unit);
assert_eq!(sig.resume_ty, tcx.types.unit);
(None, ret_ty)
}
hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _) => {
// The signature should be
// `AsyncIterator::poll_next(_, &mut Context<'_>) -> Poll<Option<Output>>`
assert_eq!(sig.return_ty, tcx.types.unit);
// Yield type is already `Poll<Option<yield_ty>>`
let ret_ty = sig.yield_ty;
// We have to replace the `ResumeTy` that is used for type and borrow checking
// with `&mut Context<'_>` which is used in codegen.
#[cfg(debug_assertions)]
{
if let ty::Adt(resume_ty_adt, _) = sig.resume_ty.kind() {
let expected_adt =
tcx.adt_def(tcx.require_lang_item(LangItem::ResumeTy, None));
assert_eq!(*resume_ty_adt, expected_adt);
} else {
panic!("expected `ResumeTy`, found `{:?}`", sig.resume_ty);
};
}
let context_mut_ref = Ty::new_task_context(tcx);
(Some(context_mut_ref), ret_ty)
}
hir::CoroutineKind::Coroutine(_) => {
// The signature should be `Coroutine::resume(_, Resume) -> CoroutineState<Yield, Return>`
let state_did = tcx.require_lang_item(LangItem::CoroutineState, None);
let state_adt_ref = tcx.adt_def(state_did);
let state_args = tcx.mk_args(&[sig.yield_ty.into(), sig.return_ty.into()]);
let ret_ty = Ty::new_adt(tcx, state_adt_ref, state_args);
(Some(sig.resume_ty), ret_ty)
}
};
let fn_sig = if let Some(resume_ty) = resume_ty {
tcx.mk_fn_sig(
[env_ty, resume_ty],
ret_ty,
false,
hir::Safety::Safe,
rustc_target::spec::abi::Abi::Rust,
)
} else {
// `Iterator::next` doesn't have a `resume` argument.
tcx.mk_fn_sig(
[env_ty],
ret_ty,
false,
hir::Safety::Safe,
rustc_target::spec::abi::Abi::Rust,
)
};
ty::Binder::bind_with_vars(fn_sig, bound_vars)
}
_ => bug!("unexpected type {:?} in Instance::fn_sig", ty),
}
}
#[inline]
fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi, c_variadic: bool) -> Conv {
use rustc_target::spec::abi::Abi::*;
match tcx.sess.target.adjust_abi(abi, c_variadic) {
RustIntrinsic | Rust | RustCall => Conv::Rust,
// This is intentionally not using `Conv::Cold`, as that has to preserve
// even SIMD registers, which is generally not a good trade-off.
RustCold => Conv::PreserveMost,
// It's the ABI's job to select this, not ours.
System { .. } => bug!("system abi should be selected elsewhere"),
EfiApi => bug!("eficall abi should be selected elsewhere"),
Stdcall { .. } => Conv::X86Stdcall,
Fastcall { .. } => Conv::X86Fastcall,
Vectorcall { .. } => Conv::X86VectorCall,
Thiscall { .. } => Conv::X86ThisCall,
C { .. } => Conv::C,
Unadjusted => Conv::C,
Win64 { .. } => Conv::X86_64Win64,
SysV64 { .. } => Conv::X86_64SysV,
Aapcs { .. } => Conv::ArmAapcs,
CCmseNonSecureCall => Conv::CCmseNonSecureCall,
CCmseNonSecureEntry => Conv::CCmseNonSecureEntry,
PtxKernel => Conv::PtxKernel,
Msp430Interrupt => Conv::Msp430Intr,
X86Interrupt => Conv::X86Intr,
AvrInterrupt => Conv::AvrInterrupt,
AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt,
RiscvInterruptM => Conv::RiscvInterrupt { kind: RiscvInterruptKind::Machine },
RiscvInterruptS => Conv::RiscvInterrupt { kind: RiscvInterruptKind::Supervisor },
// These API constants ought to be more specific...
Cdecl { .. } => Conv::C,
}
}
fn fn_abi_of_fn_ptr<'tcx>(
tcx: TyCtxt<'tcx>,
query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, &'tcx FnAbiError<'tcx>> {
let (param_env, (sig, extra_args)) = query.into_parts();
let cx = LayoutCx::new(tcx, param_env);
fn_abi_new_uncached(&cx, sig, extra_args, None, None, false)
}
fn fn_abi_of_instance<'tcx>(
tcx: TyCtxt<'tcx>,
query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, &'tcx FnAbiError<'tcx>> {
let (param_env, (instance, extra_args)) = query.into_parts();
let sig = fn_sig_for_fn_abi(tcx, instance, param_env);
let caller_location =
instance.def.requires_caller_location(tcx).then(|| tcx.caller_location_ty());
fn_abi_new_uncached(
&LayoutCx::new(tcx, param_env),
sig,
extra_args,
caller_location,
Some(instance.def_id()),
matches!(instance.def, ty::InstanceKind::Virtual(..)),
)
}
// Handle safe Rust thin and wide pointers.
fn adjust_for_rust_scalar<'tcx>(
cx: LayoutCx<'tcx>,
attrs: &mut ArgAttributes,
scalar: Scalar,
layout: TyAndLayout<'tcx>,
offset: Size,
is_return: bool,
drop_target_pointee: Option<Ty<'tcx>>,
) {
// Booleans are always a noundef i1 that needs to be zero-extended.
if scalar.is_bool() {
attrs.ext(ArgExtension::Zext);
attrs.set(ArgAttribute::NoUndef);
return;
}
if !scalar.is_uninit_valid() {
attrs.set(ArgAttribute::NoUndef);
}
// Only pointer types handled below.
let Scalar::Initialized { value: Pointer(_), valid_range } = scalar else { return };
// Set `nonnull` if the validity range excludes zero, or for the argument to `drop_in_place`,
// which must be nonnull per its documented safety requirements.
if !valid_range.contains(0) || drop_target_pointee.is_some() {
attrs.set(ArgAttribute::NonNull);
}
let tcx = cx.tcx();
if let Some(pointee) = layout.pointee_info_at(&cx, offset) {
let kind = if let Some(kind) = pointee.safe {
Some(kind)
} else if let Some(pointee) = drop_target_pointee {
// The argument to `drop_in_place` is semantically equivalent to a mutable reference.
Some(PointerKind::MutableRef { unpin: pointee.is_unpin(tcx, cx.param_env()) })
} else {
None
};
if let Some(kind) = kind {
attrs.pointee_align = Some(pointee.align);
// `Box` are not necessarily dereferenceable for the entire duration of the function as
// they can be deallocated at any time. Same for non-frozen shared references (see
// <https://github.com/rust-lang/rust/pull/98017>), and for mutable references to
// potentially self-referential types (see
// <https://github.com/rust-lang/unsafe-code-guidelines/issues/381>). If LLVM had a way
// to say "dereferenceable on entry" we could use it here.
attrs.pointee_size = match kind {
PointerKind::Box { .. }
| PointerKind::SharedRef { frozen: false }
| PointerKind::MutableRef { unpin: false } => Size::ZERO,
PointerKind::SharedRef { frozen: true }
| PointerKind::MutableRef { unpin: true } => pointee.size,
};
// The aliasing rules for `Box<T>` are still not decided, but currently we emit
// `noalias` for it. This can be turned off using an unstable flag.
// See https://github.com/rust-lang/unsafe-code-guidelines/issues/326
let noalias_for_box = tcx.sess.opts.unstable_opts.box_noalias;
// LLVM prior to version 12 had known miscompiles in the presence of noalias attributes
// (see #54878), so it was conditionally disabled, but we don't support earlier
// versions at all anymore. We still support turning it off using -Zmutable-noalias.
let noalias_mut_ref = tcx.sess.opts.unstable_opts.mutable_noalias;
// `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as both
// `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely on memory
// dependencies rather than pointer equality. However this only applies to arguments,
// not return values.
//
// `&mut T` and `Box<T>` where `T: Unpin` are unique and hence `noalias`.
let no_alias = match kind {
PointerKind::SharedRef { frozen } => frozen,
PointerKind::MutableRef { unpin } => unpin && noalias_mut_ref,
PointerKind::Box { unpin, global } => unpin && global && noalias_for_box,
};
// We can never add `noalias` in return position; that LLVM attribute has some very surprising semantics
// (see <https://github.com/rust-lang/unsafe-code-guidelines/issues/385#issuecomment-1368055745>).
if no_alias && !is_return {
attrs.set(ArgAttribute::NoAlias);
}
if matches!(kind, PointerKind::SharedRef { frozen: true }) && !is_return {
attrs.set(ArgAttribute::ReadOnly);
}
}
}
}
/// Ensure that the ABI makes basic sense.
fn fn_abi_sanity_check<'tcx>(
cx: &LayoutCx<'tcx>,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
spec_abi: SpecAbi,
) {
fn fn_arg_sanity_check<'tcx>(
cx: &LayoutCx<'tcx>,
fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
spec_abi: SpecAbi,
arg: &ArgAbi<'tcx, Ty<'tcx>>,
) {
let tcx = cx.tcx();
match &arg.mode {
PassMode::Ignore => {}
PassMode::Direct(_) => {
// Here the Rust type is used to determine the actual ABI, so we have to be very
// careful. Scalar/ScalarPair is fine, since backends will generally use
// `layout.abi` and ignore everything else. We should just reject `Aggregate`
// entirely here, but some targets need to be fixed first.
if matches!(arg.layout.abi, Abi::Aggregate { .. }) {
// For an unsized type we'd only pass the sized prefix, so there is no universe
// in which we ever want to allow this.
assert!(
arg.layout.is_sized(),
"`PassMode::Direct` for unsized type in ABI: {:#?}",
fn_abi
);
// This really shouldn't happen even for sized aggregates, since
// `immediate_llvm_type` will use `layout.fields` to turn this Rust type into an
// LLVM type. This means all sorts of Rust type details leak into the ABI.
// However wasm sadly *does* currently use this mode so we have to allow it --
// but we absolutely shouldn't let any more targets do that.
// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
//
// The unstable abi `PtxKernel` also uses Direct for now.
// It needs to switch to something else before stabilization can happen.
// (See issue: https://github.com/rust-lang/rust/issues/117271)
assert!(
matches!(&*tcx.sess.target.arch, "wasm32" | "wasm64")
|| matches!(spec_abi, SpecAbi::PtxKernel | SpecAbi::Unadjusted),
"`PassMode::Direct` for aggregates only allowed for \"unadjusted\" and \"ptx-kernel\" functions and on wasm\n\
Problematic type: {:#?}",
arg.layout,
);
}
}
PassMode::Pair(_, _) => {
// Similar to `Direct`, we need to make sure that backends use `layout.abi` and
// ignore the rest of the layout.
assert!(
matches!(arg.layout.abi, Abi::ScalarPair(..)),
"PassMode::Pair for type {}",
arg.layout.ty
);
}
PassMode::Cast { .. } => {
// `Cast` means "transmute to `CastType`"; that only makes sense for sized types.
assert!(arg.layout.is_sized());
}
PassMode::Indirect { meta_attrs: None, .. } => {
// No metadata, must be sized.
// Conceptually, unsized arguments must be copied around, which requires dynamically
// determining their size, which we cannot do without metadata. Consult
// t-opsem before removing this check.
assert!(arg.layout.is_sized());
}
PassMode::Indirect { meta_attrs: Some(_), on_stack, .. } => {
// With metadata. Must be unsized and not on the stack.
assert!(arg.layout.is_unsized() && !on_stack);
// Also, must not be `extern` type.
let tail = tcx.struct_tail_for_codegen(arg.layout.ty, cx.param_env());
if matches!(tail.kind(), ty::Foreign(..)) {
// These types do not have metadata, so having `meta_attrs` is bogus.
// Conceptually, unsized arguments must be copied around, which requires dynamically
// determining their size. Therefore, we cannot allow `extern` types here. Consult
// t-opsem before removing this check.
panic!("unsized arguments must not be `extern` types");
}
}
}
}
for arg in fn_abi.args.iter() {
fn_arg_sanity_check(cx, fn_abi, spec_abi, arg);
}
fn_arg_sanity_check(cx, fn_abi, spec_abi, &fn_abi.ret);
}
// FIXME(eddyb) perhaps group the signature/type-containing (or all of them?)
// arguments of this method, into a separate `struct`.
#[tracing::instrument(level = "debug", skip(cx, caller_location, fn_def_id, force_thin_self_ptr))]
fn fn_abi_new_uncached<'tcx>(
cx: &LayoutCx<'tcx>,
sig: ty::PolyFnSig<'tcx>,
extra_args: &[Ty<'tcx>],
caller_location: Option<Ty<'tcx>>,
fn_def_id: Option<DefId>,
// FIXME(eddyb) replace this with something typed, like an `enum`.
force_thin_self_ptr: bool,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, &'tcx FnAbiError<'tcx>> {
let tcx = cx.tcx();
let sig = tcx.normalize_erasing_late_bound_regions(cx.param_env, sig);
let conv = conv_from_spec_abi(cx.tcx(), sig.abi, sig.c_variadic);
let mut inputs = sig.inputs();
let extra_args = if sig.abi == SpecAbi::RustCall {
assert!(!sig.c_variadic && extra_args.is_empty());
if let Some(input) = sig.inputs().last() {
if let ty::Tuple(tupled_arguments) = input.kind() {
inputs = &sig.inputs()[0..sig.inputs().len() - 1];
tupled_arguments
} else {
bug!(
"argument to function with \"rust-call\" ABI \
is not a tuple"
);
}
} else {
bug!(
"argument to function with \"rust-call\" ABI \
is not a tuple"
);
}
} else {
assert!(sig.c_variadic || extra_args.is_empty());
extra_args
};
let is_drop_in_place =
fn_def_id.is_some_and(|def_id| tcx.is_lang_item(def_id, LangItem::DropInPlace));
let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| -> Result<_, &'tcx FnAbiError<'tcx>> {
let span = tracing::debug_span!("arg_of");
let _entered = span.enter();
let is_return = arg_idx.is_none();
let is_drop_target = is_drop_in_place && arg_idx == Some(0);
let drop_target_pointee = is_drop_target.then(|| match ty.kind() {
ty::RawPtr(ty, _) => *ty,
_ => bug!("argument to drop_in_place is not a raw ptr: {:?}", ty),
});
let layout = cx.layout_of(ty).map_err(|err| &*tcx.arena.alloc(FnAbiError::Layout(*err)))?;
let layout = if force_thin_self_ptr && arg_idx == Some(0) {
// Don't pass the vtable, it's not an argument of the virtual fn.
// Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait`
// or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen
make_thin_self_ptr(cx, layout)
} else {
layout
};
let mut arg = ArgAbi::new(cx, layout, |layout, scalar, offset| {
let mut attrs = ArgAttributes::new();
adjust_for_rust_scalar(
*cx,
&mut attrs,
scalar,
*layout,
offset,
is_return,
drop_target_pointee,
);
attrs
});
if arg.layout.is_zst() {
arg.mode = PassMode::Ignore;
}
Ok(arg)
};
let mut fn_abi = FnAbi {
ret: arg_of(sig.output(), None)?,
args: inputs
.iter()
.copied()
.chain(extra_args.iter().copied())
.chain(caller_location)
.enumerate()
.map(|(i, ty)| arg_of(ty, Some(i)))
.collect::<Result<_, _>>()?,
c_variadic: sig.c_variadic,
fixed_count: inputs.len() as u32,
conv,
can_unwind: fn_can_unwind(cx.tcx(), fn_def_id, sig.abi),
};
fn_abi_adjust_for_abi(cx, &mut fn_abi, sig.abi, fn_def_id)?;
debug!("fn_abi_new_uncached = {:?}", fn_abi);
fn_abi_sanity_check(cx, &fn_abi, sig.abi);
Ok(tcx.arena.alloc(fn_abi))
}
#[tracing::instrument(level = "trace", skip(cx))]
fn fn_abi_adjust_for_abi<'tcx>(
cx: &LayoutCx<'tcx>,
fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>,
abi: SpecAbi,
fn_def_id: Option<DefId>,
) -> Result<(), &'tcx FnAbiError<'tcx>> {
if abi == SpecAbi::Unadjusted {
// The "unadjusted" ABI passes aggregates in "direct" mode. That's fragile but needed for
// some LLVM intrinsics.
fn unadjust<'tcx>(arg: &mut ArgAbi<'tcx, Ty<'tcx>>) {
// This still uses `PassMode::Pair` for ScalarPair types. That's unlikely to be intended,
// but who knows what breaks if we change this now.
if matches!(arg.layout.abi, Abi::Aggregate { .. }) {
assert!(
arg.layout.abi.is_sized(),
"'unadjusted' ABI does not support unsized arguments"
);
}
arg.make_direct_deprecated();
}
unadjust(&mut fn_abi.ret);
for arg in fn_abi.args.iter_mut() {
unadjust(arg);
}
return Ok(());
}
let tcx = cx.tcx();
if abi == SpecAbi::Rust || abi == SpecAbi::RustCall || abi == SpecAbi::RustIntrinsic {
// Look up the deduced parameter attributes for this function, if we have its def ID and
// we're optimizing in non-incremental mode. We'll tag its parameters with those attributes
// as appropriate.
let deduced_param_attrs =
if tcx.sess.opts.optimize != OptLevel::No && tcx.sess.opts.incremental.is_none() {
fn_def_id.map(|fn_def_id| tcx.deduced_param_attrs(fn_def_id)).unwrap_or_default()
} else {
&[]
};
let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>, arg_idx: Option<usize>| {
if arg.is_ignore() {
return;
}
// Avoid returning floats in x87 registers on x86 as loading and storing from x87
// registers will quiet signalling NaNs.
if tcx.sess.target.arch == "x86"
&& arg_idx.is_none()
// Intrinsics themselves are not actual "real" functions, so theres no need to
// change their ABIs.
&& abi != SpecAbi::RustIntrinsic
{
match arg.layout.abi {
// Handle similar to the way arguments with an `Abi::Aggregate` abi are handled
// below, by returning arguments up to the size of a pointer (32 bits on x86)
// cast to an appropriately sized integer.
Abi::Scalar(s) if s.primitive() == Float(F32) => {
// Same size as a pointer, return in a register.
arg.cast_to(Reg::i32());
return;
}
Abi::Scalar(s) if s.primitive() == Float(F64) => {
// Larger than a pointer, return indirectly.
arg.make_indirect();
return;
}
Abi::ScalarPair(s1, s2)
if matches!(s1.primitive(), Float(F32 | F64))
|| matches!(s2.primitive(), Float(F32 | F64)) =>
{
// Larger than a pointer, return indirectly.
arg.make_indirect();
return;
}
_ => {}
};
}
if arg_idx.is_none() && arg.layout.size > Pointer(AddressSpace::DATA).size(cx) * 2 {
// Return values larger than 2 registers using a return area
// pointer. LLVM and Cranelift disagree about how to return
// values that don't fit in the registers designated for return
// values. LLVM will force the entire return value to be passed
// by return area pointer, while Cranelift will look at each IR level
// return value independently and decide to pass it in a
// register or not, which would result in the return value
// being passed partially in registers and partially through a
// return area pointer.
//
// While Cranelift may need to be fixed as the LLVM behavior is
// generally more correct with respect to the surface language,
// forcing this behavior in rustc itself makes it easier for
// other backends to conform to the Rust ABI and for the C ABI
// rustc already handles this behavior anyway.
//
// In addition LLVM's decision to pass the return value in
// registers or using a return area pointer depends on how
// exactly the return type is lowered to an LLVM IR type. For
// example `Option<u128>` can be lowered as `{ i128, i128 }`
// in which case the x86_64 backend would use a return area
// pointer, or it could be passed as `{ i32, i128 }` in which
// case the x86_64 backend would pass it in registers by taking
// advantage of an LLVM ABI extension that allows using 3
// registers for the x86_64 sysv call conv rather than the
// officially specified 2 registers.
//
// FIXME: Technically we should look at the amount of available
// return registers rather than guessing that there are 2
// registers for return values. In practice only a couple of
// architectures have less than 2 return registers. None of
// which supported by Cranelift.
//
// NOTE: This adjustment is only necessary for the Rust ABI as
// for other ABI's the calling convention implementations in
// rustc_target already ensure any return value which doesn't
// fit in the available amount of return registers is passed in
// the right way for the current target.
arg.make_indirect();
return;
}
match arg.layout.abi {
Abi::Aggregate { .. } => {}
// This is a fun case! The gist of what this is doing is
// that we want callers and callees to always agree on the
// ABI of how they pass SIMD arguments. If we were to *not*
// make these arguments indirect then they'd be immediates
// in LLVM, which means that they'd used whatever the
// appropriate ABI is for the callee and the caller. That
// means, for example, if the caller doesn't have AVX
// enabled but the callee does, then passing an AVX argument
// across this boundary would cause corrupt data to show up.
//
// This problem is fixed by unconditionally passing SIMD
// arguments through memory between callers and callees
// which should get them all to agree on ABI regardless of
// target feature sets. Some more information about this
// issue can be found in #44367.
//
// Note that the intrinsic ABI is exempt here as
// that's how we connect up to LLVM and it's unstable
// anyway, we control all calls to it in libstd.
Abi::Vector { .. }
if abi != SpecAbi::RustIntrinsic && tcx.sess.target.simd_types_indirect =>
{
arg.make_indirect();
return;
}
_ => return,
}
// Compute `Aggregate` ABI.
let is_indirect_not_on_stack =
matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
assert!(is_indirect_not_on_stack, "{:?}", arg);
let size = arg.layout.size;
if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) {
// We want to pass small aggregates as immediates, but using
// an LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast_to(Reg { kind: RegKind::Integer, size });
}
// If we deduced that this parameter was read-only, add that to the attribute list now.
//
// The `readonly` parameter only applies to pointers, so we can only do this if the
// argument was passed indirectly. (If the argument is passed directly, it's an SSA
// value, so it's implicitly immutable.)
if let (Some(arg_idx), &mut PassMode::Indirect { ref mut attrs, .. }) =
(arg_idx, &mut arg.mode)
{
// The `deduced_param_attrs` list could be empty if this is a type of function
// we can't deduce any parameters for, so make sure the argument index is in
// bounds.
if let Some(deduced_param_attrs) = deduced_param_attrs.get(arg_idx) {
if deduced_param_attrs.read_only {
attrs.regular.insert(ArgAttribute::ReadOnly);
debug!("added deduced read-only attribute");
}
}
}
};
fixup(&mut fn_abi.ret, None);
for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() {
fixup(arg, Some(arg_idx));
}
} else {
fn_abi
.adjust_for_foreign_abi(cx, abi)
.map_err(|err| &*tcx.arena.alloc(FnAbiError::AdjustForForeignAbi(err)))?;
}
Ok(())
}
#[tracing::instrument(level = "debug", skip(cx))]
fn make_thin_self_ptr<'tcx>(
cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
layout: TyAndLayout<'tcx>,
) -> TyAndLayout<'tcx> {
let tcx = cx.tcx();
let wide_pointer_ty = if layout.is_unsized() {
// unsized `self` is passed as a pointer to `self`
// FIXME (mikeyhew) change this to use &own if it is ever added to the language
Ty::new_mut_ptr(tcx, layout.ty)
} else {
match layout.abi {
Abi::ScalarPair(..) | Abi::Scalar(..) => (),
_ => bug!("receiver type has unsupported layout: {:?}", layout),
}
// In the case of Rc<Self>, we need to explicitly pass a *mut RcInner<Self>
// with a Scalar (not ScalarPair) ABI. This is a hack that is understood
// elsewhere in the compiler as a method on a `dyn Trait`.
// To get the type `*mut RcInner<Self>`, we just keep unwrapping newtypes until we
// get a built-in pointer type
let mut wide_pointer_layout = layout;
while !wide_pointer_layout.ty.is_unsafe_ptr() && !wide_pointer_layout.ty.is_ref() {
wide_pointer_layout = wide_pointer_layout
.non_1zst_field(cx)
.expect("not exactly one non-1-ZST field in a `DispatchFromDyn` type")
.1
}
wide_pointer_layout.ty
};
// we now have a type like `*mut RcInner<dyn Trait>`
// change its layout to that of `*mut ()`, a thin pointer, but keep the same type
// this is understood as a special case elsewhere in the compiler
let unit_ptr_ty = Ty::new_mut_ptr(tcx, tcx.types.unit);
TyAndLayout {
ty: wide_pointer_ty,
// NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result`
// should always work because the type is always `*mut ()`.
..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
}
}