rustc_ty_utils/
abi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
use std::iter;

use rustc_abi::Float::*;
use rustc_abi::Primitive::{Float, Pointer};
use rustc_abi::{Abi, AddressSpace, PointerKind, Scalar, Size};
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_middle::bug;
use rustc_middle::query::Providers;
use rustc_middle::ty::layout::{
    FnAbiError, HasParamEnv, HasTyCtxt, LayoutCx, LayoutOf, TyAndLayout, fn_can_unwind,
};
use rustc_middle::ty::{self, InstanceKind, Ty, TyCtxt};
use rustc_session::config::OptLevel;
use rustc_span::def_id::DefId;
use rustc_target::abi::call::{
    ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind,
    RiscvInterruptKind,
};
use rustc_target::spec::abi::Abi as SpecAbi;
use tracing::debug;

pub(crate) fn provide(providers: &mut Providers) {
    *providers = Providers { fn_abi_of_fn_ptr, fn_abi_of_instance, ..*providers };
}

// NOTE(eddyb) this is private to avoid using it from outside of
// `fn_abi_of_instance` - any other uses are either too high-level
// for `Instance` (e.g. typeck would use `Ty::fn_sig` instead),
// or should go through `FnAbi` instead, to avoid losing any
// adjustments `fn_abi_of_instance` might be performing.
#[tracing::instrument(level = "debug", skip(tcx, param_env))]
fn fn_sig_for_fn_abi<'tcx>(
    tcx: TyCtxt<'tcx>,
    instance: ty::Instance<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
) -> ty::PolyFnSig<'tcx> {
    if let InstanceKind::ThreadLocalShim(..) = instance.def {
        return ty::Binder::dummy(tcx.mk_fn_sig(
            [],
            tcx.thread_local_ptr_ty(instance.def_id()),
            false,
            hir::Safety::Safe,
            rustc_target::spec::abi::Abi::Unadjusted,
        ));
    }

    let ty = instance.ty(tcx, param_env);
    match *ty.kind() {
        ty::FnDef(..) => {
            // HACK(davidtwco,eddyb): This is a workaround for polymorphization considering
            // parameters unused if they show up in the signature, but not in the `mir::Body`
            // (i.e. due to being inside a projection that got normalized, see
            // `tests/ui/polymorphization/normalized_sig_types.rs`), and codegen not keeping
            // track of a polymorphization `ParamEnv` to allow normalizing later.
            //
            // We normalize the `fn_sig` again after instantiating at a later point.
            let mut sig = match *ty.kind() {
                ty::FnDef(def_id, args) => tcx
                    .fn_sig(def_id)
                    .map_bound(|fn_sig| {
                        tcx.normalize_erasing_regions(tcx.param_env(def_id), fn_sig)
                    })
                    .instantiate(tcx, args),
                _ => unreachable!(),
            };

            if let ty::InstanceKind::VTableShim(..) = instance.def {
                // Modify `fn(self, ...)` to `fn(self: *mut Self, ...)`.
                sig = sig.map_bound(|mut sig| {
                    let mut inputs_and_output = sig.inputs_and_output.to_vec();
                    inputs_and_output[0] = Ty::new_mut_ptr(tcx, inputs_and_output[0]);
                    sig.inputs_and_output = tcx.mk_type_list(&inputs_and_output);
                    sig
                });
            }
            sig
        }
        ty::Closure(def_id, args) => {
            let sig = args.as_closure().sig();

            let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
                sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
            );
            let br = ty::BoundRegion {
                var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                kind: ty::BoundRegionKind::BrEnv,
            };
            let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
            let env_ty = tcx.closure_env_ty(
                Ty::new_closure(tcx, def_id, args),
                args.as_closure().kind(),
                env_region,
            );

            let sig = sig.skip_binder();
            ty::Binder::bind_with_vars(
                tcx.mk_fn_sig(
                    iter::once(env_ty).chain(sig.inputs().iter().cloned()),
                    sig.output(),
                    sig.c_variadic,
                    sig.safety,
                    sig.abi,
                ),
                bound_vars,
            )
        }
        ty::CoroutineClosure(def_id, args) => {
            let coroutine_ty = Ty::new_coroutine_closure(tcx, def_id, args);
            let sig = args.as_coroutine_closure().coroutine_closure_sig();
            let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
                sig.bound_vars().iter().chain(iter::once(ty::BoundVariableKind::Region(ty::BrEnv))),
            );
            let br = ty::BoundRegion {
                var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                kind: ty::BoundRegionKind::BrEnv,
            };
            let env_region = ty::Region::new_bound(tcx, ty::INNERMOST, br);
            // When this `CoroutineClosure` comes from a `ConstructCoroutineInClosureShim`,
            // make sure we respect the `target_kind` in that shim.
            // FIXME(async_closures): This shouldn't be needed, and we should be populating
            // a separate def-id for these bodies.
            let mut coroutine_kind = args.as_coroutine_closure().kind();

            let env_ty =
                if let InstanceKind::ConstructCoroutineInClosureShim { receiver_by_ref, .. } =
                    instance.def
                {
                    coroutine_kind = ty::ClosureKind::FnOnce;

                    // Implementations of `FnMut` and `Fn` for coroutine-closures
                    // still take their receiver by ref.
                    if receiver_by_ref {
                        Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, coroutine_ty)
                    } else {
                        coroutine_ty
                    }
                } else {
                    tcx.closure_env_ty(coroutine_ty, coroutine_kind, env_region)
                };

            let sig = sig.skip_binder();
            ty::Binder::bind_with_vars(
                tcx.mk_fn_sig(
                    iter::once(env_ty).chain([sig.tupled_inputs_ty]),
                    sig.to_coroutine_given_kind_and_upvars(
                        tcx,
                        args.as_coroutine_closure().parent_args(),
                        tcx.coroutine_for_closure(def_id),
                        coroutine_kind,
                        env_region,
                        args.as_coroutine_closure().tupled_upvars_ty(),
                        args.as_coroutine_closure().coroutine_captures_by_ref_ty(),
                    ),
                    sig.c_variadic,
                    sig.safety,
                    sig.abi,
                ),
                bound_vars,
            )
        }
        ty::Coroutine(did, args) => {
            let coroutine_kind = tcx.coroutine_kind(did).unwrap();
            let sig = args.as_coroutine().sig();

            let bound_vars = tcx.mk_bound_variable_kinds_from_iter(iter::once(
                ty::BoundVariableKind::Region(ty::BrEnv),
            ));
            let br = ty::BoundRegion {
                var: ty::BoundVar::from_usize(bound_vars.len() - 1),
                kind: ty::BoundRegionKind::BrEnv,
            };

            let env_ty = Ty::new_mut_ref(tcx, ty::Region::new_bound(tcx, ty::INNERMOST, br), ty);

            let pin_did = tcx.require_lang_item(LangItem::Pin, None);
            let pin_adt_ref = tcx.adt_def(pin_did);
            let pin_args = tcx.mk_args(&[env_ty.into()]);
            let env_ty = match coroutine_kind {
                hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _) => {
                    // Iterator::next doesn't accept a pinned argument,
                    // unlike for all other coroutine kinds.
                    env_ty
                }
                hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _)
                | hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _)
                | hir::CoroutineKind::Coroutine(_) => Ty::new_adt(tcx, pin_adt_ref, pin_args),
            };

            // The `FnSig` and the `ret_ty` here is for a coroutines main
            // `Coroutine::resume(...) -> CoroutineState` function in case we
            // have an ordinary coroutine, the `Future::poll(...) -> Poll`
            // function in case this is a special coroutine backing an async construct
            // or the `Iterator::next(...) -> Option` function in case this is a
            // special coroutine backing a gen construct.
            let (resume_ty, ret_ty) = match coroutine_kind {
                hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _) => {
                    // The signature should be `Future::poll(_, &mut Context<'_>) -> Poll<Output>`
                    assert_eq!(sig.yield_ty, tcx.types.unit);

                    let poll_did = tcx.require_lang_item(LangItem::Poll, None);
                    let poll_adt_ref = tcx.adt_def(poll_did);
                    let poll_args = tcx.mk_args(&[sig.return_ty.into()]);
                    let ret_ty = Ty::new_adt(tcx, poll_adt_ref, poll_args);

                    // We have to replace the `ResumeTy` that is used for type and borrow checking
                    // with `&mut Context<'_>` which is used in codegen.
                    #[cfg(debug_assertions)]
                    {
                        if let ty::Adt(resume_ty_adt, _) = sig.resume_ty.kind() {
                            let expected_adt =
                                tcx.adt_def(tcx.require_lang_item(LangItem::ResumeTy, None));
                            assert_eq!(*resume_ty_adt, expected_adt);
                        } else {
                            panic!("expected `ResumeTy`, found `{:?}`", sig.resume_ty);
                        };
                    }
                    let context_mut_ref = Ty::new_task_context(tcx);

                    (Some(context_mut_ref), ret_ty)
                }
                hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Gen, _) => {
                    // The signature should be `Iterator::next(_) -> Option<Yield>`
                    let option_did = tcx.require_lang_item(LangItem::Option, None);
                    let option_adt_ref = tcx.adt_def(option_did);
                    let option_args = tcx.mk_args(&[sig.yield_ty.into()]);
                    let ret_ty = Ty::new_adt(tcx, option_adt_ref, option_args);

                    assert_eq!(sig.return_ty, tcx.types.unit);
                    assert_eq!(sig.resume_ty, tcx.types.unit);

                    (None, ret_ty)
                }
                hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::AsyncGen, _) => {
                    // The signature should be
                    // `AsyncIterator::poll_next(_, &mut Context<'_>) -> Poll<Option<Output>>`
                    assert_eq!(sig.return_ty, tcx.types.unit);

                    // Yield type is already `Poll<Option<yield_ty>>`
                    let ret_ty = sig.yield_ty;

                    // We have to replace the `ResumeTy` that is used for type and borrow checking
                    // with `&mut Context<'_>` which is used in codegen.
                    #[cfg(debug_assertions)]
                    {
                        if let ty::Adt(resume_ty_adt, _) = sig.resume_ty.kind() {
                            let expected_adt =
                                tcx.adt_def(tcx.require_lang_item(LangItem::ResumeTy, None));
                            assert_eq!(*resume_ty_adt, expected_adt);
                        } else {
                            panic!("expected `ResumeTy`, found `{:?}`", sig.resume_ty);
                        };
                    }
                    let context_mut_ref = Ty::new_task_context(tcx);

                    (Some(context_mut_ref), ret_ty)
                }
                hir::CoroutineKind::Coroutine(_) => {
                    // The signature should be `Coroutine::resume(_, Resume) -> CoroutineState<Yield, Return>`
                    let state_did = tcx.require_lang_item(LangItem::CoroutineState, None);
                    let state_adt_ref = tcx.adt_def(state_did);
                    let state_args = tcx.mk_args(&[sig.yield_ty.into(), sig.return_ty.into()]);
                    let ret_ty = Ty::new_adt(tcx, state_adt_ref, state_args);

                    (Some(sig.resume_ty), ret_ty)
                }
            };

            let fn_sig = if let Some(resume_ty) = resume_ty {
                tcx.mk_fn_sig(
                    [env_ty, resume_ty],
                    ret_ty,
                    false,
                    hir::Safety::Safe,
                    rustc_target::spec::abi::Abi::Rust,
                )
            } else {
                // `Iterator::next` doesn't have a `resume` argument.
                tcx.mk_fn_sig(
                    [env_ty],
                    ret_ty,
                    false,
                    hir::Safety::Safe,
                    rustc_target::spec::abi::Abi::Rust,
                )
            };
            ty::Binder::bind_with_vars(fn_sig, bound_vars)
        }
        _ => bug!("unexpected type {:?} in Instance::fn_sig", ty),
    }
}

#[inline]
fn conv_from_spec_abi(tcx: TyCtxt<'_>, abi: SpecAbi, c_variadic: bool) -> Conv {
    use rustc_target::spec::abi::Abi::*;
    match tcx.sess.target.adjust_abi(abi, c_variadic) {
        RustIntrinsic | Rust | RustCall => Conv::Rust,

        // This is intentionally not using `Conv::Cold`, as that has to preserve
        // even SIMD registers, which is generally not a good trade-off.
        RustCold => Conv::PreserveMost,

        // It's the ABI's job to select this, not ours.
        System { .. } => bug!("system abi should be selected elsewhere"),
        EfiApi => bug!("eficall abi should be selected elsewhere"),

        Stdcall { .. } => Conv::X86Stdcall,
        Fastcall { .. } => Conv::X86Fastcall,
        Vectorcall { .. } => Conv::X86VectorCall,
        Thiscall { .. } => Conv::X86ThisCall,
        C { .. } => Conv::C,
        Unadjusted => Conv::C,
        Win64 { .. } => Conv::X86_64Win64,
        SysV64 { .. } => Conv::X86_64SysV,
        Aapcs { .. } => Conv::ArmAapcs,
        CCmseNonSecureCall => Conv::CCmseNonSecureCall,
        CCmseNonSecureEntry => Conv::CCmseNonSecureEntry,
        PtxKernel => Conv::PtxKernel,
        Msp430Interrupt => Conv::Msp430Intr,
        X86Interrupt => Conv::X86Intr,
        AvrInterrupt => Conv::AvrInterrupt,
        AvrNonBlockingInterrupt => Conv::AvrNonBlockingInterrupt,
        RiscvInterruptM => Conv::RiscvInterrupt { kind: RiscvInterruptKind::Machine },
        RiscvInterruptS => Conv::RiscvInterrupt { kind: RiscvInterruptKind::Supervisor },

        // These API constants ought to be more specific...
        Cdecl { .. } => Conv::C,
    }
}

fn fn_abi_of_fn_ptr<'tcx>(
    tcx: TyCtxt<'tcx>,
    query: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, &'tcx FnAbiError<'tcx>> {
    let (param_env, (sig, extra_args)) = query.into_parts();

    let cx = LayoutCx::new(tcx, param_env);
    fn_abi_new_uncached(&cx, sig, extra_args, None, None, false)
}

fn fn_abi_of_instance<'tcx>(
    tcx: TyCtxt<'tcx>,
    query: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List<Ty<'tcx>>)>,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, &'tcx FnAbiError<'tcx>> {
    let (param_env, (instance, extra_args)) = query.into_parts();

    let sig = fn_sig_for_fn_abi(tcx, instance, param_env);

    let caller_location =
        instance.def.requires_caller_location(tcx).then(|| tcx.caller_location_ty());

    fn_abi_new_uncached(
        &LayoutCx::new(tcx, param_env),
        sig,
        extra_args,
        caller_location,
        Some(instance.def_id()),
        matches!(instance.def, ty::InstanceKind::Virtual(..)),
    )
}

// Handle safe Rust thin and wide pointers.
fn adjust_for_rust_scalar<'tcx>(
    cx: LayoutCx<'tcx>,
    attrs: &mut ArgAttributes,
    scalar: Scalar,
    layout: TyAndLayout<'tcx>,
    offset: Size,
    is_return: bool,
    drop_target_pointee: Option<Ty<'tcx>>,
) {
    // Booleans are always a noundef i1 that needs to be zero-extended.
    if scalar.is_bool() {
        attrs.ext(ArgExtension::Zext);
        attrs.set(ArgAttribute::NoUndef);
        return;
    }

    if !scalar.is_uninit_valid() {
        attrs.set(ArgAttribute::NoUndef);
    }

    // Only pointer types handled below.
    let Scalar::Initialized { value: Pointer(_), valid_range } = scalar else { return };

    // Set `nonnull` if the validity range excludes zero, or for the argument to `drop_in_place`,
    // which must be nonnull per its documented safety requirements.
    if !valid_range.contains(0) || drop_target_pointee.is_some() {
        attrs.set(ArgAttribute::NonNull);
    }

    let tcx = cx.tcx();

    if let Some(pointee) = layout.pointee_info_at(&cx, offset) {
        let kind = if let Some(kind) = pointee.safe {
            Some(kind)
        } else if let Some(pointee) = drop_target_pointee {
            // The argument to `drop_in_place` is semantically equivalent to a mutable reference.
            Some(PointerKind::MutableRef { unpin: pointee.is_unpin(tcx, cx.param_env()) })
        } else {
            None
        };
        if let Some(kind) = kind {
            attrs.pointee_align = Some(pointee.align);

            // `Box` are not necessarily dereferenceable for the entire duration of the function as
            // they can be deallocated at any time. Same for non-frozen shared references (see
            // <https://github.com/rust-lang/rust/pull/98017>), and for mutable references to
            // potentially self-referential types (see
            // <https://github.com/rust-lang/unsafe-code-guidelines/issues/381>). If LLVM had a way
            // to say "dereferenceable on entry" we could use it here.
            attrs.pointee_size = match kind {
                PointerKind::Box { .. }
                | PointerKind::SharedRef { frozen: false }
                | PointerKind::MutableRef { unpin: false } => Size::ZERO,
                PointerKind::SharedRef { frozen: true }
                | PointerKind::MutableRef { unpin: true } => pointee.size,
            };

            // The aliasing rules for `Box<T>` are still not decided, but currently we emit
            // `noalias` for it. This can be turned off using an unstable flag.
            // See https://github.com/rust-lang/unsafe-code-guidelines/issues/326
            let noalias_for_box = tcx.sess.opts.unstable_opts.box_noalias;

            // LLVM prior to version 12 had known miscompiles in the presence of noalias attributes
            // (see #54878), so it was conditionally disabled, but we don't support earlier
            // versions at all anymore. We still support turning it off using -Zmutable-noalias.
            let noalias_mut_ref = tcx.sess.opts.unstable_opts.mutable_noalias;

            // `&T` where `T` contains no `UnsafeCell<U>` is immutable, and can be marked as both
            // `readonly` and `noalias`, as LLVM's definition of `noalias` is based solely on memory
            // dependencies rather than pointer equality. However this only applies to arguments,
            // not return values.
            //
            // `&mut T` and `Box<T>` where `T: Unpin` are unique and hence `noalias`.
            let no_alias = match kind {
                PointerKind::SharedRef { frozen } => frozen,
                PointerKind::MutableRef { unpin } => unpin && noalias_mut_ref,
                PointerKind::Box { unpin, global } => unpin && global && noalias_for_box,
            };
            // We can never add `noalias` in return position; that LLVM attribute has some very surprising semantics
            // (see <https://github.com/rust-lang/unsafe-code-guidelines/issues/385#issuecomment-1368055745>).
            if no_alias && !is_return {
                attrs.set(ArgAttribute::NoAlias);
            }

            if matches!(kind, PointerKind::SharedRef { frozen: true }) && !is_return {
                attrs.set(ArgAttribute::ReadOnly);
            }
        }
    }
}

/// Ensure that the ABI makes basic sense.
fn fn_abi_sanity_check<'tcx>(
    cx: &LayoutCx<'tcx>,
    fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
    spec_abi: SpecAbi,
) {
    fn fn_arg_sanity_check<'tcx>(
        cx: &LayoutCx<'tcx>,
        fn_abi: &FnAbi<'tcx, Ty<'tcx>>,
        spec_abi: SpecAbi,
        arg: &ArgAbi<'tcx, Ty<'tcx>>,
    ) {
        let tcx = cx.tcx();
        match &arg.mode {
            PassMode::Ignore => {}
            PassMode::Direct(_) => {
                // Here the Rust type is used to determine the actual ABI, so we have to be very
                // careful. Scalar/ScalarPair is fine, since backends will generally use
                // `layout.abi` and ignore everything else. We should just reject `Aggregate`
                // entirely here, but some targets need to be fixed first.
                if matches!(arg.layout.abi, Abi::Aggregate { .. }) {
                    // For an unsized type we'd only pass the sized prefix, so there is no universe
                    // in which we ever want to allow this.
                    assert!(
                        arg.layout.is_sized(),
                        "`PassMode::Direct` for unsized type in ABI: {:#?}",
                        fn_abi
                    );
                    // This really shouldn't happen even for sized aggregates, since
                    // `immediate_llvm_type` will use `layout.fields` to turn this Rust type into an
                    // LLVM type. This means all sorts of Rust type details leak into the ABI.
                    // However wasm sadly *does* currently use this mode so we have to allow it --
                    // but we absolutely shouldn't let any more targets do that.
                    // (Also see <https://github.com/rust-lang/rust/issues/115666>.)
                    //
                    // The unstable abi `PtxKernel` also uses Direct for now.
                    // It needs to switch to something else before stabilization can happen.
                    // (See issue: https://github.com/rust-lang/rust/issues/117271)
                    assert!(
                        matches!(&*tcx.sess.target.arch, "wasm32" | "wasm64")
                            || matches!(spec_abi, SpecAbi::PtxKernel | SpecAbi::Unadjusted),
                        "`PassMode::Direct` for aggregates only allowed for \"unadjusted\" and \"ptx-kernel\" functions and on wasm\n\
                          Problematic type: {:#?}",
                        arg.layout,
                    );
                }
            }
            PassMode::Pair(_, _) => {
                // Similar to `Direct`, we need to make sure that backends use `layout.abi` and
                // ignore the rest of the layout.
                assert!(
                    matches!(arg.layout.abi, Abi::ScalarPair(..)),
                    "PassMode::Pair for type {}",
                    arg.layout.ty
                );
            }
            PassMode::Cast { .. } => {
                // `Cast` means "transmute to `CastType`"; that only makes sense for sized types.
                assert!(arg.layout.is_sized());
            }
            PassMode::Indirect { meta_attrs: None, .. } => {
                // No metadata, must be sized.
                // Conceptually, unsized arguments must be copied around, which requires dynamically
                // determining their size, which we cannot do without metadata. Consult
                // t-opsem before removing this check.
                assert!(arg.layout.is_sized());
            }
            PassMode::Indirect { meta_attrs: Some(_), on_stack, .. } => {
                // With metadata. Must be unsized and not on the stack.
                assert!(arg.layout.is_unsized() && !on_stack);
                // Also, must not be `extern` type.
                let tail = tcx.struct_tail_for_codegen(arg.layout.ty, cx.param_env());
                if matches!(tail.kind(), ty::Foreign(..)) {
                    // These types do not have metadata, so having `meta_attrs` is bogus.
                    // Conceptually, unsized arguments must be copied around, which requires dynamically
                    // determining their size. Therefore, we cannot allow `extern` types here. Consult
                    // t-opsem before removing this check.
                    panic!("unsized arguments must not be `extern` types");
                }
            }
        }
    }

    for arg in fn_abi.args.iter() {
        fn_arg_sanity_check(cx, fn_abi, spec_abi, arg);
    }
    fn_arg_sanity_check(cx, fn_abi, spec_abi, &fn_abi.ret);
}

// FIXME(eddyb) perhaps group the signature/type-containing (or all of them?)
// arguments of this method, into a separate `struct`.
#[tracing::instrument(level = "debug", skip(cx, caller_location, fn_def_id, force_thin_self_ptr))]
fn fn_abi_new_uncached<'tcx>(
    cx: &LayoutCx<'tcx>,
    sig: ty::PolyFnSig<'tcx>,
    extra_args: &[Ty<'tcx>],
    caller_location: Option<Ty<'tcx>>,
    fn_def_id: Option<DefId>,
    // FIXME(eddyb) replace this with something typed, like an `enum`.
    force_thin_self_ptr: bool,
) -> Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, &'tcx FnAbiError<'tcx>> {
    let tcx = cx.tcx();
    let sig = tcx.normalize_erasing_late_bound_regions(cx.param_env, sig);

    let conv = conv_from_spec_abi(cx.tcx(), sig.abi, sig.c_variadic);

    let mut inputs = sig.inputs();
    let extra_args = if sig.abi == SpecAbi::RustCall {
        assert!(!sig.c_variadic && extra_args.is_empty());

        if let Some(input) = sig.inputs().last() {
            if let ty::Tuple(tupled_arguments) = input.kind() {
                inputs = &sig.inputs()[0..sig.inputs().len() - 1];
                tupled_arguments
            } else {
                bug!(
                    "argument to function with \"rust-call\" ABI \
                        is not a tuple"
                );
            }
        } else {
            bug!(
                "argument to function with \"rust-call\" ABI \
                    is not a tuple"
            );
        }
    } else {
        assert!(sig.c_variadic || extra_args.is_empty());
        extra_args
    };

    let is_drop_in_place =
        fn_def_id.is_some_and(|def_id| tcx.is_lang_item(def_id, LangItem::DropInPlace));

    let arg_of = |ty: Ty<'tcx>, arg_idx: Option<usize>| -> Result<_, &'tcx FnAbiError<'tcx>> {
        let span = tracing::debug_span!("arg_of");
        let _entered = span.enter();
        let is_return = arg_idx.is_none();
        let is_drop_target = is_drop_in_place && arg_idx == Some(0);
        let drop_target_pointee = is_drop_target.then(|| match ty.kind() {
            ty::RawPtr(ty, _) => *ty,
            _ => bug!("argument to drop_in_place is not a raw ptr: {:?}", ty),
        });

        let layout = cx.layout_of(ty).map_err(|err| &*tcx.arena.alloc(FnAbiError::Layout(*err)))?;
        let layout = if force_thin_self_ptr && arg_idx == Some(0) {
            // Don't pass the vtable, it's not an argument of the virtual fn.
            // Instead, pass just the data pointer, but give it the type `*const/mut dyn Trait`
            // or `&/&mut dyn Trait` because this is special-cased elsewhere in codegen
            make_thin_self_ptr(cx, layout)
        } else {
            layout
        };

        let mut arg = ArgAbi::new(cx, layout, |layout, scalar, offset| {
            let mut attrs = ArgAttributes::new();
            adjust_for_rust_scalar(
                *cx,
                &mut attrs,
                scalar,
                *layout,
                offset,
                is_return,
                drop_target_pointee,
            );
            attrs
        });

        if arg.layout.is_zst() {
            arg.mode = PassMode::Ignore;
        }

        Ok(arg)
    };

    let mut fn_abi = FnAbi {
        ret: arg_of(sig.output(), None)?,
        args: inputs
            .iter()
            .copied()
            .chain(extra_args.iter().copied())
            .chain(caller_location)
            .enumerate()
            .map(|(i, ty)| arg_of(ty, Some(i)))
            .collect::<Result<_, _>>()?,
        c_variadic: sig.c_variadic,
        fixed_count: inputs.len() as u32,
        conv,
        can_unwind: fn_can_unwind(cx.tcx(), fn_def_id, sig.abi),
    };
    fn_abi_adjust_for_abi(cx, &mut fn_abi, sig.abi, fn_def_id)?;
    debug!("fn_abi_new_uncached = {:?}", fn_abi);
    fn_abi_sanity_check(cx, &fn_abi, sig.abi);
    Ok(tcx.arena.alloc(fn_abi))
}

#[tracing::instrument(level = "trace", skip(cx))]
fn fn_abi_adjust_for_abi<'tcx>(
    cx: &LayoutCx<'tcx>,
    fn_abi: &mut FnAbi<'tcx, Ty<'tcx>>,
    abi: SpecAbi,
    fn_def_id: Option<DefId>,
) -> Result<(), &'tcx FnAbiError<'tcx>> {
    if abi == SpecAbi::Unadjusted {
        // The "unadjusted" ABI passes aggregates in "direct" mode. That's fragile but needed for
        // some LLVM intrinsics.
        fn unadjust<'tcx>(arg: &mut ArgAbi<'tcx, Ty<'tcx>>) {
            // This still uses `PassMode::Pair` for ScalarPair types. That's unlikely to be intended,
            // but who knows what breaks if we change this now.
            if matches!(arg.layout.abi, Abi::Aggregate { .. }) {
                assert!(
                    arg.layout.abi.is_sized(),
                    "'unadjusted' ABI does not support unsized arguments"
                );
            }
            arg.make_direct_deprecated();
        }

        unadjust(&mut fn_abi.ret);
        for arg in fn_abi.args.iter_mut() {
            unadjust(arg);
        }
        return Ok(());
    }

    let tcx = cx.tcx();

    if abi == SpecAbi::Rust || abi == SpecAbi::RustCall || abi == SpecAbi::RustIntrinsic {
        // Look up the deduced parameter attributes for this function, if we have its def ID and
        // we're optimizing in non-incremental mode. We'll tag its parameters with those attributes
        // as appropriate.
        let deduced_param_attrs =
            if tcx.sess.opts.optimize != OptLevel::No && tcx.sess.opts.incremental.is_none() {
                fn_def_id.map(|fn_def_id| tcx.deduced_param_attrs(fn_def_id)).unwrap_or_default()
            } else {
                &[]
            };

        let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>, arg_idx: Option<usize>| {
            if arg.is_ignore() {
                return;
            }

            // Avoid returning floats in x87 registers on x86 as loading and storing from x87
            // registers will quiet signalling NaNs.
            if tcx.sess.target.arch == "x86"
                && arg_idx.is_none()
                // Intrinsics themselves are not actual "real" functions, so theres no need to
                // change their ABIs.
                && abi != SpecAbi::RustIntrinsic
            {
                match arg.layout.abi {
                    // Handle similar to the way arguments with an `Abi::Aggregate` abi are handled
                    // below, by returning arguments up to the size of a pointer (32 bits on x86)
                    // cast to an appropriately sized integer.
                    Abi::Scalar(s) if s.primitive() == Float(F32) => {
                        // Same size as a pointer, return in a register.
                        arg.cast_to(Reg::i32());
                        return;
                    }
                    Abi::Scalar(s) if s.primitive() == Float(F64) => {
                        // Larger than a pointer, return indirectly.
                        arg.make_indirect();
                        return;
                    }
                    Abi::ScalarPair(s1, s2)
                        if matches!(s1.primitive(), Float(F32 | F64))
                            || matches!(s2.primitive(), Float(F32 | F64)) =>
                    {
                        // Larger than a pointer, return indirectly.
                        arg.make_indirect();
                        return;
                    }
                    _ => {}
                };
            }

            if arg_idx.is_none() && arg.layout.size > Pointer(AddressSpace::DATA).size(cx) * 2 {
                // Return values larger than 2 registers using a return area
                // pointer. LLVM and Cranelift disagree about how to return
                // values that don't fit in the registers designated for return
                // values. LLVM will force the entire return value to be passed
                // by return area pointer, while Cranelift will look at each IR level
                // return value independently and decide to pass it in a
                // register or not, which would result in the return value
                // being passed partially in registers and partially through a
                // return area pointer.
                //
                // While Cranelift may need to be fixed as the LLVM behavior is
                // generally more correct with respect to the surface language,
                // forcing this behavior in rustc itself makes it easier for
                // other backends to conform to the Rust ABI and for the C ABI
                // rustc already handles this behavior anyway.
                //
                // In addition LLVM's decision to pass the return value in
                // registers or using a return area pointer depends on how
                // exactly the return type is lowered to an LLVM IR type. For
                // example `Option<u128>` can be lowered as `{ i128, i128 }`
                // in which case the x86_64 backend would use a return area
                // pointer, or it could be passed as `{ i32, i128 }` in which
                // case the x86_64 backend would pass it in registers by taking
                // advantage of an LLVM ABI extension that allows using 3
                // registers for the x86_64 sysv call conv rather than the
                // officially specified 2 registers.
                //
                // FIXME: Technically we should look at the amount of available
                // return registers rather than guessing that there are 2
                // registers for return values. In practice only a couple of
                // architectures have less than 2 return registers. None of
                // which supported by Cranelift.
                //
                // NOTE: This adjustment is only necessary for the Rust ABI as
                // for other ABI's the calling convention implementations in
                // rustc_target already ensure any return value which doesn't
                // fit in the available amount of return registers is passed in
                // the right way for the current target.
                arg.make_indirect();
                return;
            }

            match arg.layout.abi {
                Abi::Aggregate { .. } => {}

                // This is a fun case! The gist of what this is doing is
                // that we want callers and callees to always agree on the
                // ABI of how they pass SIMD arguments. If we were to *not*
                // make these arguments indirect then they'd be immediates
                // in LLVM, which means that they'd used whatever the
                // appropriate ABI is for the callee and the caller. That
                // means, for example, if the caller doesn't have AVX
                // enabled but the callee does, then passing an AVX argument
                // across this boundary would cause corrupt data to show up.
                //
                // This problem is fixed by unconditionally passing SIMD
                // arguments through memory between callers and callees
                // which should get them all to agree on ABI regardless of
                // target feature sets. Some more information about this
                // issue can be found in #44367.
                //
                // Note that the intrinsic ABI is exempt here as
                // that's how we connect up to LLVM and it's unstable
                // anyway, we control all calls to it in libstd.
                Abi::Vector { .. }
                    if abi != SpecAbi::RustIntrinsic && tcx.sess.target.simd_types_indirect =>
                {
                    arg.make_indirect();
                    return;
                }

                _ => return,
            }
            // Compute `Aggregate` ABI.

            let is_indirect_not_on_stack =
                matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
            assert!(is_indirect_not_on_stack, "{:?}", arg);

            let size = arg.layout.size;
            if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) {
                // We want to pass small aggregates as immediates, but using
                // an LLVM aggregate type for this leads to bad optimizations,
                // so we pick an appropriately sized integer type instead.
                arg.cast_to(Reg { kind: RegKind::Integer, size });
            }

            // If we deduced that this parameter was read-only, add that to the attribute list now.
            //
            // The `readonly` parameter only applies to pointers, so we can only do this if the
            // argument was passed indirectly. (If the argument is passed directly, it's an SSA
            // value, so it's implicitly immutable.)
            if let (Some(arg_idx), &mut PassMode::Indirect { ref mut attrs, .. }) =
                (arg_idx, &mut arg.mode)
            {
                // The `deduced_param_attrs` list could be empty if this is a type of function
                // we can't deduce any parameters for, so make sure the argument index is in
                // bounds.
                if let Some(deduced_param_attrs) = deduced_param_attrs.get(arg_idx) {
                    if deduced_param_attrs.read_only {
                        attrs.regular.insert(ArgAttribute::ReadOnly);
                        debug!("added deduced read-only attribute");
                    }
                }
            }
        };

        fixup(&mut fn_abi.ret, None);
        for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() {
            fixup(arg, Some(arg_idx));
        }
    } else {
        fn_abi
            .adjust_for_foreign_abi(cx, abi)
            .map_err(|err| &*tcx.arena.alloc(FnAbiError::AdjustForForeignAbi(err)))?;
    }

    Ok(())
}

#[tracing::instrument(level = "debug", skip(cx))]
fn make_thin_self_ptr<'tcx>(
    cx: &(impl HasTyCtxt<'tcx> + HasParamEnv<'tcx>),
    layout: TyAndLayout<'tcx>,
) -> TyAndLayout<'tcx> {
    let tcx = cx.tcx();
    let wide_pointer_ty = if layout.is_unsized() {
        // unsized `self` is passed as a pointer to `self`
        // FIXME (mikeyhew) change this to use &own if it is ever added to the language
        Ty::new_mut_ptr(tcx, layout.ty)
    } else {
        match layout.abi {
            Abi::ScalarPair(..) | Abi::Scalar(..) => (),
            _ => bug!("receiver type has unsupported layout: {:?}", layout),
        }

        // In the case of Rc<Self>, we need to explicitly pass a *mut RcInner<Self>
        // with a Scalar (not ScalarPair) ABI. This is a hack that is understood
        // elsewhere in the compiler as a method on a `dyn Trait`.
        // To get the type `*mut RcInner<Self>`, we just keep unwrapping newtypes until we
        // get a built-in pointer type
        let mut wide_pointer_layout = layout;
        while !wide_pointer_layout.ty.is_unsafe_ptr() && !wide_pointer_layout.ty.is_ref() {
            wide_pointer_layout = wide_pointer_layout
                .non_1zst_field(cx)
                .expect("not exactly one non-1-ZST field in a `DispatchFromDyn` type")
                .1
        }

        wide_pointer_layout.ty
    };

    // we now have a type like `*mut RcInner<dyn Trait>`
    // change its layout to that of `*mut ()`, a thin pointer, but keep the same type
    // this is understood as a special case elsewhere in the compiler
    let unit_ptr_ty = Ty::new_mut_ptr(tcx, tcx.types.unit);

    TyAndLayout {
        ty: wide_pointer_ty,

        // NOTE(eddyb) using an empty `ParamEnv`, and `unwrap`-ing the `Result`
        // should always work because the type is always `*mut ()`.
        ..tcx.layout_of(ty::ParamEnv::reveal_all().and(unit_ptr_ty)).unwrap()
    }
}