rustc_type_ir/
interner.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
use std::fmt::Debug;
use std::hash::Hash;
use std::ops::Deref;

use rustc_ast_ir::Movability;
use rustc_index::bit_set::BitSet;
use smallvec::SmallVec;

use crate::fold::TypeFoldable;
use crate::inherent::*;
use crate::ir_print::IrPrint;
use crate::lang_items::TraitSolverLangItem;
use crate::relate::Relate;
use crate::solve::{
    CanonicalInput, ExternalConstraintsData, PredefinedOpaquesData, QueryResult, SolverMode,
};
use crate::visit::{Flags, TypeSuperVisitable, TypeVisitable};
use crate::{self as ty, search_graph};

pub trait Interner:
    Sized
    + Copy
    + IrPrint<ty::AliasTy<Self>>
    + IrPrint<ty::AliasTerm<Self>>
    + IrPrint<ty::TraitRef<Self>>
    + IrPrint<ty::TraitPredicate<Self>>
    + IrPrint<ty::ExistentialTraitRef<Self>>
    + IrPrint<ty::ExistentialProjection<Self>>
    + IrPrint<ty::ProjectionPredicate<Self>>
    + IrPrint<ty::NormalizesTo<Self>>
    + IrPrint<ty::SubtypePredicate<Self>>
    + IrPrint<ty::CoercePredicate<Self>>
    + IrPrint<ty::FnSig<Self>>
{
    type DefId: DefId<Self>;
    type LocalDefId: Copy + Debug + Hash + Eq + Into<Self::DefId> + TypeFoldable<Self>;
    type Span: Span<Self>;

    type GenericArgs: GenericArgs<Self>;
    type GenericArgsSlice: Copy + Debug + Hash + Eq + SliceLike<Item = Self::GenericArg>;
    type GenericArg: GenericArg<Self>;
    type Term: Term<Self>;

    type BoundVarKinds: Copy + Debug + Hash + Eq + SliceLike<Item = Self::BoundVarKind> + Default;
    type BoundVarKind: Copy + Debug + Hash + Eq;

    type PredefinedOpaques: Copy
        + Debug
        + Hash
        + Eq
        + TypeFoldable<Self>
        + Deref<Target = PredefinedOpaquesData<Self>>;
    fn mk_predefined_opaques_in_body(
        self,
        data: PredefinedOpaquesData<Self>,
    ) -> Self::PredefinedOpaques;

    type DefiningOpaqueTypes: Copy
        + Debug
        + Hash
        + Default
        + Eq
        + TypeVisitable<Self>
        + SliceLike<Item = Self::LocalDefId>;

    type CanonicalVars: Copy
        + Debug
        + Hash
        + Eq
        + SliceLike<Item = ty::CanonicalVarInfo<Self>>
        + Default;
    fn mk_canonical_var_infos(self, infos: &[ty::CanonicalVarInfo<Self>]) -> Self::CanonicalVars;

    type ExternalConstraints: Copy
        + Debug
        + Hash
        + Eq
        + TypeFoldable<Self>
        + Deref<Target = ExternalConstraintsData<Self>>;
    fn mk_external_constraints(
        self,
        data: ExternalConstraintsData<Self>,
    ) -> Self::ExternalConstraints;

    type DepNodeIndex;
    type Tracked<T: Debug + Clone>: Debug;
    fn mk_tracked<T: Debug + Clone>(
        self,
        data: T,
        dep_node: Self::DepNodeIndex,
    ) -> Self::Tracked<T>;
    fn get_tracked<T: Debug + Clone>(self, tracked: &Self::Tracked<T>) -> T;
    fn with_cached_task<T>(self, task: impl FnOnce() -> T) -> (T, Self::DepNodeIndex);

    // Kinds of tys
    type Ty: Ty<Self>;
    type Tys: Tys<Self>;
    type FnInputTys: Copy + Debug + Hash + Eq + SliceLike<Item = Self::Ty> + TypeVisitable<Self>;
    type ParamTy: Copy + Debug + Hash + Eq + ParamLike;
    type BoundTy: Copy + Debug + Hash + Eq + BoundVarLike<Self>;
    type PlaceholderTy: PlaceholderLike;

    // Things stored inside of tys
    type ErrorGuaranteed: Copy + Debug + Hash + Eq;
    type BoundExistentialPredicates: BoundExistentialPredicates<Self>;
    type AllocId: Copy + Debug + Hash + Eq;
    type Pat: Copy + Debug + Hash + Eq + Debug + Relate<Self>;
    type Safety: Safety<Self>;
    type Abi: Abi<Self>;

    // Kinds of consts
    type Const: Const<Self>;
    type PlaceholderConst: PlaceholderLike;
    type ParamConst: Copy + Debug + Hash + Eq + ParamLike;
    type BoundConst: Copy + Debug + Hash + Eq + BoundVarLike<Self>;
    type ValueConst: Copy + Debug + Hash + Eq;
    type ExprConst: ExprConst<Self>;

    // Kinds of regions
    type Region: Region<Self>;
    type EarlyParamRegion: Copy + Debug + Hash + Eq + ParamLike;
    type LateParamRegion: Copy + Debug + Hash + Eq;
    type BoundRegion: Copy + Debug + Hash + Eq + BoundVarLike<Self>;
    type PlaceholderRegion: PlaceholderLike;

    // Predicates
    type ParamEnv: ParamEnv<Self>;
    type Predicate: Predicate<Self>;
    type Clause: Clause<Self>;
    type Clauses: Copy + Debug + Hash + Eq + TypeSuperVisitable<Self> + Flags;

    fn with_global_cache<R>(
        self,
        mode: SolverMode,
        f: impl FnOnce(&mut search_graph::GlobalCache<Self>) -> R,
    ) -> R;

    fn evaluation_is_concurrent(&self) -> bool;

    fn expand_abstract_consts<T: TypeFoldable<Self>>(self, t: T) -> T;

    type GenericsOf: GenericsOf<Self>;
    fn generics_of(self, def_id: Self::DefId) -> Self::GenericsOf;

    type VariancesOf: Copy + Debug + SliceLike<Item = ty::Variance>;
    fn variances_of(self, def_id: Self::DefId) -> Self::VariancesOf;

    fn type_of(self, def_id: Self::DefId) -> ty::EarlyBinder<Self, Self::Ty>;

    type AdtDef: AdtDef<Self>;
    fn adt_def(self, adt_def_id: Self::DefId) -> Self::AdtDef;

    fn alias_ty_kind(self, alias: ty::AliasTy<Self>) -> ty::AliasTyKind;

    fn alias_term_kind(self, alias: ty::AliasTerm<Self>) -> ty::AliasTermKind;

    fn trait_ref_and_own_args_for_alias(
        self,
        def_id: Self::DefId,
        args: Self::GenericArgs,
    ) -> (ty::TraitRef<Self>, Self::GenericArgsSlice);

    fn mk_args(self, args: &[Self::GenericArg]) -> Self::GenericArgs;

    fn mk_args_from_iter<I, T>(self, args: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Self::GenericArg, Self::GenericArgs>;

    fn check_args_compatible(self, def_id: Self::DefId, args: Self::GenericArgs) -> bool;

    fn debug_assert_args_compatible(self, def_id: Self::DefId, args: Self::GenericArgs);

    /// Assert that the args from an `ExistentialTraitRef` or `ExistentialProjection`
    /// are compatible with the `DefId`.
    fn debug_assert_existential_args_compatible(self, def_id: Self::DefId, args: Self::GenericArgs);

    fn mk_type_list_from_iter<I, T>(self, args: I) -> T::Output
    where
        I: Iterator<Item = T>,
        T: CollectAndApply<Self::Ty, Self::Tys>;

    fn parent(self, def_id: Self::DefId) -> Self::DefId;

    fn recursion_limit(self) -> usize;

    type Features: Features<Self>;
    fn features(self) -> Self::Features;

    fn bound_coroutine_hidden_types(
        self,
        def_id: Self::DefId,
    ) -> impl IntoIterator<Item = ty::EarlyBinder<Self, ty::Binder<Self, Self::Ty>>>;

    fn fn_sig(
        self,
        def_id: Self::DefId,
    ) -> ty::EarlyBinder<Self, ty::Binder<Self, ty::FnSig<Self>>>;

    fn coroutine_movability(self, def_id: Self::DefId) -> Movability;

    fn coroutine_for_closure(self, def_id: Self::DefId) -> Self::DefId;

    fn generics_require_sized_self(self, def_id: Self::DefId) -> bool;

    fn item_bounds(
        self,
        def_id: Self::DefId,
    ) -> ty::EarlyBinder<Self, impl IntoIterator<Item = Self::Clause>>;

    fn predicates_of(
        self,
        def_id: Self::DefId,
    ) -> ty::EarlyBinder<Self, impl IntoIterator<Item = Self::Clause>>;

    fn own_predicates_of(
        self,
        def_id: Self::DefId,
    ) -> ty::EarlyBinder<Self, impl IntoIterator<Item = Self::Clause>>;

    fn explicit_super_predicates_of(
        self,
        def_id: Self::DefId,
    ) -> ty::EarlyBinder<Self, impl IntoIterator<Item = (Self::Clause, Self::Span)>>;

    fn explicit_implied_predicates_of(
        self,
        def_id: Self::DefId,
    ) -> ty::EarlyBinder<Self, impl IntoIterator<Item = (Self::Clause, Self::Span)>>;

    fn has_target_features(self, def_id: Self::DefId) -> bool;

    fn require_lang_item(self, lang_item: TraitSolverLangItem) -> Self::DefId;

    fn is_lang_item(self, def_id: Self::DefId, lang_item: TraitSolverLangItem) -> bool;

    fn as_lang_item(self, def_id: Self::DefId) -> Option<TraitSolverLangItem>;

    fn associated_type_def_ids(self, def_id: Self::DefId) -> impl IntoIterator<Item = Self::DefId>;

    fn for_each_relevant_impl(
        self,
        trait_def_id: Self::DefId,
        self_ty: Self::Ty,
        f: impl FnMut(Self::DefId),
    );

    fn has_item_definition(self, def_id: Self::DefId) -> bool;

    fn impl_is_default(self, impl_def_id: Self::DefId) -> bool;

    fn impl_trait_ref(self, impl_def_id: Self::DefId) -> ty::EarlyBinder<Self, ty::TraitRef<Self>>;

    fn impl_polarity(self, impl_def_id: Self::DefId) -> ty::ImplPolarity;

    fn trait_is_auto(self, trait_def_id: Self::DefId) -> bool;

    fn trait_is_alias(self, trait_def_id: Self::DefId) -> bool;

    fn trait_is_dyn_compatible(self, trait_def_id: Self::DefId) -> bool;

    fn trait_is_fundamental(self, def_id: Self::DefId) -> bool;

    fn trait_may_be_implemented_via_object(self, trait_def_id: Self::DefId) -> bool;

    fn is_impl_trait_in_trait(self, def_id: Self::DefId) -> bool;

    fn delay_bug(self, msg: impl ToString) -> Self::ErrorGuaranteed;

    fn is_general_coroutine(self, coroutine_def_id: Self::DefId) -> bool;
    fn coroutine_is_async(self, coroutine_def_id: Self::DefId) -> bool;
    fn coroutine_is_gen(self, coroutine_def_id: Self::DefId) -> bool;
    fn coroutine_is_async_gen(self, coroutine_def_id: Self::DefId) -> bool;

    fn layout_is_pointer_like(self, param_env: Self::ParamEnv, ty: Self::Ty) -> bool;

    type UnsizingParams: Deref<Target = BitSet<u32>>;
    fn unsizing_params_for_adt(self, adt_def_id: Self::DefId) -> Self::UnsizingParams;

    fn find_const_ty_from_env(
        self,
        param_env: Self::ParamEnv,
        placeholder: Self::PlaceholderConst,
    ) -> Self::Ty;

    fn anonymize_bound_vars<T: TypeFoldable<Self>>(
        self,
        binder: ty::Binder<Self, T>,
    ) -> ty::Binder<Self, T>;
}

/// Imagine you have a function `F: FnOnce(&[T]) -> R`, plus an iterator `iter`
/// that produces `T` items. You could combine them with
/// `f(&iter.collect::<Vec<_>>())`, but this requires allocating memory for the
/// `Vec`.
///
/// This trait allows for faster implementations, intended for cases where the
/// number of items produced by the iterator is small. There is a blanket impl
/// for `T` items, but there is also a fallible impl for `Result<T, E>` items.
pub trait CollectAndApply<T, R>: Sized {
    type Output;

    /// Produce a result of type `Self::Output` from `iter`. The result will
    /// typically be produced by applying `f` on the elements produced by
    /// `iter`, though this may not happen in some impls, e.g. if an error
    /// occurred during iteration.
    fn collect_and_apply<I, F>(iter: I, f: F) -> Self::Output
    where
        I: Iterator<Item = Self>,
        F: FnOnce(&[T]) -> R;
}

/// The blanket impl that always collects all elements and applies `f`.
impl<T, R> CollectAndApply<T, R> for T {
    type Output = R;

    /// Equivalent to `f(&iter.collect::<Vec<_>>())`.
    fn collect_and_apply<I, F>(mut iter: I, f: F) -> R
    where
        I: Iterator<Item = T>,
        F: FnOnce(&[T]) -> R,
    {
        // This code is hot enough that it's worth specializing for the most
        // common length lists, to avoid the overhead of `SmallVec` creation.
        // Lengths 0, 1, and 2 typically account for ~95% of cases. If
        // `size_hint` is incorrect a panic will occur via an `unwrap` or an
        // `assert`.
        match iter.size_hint() {
            (0, Some(0)) => {
                assert!(iter.next().is_none());
                f(&[])
            }
            (1, Some(1)) => {
                let t0 = iter.next().unwrap();
                assert!(iter.next().is_none());
                f(&[t0])
            }
            (2, Some(2)) => {
                let t0 = iter.next().unwrap();
                let t1 = iter.next().unwrap();
                assert!(iter.next().is_none());
                f(&[t0, t1])
            }
            _ => f(&iter.collect::<SmallVec<[_; 8]>>()),
        }
    }
}

/// A fallible impl that will fail, without calling `f`, if there are any
/// errors during collection.
impl<T, R, E> CollectAndApply<T, R> for Result<T, E> {
    type Output = Result<R, E>;

    /// Equivalent to `Ok(f(&iter.collect::<Result<Vec<_>>>()?))`.
    fn collect_and_apply<I, F>(mut iter: I, f: F) -> Result<R, E>
    where
        I: Iterator<Item = Result<T, E>>,
        F: FnOnce(&[T]) -> R,
    {
        // This code is hot enough that it's worth specializing for the most
        // common length lists, to avoid the overhead of `SmallVec` creation.
        // Lengths 0, 1, and 2 typically account for ~95% of cases. If
        // `size_hint` is incorrect a panic will occur via an `unwrap` or an
        // `assert`, unless a failure happens first, in which case the result
        // will be an error anyway.
        Ok(match iter.size_hint() {
            (0, Some(0)) => {
                assert!(iter.next().is_none());
                f(&[])
            }
            (1, Some(1)) => {
                let t0 = iter.next().unwrap()?;
                assert!(iter.next().is_none());
                f(&[t0])
            }
            (2, Some(2)) => {
                let t0 = iter.next().unwrap()?;
                let t1 = iter.next().unwrap()?;
                assert!(iter.next().is_none());
                f(&[t0, t1])
            }
            _ => f(&iter.collect::<Result<SmallVec<[_; 8]>, _>>()?),
        })
    }
}

impl<I: Interner> search_graph::Cx for I {
    type Input = CanonicalInput<I>;
    type Result = QueryResult<I>;

    type DepNodeIndex = I::DepNodeIndex;
    type Tracked<T: Debug + Clone> = I::Tracked<T>;
    fn mk_tracked<T: Debug + Clone>(
        self,
        data: T,
        dep_node_index: I::DepNodeIndex,
    ) -> I::Tracked<T> {
        I::mk_tracked(self, data, dep_node_index)
    }
    fn get_tracked<T: Debug + Clone>(self, tracked: &I::Tracked<T>) -> T {
        I::get_tracked(self, tracked)
    }
    fn with_cached_task<T>(self, task: impl FnOnce() -> T) -> (T, I::DepNodeIndex) {
        I::with_cached_task(self, task)
    }
    fn with_global_cache<R>(
        self,
        mode: SolverMode,
        f: impl FnOnce(&mut search_graph::GlobalCache<Self>) -> R,
    ) -> R {
        I::with_global_cache(self, mode, f)
    }
    fn evaluation_is_concurrent(&self) -> bool {
        self.evaluation_is_concurrent()
    }
}