sharded_slab/page/
slot.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
use super::FreeList;
use crate::sync::{
    atomic::{AtomicUsize, Ordering},
    hint, UnsafeCell,
};
use crate::{cfg, clear::Clear, Pack, Tid};
use std::{fmt, marker::PhantomData, mem, ptr, thread};

pub(crate) struct Slot<T, C> {
    lifecycle: AtomicUsize,
    /// The offset of the next item on the free list.
    next: UnsafeCell<usize>,
    /// The data stored in the slot.
    item: UnsafeCell<T>,
    _cfg: PhantomData<fn(C)>,
}

#[derive(Debug)]
pub(crate) struct Guard<T, C: cfg::Config = cfg::DefaultConfig> {
    slot: ptr::NonNull<Slot<T, C>>,
}

#[derive(Debug)]
pub(crate) struct InitGuard<T, C: cfg::Config = cfg::DefaultConfig> {
    slot: ptr::NonNull<Slot<T, C>>,
    curr_lifecycle: usize,
    released: bool,
}

#[repr(transparent)]
pub(crate) struct Generation<C = cfg::DefaultConfig> {
    value: usize,
    _cfg: PhantomData<fn(C)>,
}

#[repr(transparent)]
pub(crate) struct RefCount<C = cfg::DefaultConfig> {
    value: usize,
    _cfg: PhantomData<fn(C)>,
}

pub(crate) struct Lifecycle<C> {
    state: State,
    _cfg: PhantomData<fn(C)>,
}
struct LifecycleGen<C>(Generation<C>);

#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[repr(usize)]
enum State {
    Present = 0b00,
    Marked = 0b01,
    Removing = 0b11,
}

impl<C: cfg::Config> Pack<C> for Generation<C> {
    /// Use all the remaining bits in the word for the generation counter, minus
    /// any bits reserved by the user.
    const LEN: usize = (cfg::WIDTH - C::RESERVED_BITS) - Self::SHIFT;

    type Prev = Tid<C>;

    #[inline(always)]
    fn from_usize(u: usize) -> Self {
        debug_assert!(u <= Self::BITS);
        Self::new(u)
    }

    #[inline(always)]
    fn as_usize(&self) -> usize {
        self.value
    }
}

impl<C: cfg::Config> Generation<C> {
    fn new(value: usize) -> Self {
        Self {
            value,
            _cfg: PhantomData,
        }
    }
}

// Slot methods which should work across all trait bounds
impl<T, C> Slot<T, C>
where
    C: cfg::Config,
{
    #[inline(always)]
    pub(super) fn next(&self) -> usize {
        self.next.with(|next| unsafe { *next })
    }

    #[inline(always)]
    pub(crate) fn value(&self) -> &T {
        self.item.with(|item| unsafe { &*item })
    }

    #[inline(always)]
    pub(super) fn set_next(&self, next: usize) {
        self.next.with_mut(|n| unsafe {
            (*n) = next;
        })
    }

    #[inline(always)]
    pub(crate) fn get(&self, gen: Generation<C>) -> Option<Guard<T, C>> {
        let mut lifecycle = self.lifecycle.load(Ordering::Acquire);
        loop {
            // Unpack the current state.
            let state = Lifecycle::<C>::from_packed(lifecycle);
            let current_gen = LifecycleGen::<C>::from_packed(lifecycle).0;
            let refs = RefCount::<C>::from_packed(lifecycle);

            test_println!(
                "-> get {:?}; current_gen={:?}; lifecycle={:#x}; state={:?}; refs={:?};",
                gen,
                current_gen,
                lifecycle,
                state,
                refs,
            );

            // Is it okay to access this slot? The accessed generation must be
            // current, and the slot must not be in the process of being
            // removed. If we can no longer access the slot at the given
            // generation, return `None`.
            if gen != current_gen || state != Lifecycle::PRESENT {
                test_println!("-> get: no longer exists!");
                return None;
            }

            // Try to increment the slot's ref count by one.
            let new_refs = refs.incr()?;
            match self.lifecycle.compare_exchange(
                lifecycle,
                new_refs.pack(lifecycle),
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => {
                    test_println!("-> {:?}", new_refs);
                    return Some(Guard {
                        slot: ptr::NonNull::from(self),
                    });
                }
                Err(actual) => {
                    // Another thread modified the slot's state before us! We
                    // need to retry with the new state.
                    //
                    // Since the new state may mean that the accessed generation
                    // is no longer valid, we'll check again on the next
                    // iteration of the loop.
                    test_println!("-> get: retrying; lifecycle={:#x};", actual);
                    lifecycle = actual;
                }
            };
        }
    }

    /// Marks this slot to be released, returning `true` if the slot can be
    /// mutated *now* and `false` otherwise.
    ///
    /// This method checks if there are any references to this slot. If there _are_ valid
    /// references, it just marks them for modification and returns and the next thread calling
    /// either `clear_storage` or `remove_value` will try and modify the storage
    fn mark_release(&self, gen: Generation<C>) -> Option<bool> {
        let mut lifecycle = self.lifecycle.load(Ordering::Acquire);
        let mut curr_gen;

        // Try to advance the slot's state to "MARKED", which indicates that it
        // should be removed when it is no longer concurrently accessed.
        loop {
            curr_gen = LifecycleGen::from_packed(lifecycle).0;
            test_println!(
                "-> mark_release; gen={:?}; current_gen={:?};",
                gen,
                curr_gen
            );

            // Is the slot still at the generation we are trying to remove?
            if gen != curr_gen {
                return None;
            }

            let state = Lifecycle::<C>::from_packed(lifecycle).state;
            test_println!("-> mark_release; state={:?};", state);
            match state {
                State::Removing => {
                    test_println!("--> mark_release; cannot release (already removed!)");
                    return None;
                }
                State::Marked => {
                    test_println!("--> mark_release; already marked;");
                    break;
                }
                State::Present => {}
            };

            // Set the new state to `MARKED`.
            let new_lifecycle = Lifecycle::<C>::MARKED.pack(lifecycle);
            test_println!(
                "-> mark_release; old_lifecycle={:#x}; new_lifecycle={:#x};",
                lifecycle,
                new_lifecycle
            );

            match self.lifecycle.compare_exchange(
                lifecycle,
                new_lifecycle,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => break,
                Err(actual) => {
                    test_println!("-> mark_release; retrying");
                    lifecycle = actual;
                }
            }
        }

        // Unpack the current reference count to see if we can remove the slot now.
        let refs = RefCount::<C>::from_packed(lifecycle);
        test_println!("-> mark_release: marked; refs={:?};", refs);

        // Are there currently outstanding references to the slot? If so, it
        // will have to be removed when those references are dropped.
        Some(refs.value == 0)
    }

    /// Mutates this slot.
    ///
    /// This method spins until no references to this slot are left, and calls the mutator
    fn release_with<F, M, R>(&self, gen: Generation<C>, offset: usize, free: &F, mutator: M) -> R
    where
        F: FreeList<C>,
        M: FnOnce(Option<&mut T>) -> R,
    {
        let mut lifecycle = self.lifecycle.load(Ordering::Acquire);
        let mut advanced = false;
        // Exponential spin backoff while waiting for the slot to be released.
        let mut spin_exp = 0;
        let next_gen = gen.advance();
        loop {
            let current_gen = LifecycleGen::from_packed(lifecycle).0;
            test_println!("-> release_with; lifecycle={:#x}; expected_gen={:?}; current_gen={:?}; next_gen={:?};",
                lifecycle,
                gen,
                current_gen,
                next_gen
            );

            // First, make sure we are actually able to remove the value.
            // If we're going to remove the value, the generation has to match
            // the value that `remove_value` was called with...unless we've
            // already stored the new generation.
            if (!advanced) && gen != current_gen {
                test_println!("-> already removed!");
                return mutator(None);
            }

            match self.lifecycle.compare_exchange(
                lifecycle,
                LifecycleGen(next_gen).pack(lifecycle),
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(actual) => {
                    // If we're in this state, we have successfully advanced to
                    // the next generation.
                    advanced = true;

                    // Make sure that there are no outstanding references.
                    let refs = RefCount::<C>::from_packed(actual);
                    test_println!("-> advanced gen; lifecycle={:#x}; refs={:?};", actual, refs);
                    if refs.value == 0 {
                        test_println!("-> ok to remove!");
                        // safety: we've modified the generation of this slot and any other thread
                        // calling this method will exit out at the generation check above in the
                        // next iteraton of the loop.
                        let value = self
                            .item
                            .with_mut(|item| mutator(Some(unsafe { &mut *item })));
                        free.push(offset, self);
                        return value;
                    }

                    // Otherwise, a reference must be dropped before we can
                    // remove the value. Spin here until there are no refs remaining...
                    test_println!("-> refs={:?}; spin...", refs);

                    // Back off, spinning and possibly yielding.
                    exponential_backoff(&mut spin_exp);
                }
                Err(actual) => {
                    test_println!("-> retrying; lifecycle={:#x};", actual);
                    lifecycle = actual;
                    // The state changed; reset the spin backoff.
                    spin_exp = 0;
                }
            }
        }
    }

    /// Initialize a slot
    ///
    /// This method initializes and sets up the state for a slot. When being used in `Pool`, we
    /// only need to ensure that the `Slot` is in the right `state, while when being used in a
    /// `Slab` we want to insert a value into it, as the memory is not initialized
    pub(crate) fn init(&self) -> Option<InitGuard<T, C>> {
        // Load the current lifecycle state.
        let lifecycle = self.lifecycle.load(Ordering::Acquire);
        let gen = LifecycleGen::<C>::from_packed(lifecycle).0;
        let refs = RefCount::<C>::from_packed(lifecycle);

        test_println!(
            "-> initialize_state; state={:?}; gen={:?}; refs={:?};",
            Lifecycle::<C>::from_packed(lifecycle),
            gen,
            refs,
        );

        if refs.value != 0 {
            test_println!("-> initialize while referenced! cancelling");
            return None;
        }

        Some(InitGuard {
            slot: ptr::NonNull::from(self),
            curr_lifecycle: lifecycle,
            released: false,
        })
    }
}

// Slot impl which _needs_ an `Option` for self.item, this is for `Slab` to use.
impl<T, C> Slot<Option<T>, C>
where
    C: cfg::Config,
{
    fn is_empty(&self) -> bool {
        self.item.with(|item| unsafe { (*item).is_none() })
    }

    /// Insert a value into a slot
    ///
    /// We first initialize the state and then insert the pased in value into the slot.
    #[inline]
    pub(crate) fn insert(&self, value: &mut Option<T>) -> Option<Generation<C>> {
        debug_assert!(self.is_empty(), "inserted into full slot");
        debug_assert!(value.is_some(), "inserted twice");

        let mut guard = self.init()?;
        let gen = guard.generation();
        unsafe {
            // Safety: Accessing the value of an `InitGuard` is unsafe because
            // it has a pointer to a slot which may dangle. Here, we know the
            // pointed slot is alive because we have a reference to it in scope,
            // and the `InitGuard` will be dropped when this function returns.
            mem::swap(guard.value_mut(), value);
            guard.release();
        };
        test_println!("-> inserted at {:?}", gen);

        Some(gen)
    }

    /// Tries to remove the value in the slot, returning `true` if the value was
    /// removed.
    ///
    /// This method tries to remove the value in the slot. If there are existing references, then
    /// the slot is marked for removal and the next thread calling either this method or
    /// `remove_value` will do the work instead.
    #[inline]
    pub(super) fn try_remove_value<F: FreeList<C>>(
        &self,
        gen: Generation<C>,
        offset: usize,
        free: &F,
    ) -> bool {
        let should_remove = match self.mark_release(gen) {
            // If `mark_release` returns `Some`, a value exists at this
            // generation. The bool inside this option indicates whether or not
            // _we're_ allowed to remove the value.
            Some(should_remove) => should_remove,
            // Otherwise, the generation we tried to remove has already expired,
            // and we did not mark anything for removal.
            None => {
                test_println!(
                    "-> try_remove_value; nothing exists at generation={:?}",
                    gen
                );
                return false;
            }
        };

        test_println!("-> try_remove_value; marked!");

        if should_remove {
            // We're allowed to remove the slot now!
            test_println!("-> try_remove_value; can remove now");
            self.remove_value(gen, offset, free);
        }

        true
    }

    #[inline]
    pub(super) fn remove_value<F: FreeList<C>>(
        &self,
        gen: Generation<C>,
        offset: usize,
        free: &F,
    ) -> Option<T> {
        self.release_with(gen, offset, free, |item| item.and_then(Option::take))
    }
}

// These impls are specific to `Pool`
impl<T, C> Slot<T, C>
where
    T: Default + Clear,
    C: cfg::Config,
{
    pub(in crate::page) fn new(next: usize) -> Self {
        Self {
            lifecycle: AtomicUsize::new(Lifecycle::<C>::REMOVING.as_usize()),
            item: UnsafeCell::new(T::default()),
            next: UnsafeCell::new(next),
            _cfg: PhantomData,
        }
    }

    /// Try to clear this slot's storage
    ///
    /// If there are references to this slot, then we mark this slot for clearing and let the last
    /// thread do the work for us.
    #[inline]
    pub(super) fn try_clear_storage<F: FreeList<C>>(
        &self,
        gen: Generation<C>,
        offset: usize,
        free: &F,
    ) -> bool {
        let should_clear = match self.mark_release(gen) {
            // If `mark_release` returns `Some`, a value exists at this
            // generation. The bool inside this option indicates whether or not
            // _we're_ allowed to clear the value.
            Some(should_clear) => should_clear,
            // Otherwise, the generation we tried to remove has already expired,
            // and we did not mark anything for removal.
            None => {
                test_println!(
                    "-> try_clear_storage; nothing exists at generation={:?}",
                    gen
                );
                return false;
            }
        };

        test_println!("-> try_clear_storage; marked!");

        if should_clear {
            // We're allowed to remove the slot now!
            test_println!("-> try_remove_value; can clear now");
            return self.clear_storage(gen, offset, free);
        }

        true
    }

    /// Clear this slot's storage
    ///
    /// This method blocks until all references have been dropped and clears the storage.
    pub(super) fn clear_storage<F: FreeList<C>>(
        &self,
        gen: Generation<C>,
        offset: usize,
        free: &F,
    ) -> bool {
        // release_with will _always_ wait unitl it can release the slot or just return if the slot
        // has already been released.
        self.release_with(gen, offset, free, |item| {
            let cleared = item.map(|inner| Clear::clear(inner)).is_some();
            test_println!("-> cleared: {}", cleared);
            cleared
        })
    }
}

impl<T, C: cfg::Config> Slot<T, C> {
    fn release(&self) -> bool {
        let mut lifecycle = self.lifecycle.load(Ordering::Acquire);
        loop {
            let refs = RefCount::<C>::from_packed(lifecycle);
            let state = Lifecycle::<C>::from_packed(lifecycle).state;
            let gen = LifecycleGen::<C>::from_packed(lifecycle).0;

            // Are we the last guard, and is the slot marked for removal?
            let dropping = refs.value == 1 && state == State::Marked;
            let new_lifecycle = if dropping {
                // If so, we want to advance the state to "removing".
                // Also, reset the ref count to 0.
                LifecycleGen(gen).pack(State::Removing as usize)
            } else {
                // Otherwise, just subtract 1 from the ref count.
                refs.decr().pack(lifecycle)
            };

            test_println!(
                "-> drop guard: state={:?}; gen={:?}; refs={:?}; lifecycle={:#x}; new_lifecycle={:#x}; dropping={:?}",
                state,
                gen,
                refs,
                lifecycle,
                new_lifecycle,
                dropping
            );
            match self.lifecycle.compare_exchange(
                lifecycle,
                new_lifecycle,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => {
                    test_println!("-> drop guard: done;  dropping={:?}", dropping);
                    return dropping;
                }
                Err(actual) => {
                    test_println!("-> drop guard; retry, actual={:#x}", actual);
                    lifecycle = actual;
                }
            }
        }
    }
}

impl<T, C: cfg::Config> fmt::Debug for Slot<T, C> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let lifecycle = self.lifecycle.load(Ordering::Relaxed);
        f.debug_struct("Slot")
            .field("lifecycle", &format_args!("{:#x}", lifecycle))
            .field("state", &Lifecycle::<C>::from_packed(lifecycle).state)
            .field("gen", &LifecycleGen::<C>::from_packed(lifecycle).0)
            .field("refs", &RefCount::<C>::from_packed(lifecycle))
            .field("next", &self.next())
            .finish()
    }
}

// === impl Generation ===

impl<C> fmt::Debug for Generation<C> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Generation").field(&self.value).finish()
    }
}

impl<C: cfg::Config> Generation<C> {
    fn advance(self) -> Self {
        Self::from_usize((self.value + 1) % Self::BITS)
    }
}

impl<C: cfg::Config> PartialEq for Generation<C> {
    fn eq(&self, other: &Self) -> bool {
        self.value == other.value
    }
}

impl<C: cfg::Config> Eq for Generation<C> {}

impl<C: cfg::Config> PartialOrd for Generation<C> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.value.partial_cmp(&other.value)
    }
}

impl<C: cfg::Config> Ord for Generation<C> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.value.cmp(&other.value)
    }
}

impl<C: cfg::Config> Clone for Generation<C> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<C: cfg::Config> Copy for Generation<C> {}

// === impl Guard ===

impl<T, C: cfg::Config> Guard<T, C> {
    /// Releases the guard, returning `true` if the slot should be cleared.
    ///
    /// ## Safety
    ///
    /// This dereferences a raw pointer to the slot. The caller is responsible
    /// for ensuring that the `Guard` does not outlive the slab that contains
    /// the pointed slot. Failure to do so means this pointer may dangle.
    #[inline]
    pub(crate) unsafe fn release(&self) -> bool {
        self.slot().release()
    }

    /// Returns a borrowed reference to the slot.
    ///
    /// ## Safety
    ///
    /// This dereferences a raw pointer to the slot. The caller is responsible
    /// for ensuring that the `Guard` does not outlive the slab that contains
    /// the pointed slot. Failure to do so means this pointer may dangle.
    #[inline]
    pub(crate) unsafe fn slot(&self) -> &Slot<T, C> {
        self.slot.as_ref()
    }

    /// Returns a borrowed reference to the slot's value.
    ///
    /// ## Safety
    ///
    /// This dereferences a raw pointer to the slot. The caller is responsible
    /// for ensuring that the `Guard` does not outlive the slab that contains
    /// the pointed slot. Failure to do so means this pointer may dangle.
    #[inline(always)]
    pub(crate) unsafe fn value(&self) -> &T {
        self.slot().item.with(|item| &*item)
    }
}

// === impl Lifecycle ===

impl<C: cfg::Config> Lifecycle<C> {
    const MARKED: Self = Self {
        state: State::Marked,
        _cfg: PhantomData,
    };
    const REMOVING: Self = Self {
        state: State::Removing,
        _cfg: PhantomData,
    };
    const PRESENT: Self = Self {
        state: State::Present,
        _cfg: PhantomData,
    };
}

impl<C: cfg::Config> Pack<C> for Lifecycle<C> {
    const LEN: usize = 2;
    type Prev = ();

    fn from_usize(u: usize) -> Self {
        Self {
            state: match u & Self::MASK {
                0b00 => State::Present,
                0b01 => State::Marked,
                0b11 => State::Removing,
                bad => unreachable!("weird lifecycle {:#b}", bad),
            },
            _cfg: PhantomData,
        }
    }

    fn as_usize(&self) -> usize {
        self.state as usize
    }
}

impl<C> PartialEq for Lifecycle<C> {
    fn eq(&self, other: &Self) -> bool {
        self.state == other.state
    }
}

impl<C> Eq for Lifecycle<C> {}

impl<C> fmt::Debug for Lifecycle<C> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Lifecycle").field(&self.state).finish()
    }
}

// === impl RefCount ===

impl<C: cfg::Config> Pack<C> for RefCount<C> {
    const LEN: usize = cfg::WIDTH - (Lifecycle::<C>::LEN + Generation::<C>::LEN);
    type Prev = Lifecycle<C>;

    fn from_usize(value: usize) -> Self {
        debug_assert!(value <= Self::BITS);
        Self {
            value,
            _cfg: PhantomData,
        }
    }

    fn as_usize(&self) -> usize {
        self.value
    }
}

impl<C: cfg::Config> RefCount<C> {
    pub(crate) const MAX: usize = Self::BITS - 1;

    #[inline]
    fn incr(self) -> Option<Self> {
        if self.value >= Self::MAX {
            test_println!("-> get: {}; MAX={}", self.value, RefCount::<C>::MAX);
            return None;
        }

        Some(Self::from_usize(self.value + 1))
    }

    #[inline]
    fn decr(self) -> Self {
        Self::from_usize(self.value - 1)
    }
}

impl<C> fmt::Debug for RefCount<C> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("RefCount").field(&self.value).finish()
    }
}

impl<C: cfg::Config> PartialEq for RefCount<C> {
    fn eq(&self, other: &Self) -> bool {
        self.value == other.value
    }
}

impl<C: cfg::Config> Eq for RefCount<C> {}

impl<C: cfg::Config> PartialOrd for RefCount<C> {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        self.value.partial_cmp(&other.value)
    }
}

impl<C: cfg::Config> Ord for RefCount<C> {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.value.cmp(&other.value)
    }
}

impl<C: cfg::Config> Clone for RefCount<C> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<C: cfg::Config> Copy for RefCount<C> {}

// === impl LifecycleGen ===

impl<C: cfg::Config> Pack<C> for LifecycleGen<C> {
    const LEN: usize = Generation::<C>::LEN;
    type Prev = RefCount<C>;

    fn from_usize(value: usize) -> Self {
        Self(Generation::from_usize(value))
    }

    fn as_usize(&self) -> usize {
        self.0.as_usize()
    }
}

impl<T, C: cfg::Config> InitGuard<T, C> {
    pub(crate) fn generation(&self) -> Generation<C> {
        LifecycleGen::<C>::from_packed(self.curr_lifecycle).0
    }

    /// Returns a borrowed reference to the slot's value.
    ///
    /// ## Safety
    ///
    /// This dereferences a raw pointer to the slot. The caller is responsible
    /// for ensuring that the `InitGuard` does not outlive the slab that
    /// contains the pointed slot. Failure to do so means this pointer may
    /// dangle.
    pub(crate) unsafe fn value(&self) -> &T {
        self.slot.as_ref().item.with(|val| &*val)
    }

    /// Returns a mutably borrowed reference to the slot's value.
    ///
    /// ## Safety
    ///
    /// This dereferences a raw pointer to the slot. The caller is responsible
    /// for ensuring that the `InitGuard` does not outlive the slab that
    /// contains the pointed slot. Failure to do so means this pointer may
    /// dangle.
    ///
    /// It's safe to reference the slot mutably, though, because creating an
    /// `InitGuard` ensures there are no outstanding immutable references.
    pub(crate) unsafe fn value_mut(&mut self) -> &mut T {
        self.slot.as_ref().item.with_mut(|val| &mut *val)
    }

    /// Releases the guard, returning `true` if the slot should be cleared.
    ///
    /// ## Safety
    ///
    /// This dereferences a raw pointer to the slot. The caller is responsible
    /// for ensuring that the `InitGuard` does not outlive the slab that
    /// contains the pointed slot. Failure to do so means this pointer may
    /// dangle.
    pub(crate) unsafe fn release(&mut self) -> bool {
        self.release2(0)
    }

    /// Downgrades the guard to an immutable guard
    ///
    /// ## Safety
    ///
    /// This dereferences a raw pointer to the slot. The caller is responsible
    /// for ensuring that the `InitGuard` does not outlive the slab that
    /// contains the pointed slot. Failure to do so means this pointer may
    /// dangle.
    pub(crate) unsafe fn downgrade(&mut self) -> Guard<T, C> {
        let _ = self.release2(RefCount::<C>::from_usize(1).pack(0));
        Guard { slot: self.slot }
    }

    unsafe fn release2(&mut self, new_refs: usize) -> bool {
        test_println!(
            "InitGuard::release; curr_lifecycle={:?}; downgrading={}",
            Lifecycle::<C>::from_packed(self.curr_lifecycle),
            new_refs != 0,
        );
        if self.released {
            test_println!("-> already released!");
            return false;
        }
        self.released = true;
        let mut curr_lifecycle = self.curr_lifecycle;
        let slot = self.slot.as_ref();
        let new_lifecycle = LifecycleGen::<C>::from_packed(self.curr_lifecycle)
            .pack(Lifecycle::<C>::PRESENT.pack(new_refs));

        match slot.lifecycle.compare_exchange(
            curr_lifecycle,
            new_lifecycle,
            Ordering::AcqRel,
            Ordering::Acquire,
        ) {
            Ok(_) => {
                test_println!("--> advanced to PRESENT; done");
                return false;
            }
            Err(actual) => {
                test_println!(
                    "--> lifecycle changed; actual={:?}",
                    Lifecycle::<C>::from_packed(actual)
                );
                curr_lifecycle = actual;
            }
        }

        // if the state was no longer the prior state, we are now responsible
        // for releasing the slot.
        loop {
            let refs = RefCount::<C>::from_packed(curr_lifecycle);
            let state = Lifecycle::<C>::from_packed(curr_lifecycle).state;

            test_println!(
                "-> InitGuard::release; lifecycle={:#x}; state={:?}; refs={:?};",
                curr_lifecycle,
                state,
                refs,
            );

            debug_assert!(state == State::Marked || thread::panicking(), "state was not MARKED; someone else has removed the slot while we have exclusive access!\nactual={:?}", state);
            debug_assert!(refs.value == 0 || thread::panicking(), "ref count was not 0; someone else has referenced the slot while we have exclusive access!\nactual={:?}", refs);

            let new_lifecycle = LifecycleGen(self.generation()).pack(State::Removing as usize);

            match slot.lifecycle.compare_exchange(
                curr_lifecycle,
                new_lifecycle,
                Ordering::AcqRel,
                Ordering::Acquire,
            ) {
                Ok(_) => {
                    test_println!("-> InitGuard::RELEASE: done!");
                    return true;
                }
                Err(actual) => {
                    debug_assert!(thread::panicking(), "we should not have to retry this CAS!");
                    test_println!("-> InitGuard::release; retry, actual={:#x}", actual);
                    curr_lifecycle = actual;
                }
            }
        }
    }
}

// === helpers ===

#[inline(always)]
fn exponential_backoff(exp: &mut usize) {
    /// Maximum exponent we can back off to.
    const MAX_EXPONENT: usize = 8;

    // Issue 2^exp pause instructions.
    for _ in 0..(1 << *exp) {
        hint::spin_loop();
    }

    if *exp >= MAX_EXPONENT {
        // If we have reached the max backoff, also yield to the scheduler
        // explicitly.
        crate::sync::yield_now();
    } else {
        // Otherwise, increment the exponent.
        *exp += 1;
    }
}