sharded_slab/page/slot.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
use super::FreeList;
use crate::sync::{
atomic::{AtomicUsize, Ordering},
hint, UnsafeCell,
};
use crate::{cfg, clear::Clear, Pack, Tid};
use std::{fmt, marker::PhantomData, mem, ptr, thread};
pub(crate) struct Slot<T, C> {
lifecycle: AtomicUsize,
/// The offset of the next item on the free list.
next: UnsafeCell<usize>,
/// The data stored in the slot.
item: UnsafeCell<T>,
_cfg: PhantomData<fn(C)>,
}
#[derive(Debug)]
pub(crate) struct Guard<T, C: cfg::Config = cfg::DefaultConfig> {
slot: ptr::NonNull<Slot<T, C>>,
}
#[derive(Debug)]
pub(crate) struct InitGuard<T, C: cfg::Config = cfg::DefaultConfig> {
slot: ptr::NonNull<Slot<T, C>>,
curr_lifecycle: usize,
released: bool,
}
#[repr(transparent)]
pub(crate) struct Generation<C = cfg::DefaultConfig> {
value: usize,
_cfg: PhantomData<fn(C)>,
}
#[repr(transparent)]
pub(crate) struct RefCount<C = cfg::DefaultConfig> {
value: usize,
_cfg: PhantomData<fn(C)>,
}
pub(crate) struct Lifecycle<C> {
state: State,
_cfg: PhantomData<fn(C)>,
}
struct LifecycleGen<C>(Generation<C>);
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[repr(usize)]
enum State {
Present = 0b00,
Marked = 0b01,
Removing = 0b11,
}
impl<C: cfg::Config> Pack<C> for Generation<C> {
/// Use all the remaining bits in the word for the generation counter, minus
/// any bits reserved by the user.
const LEN: usize = (cfg::WIDTH - C::RESERVED_BITS) - Self::SHIFT;
type Prev = Tid<C>;
#[inline(always)]
fn from_usize(u: usize) -> Self {
debug_assert!(u <= Self::BITS);
Self::new(u)
}
#[inline(always)]
fn as_usize(&self) -> usize {
self.value
}
}
impl<C: cfg::Config> Generation<C> {
fn new(value: usize) -> Self {
Self {
value,
_cfg: PhantomData,
}
}
}
// Slot methods which should work across all trait bounds
impl<T, C> Slot<T, C>
where
C: cfg::Config,
{
#[inline(always)]
pub(super) fn next(&self) -> usize {
self.next.with(|next| unsafe { *next })
}
#[inline(always)]
pub(crate) fn value(&self) -> &T {
self.item.with(|item| unsafe { &*item })
}
#[inline(always)]
pub(super) fn set_next(&self, next: usize) {
self.next.with_mut(|n| unsafe {
(*n) = next;
})
}
#[inline(always)]
pub(crate) fn get(&self, gen: Generation<C>) -> Option<Guard<T, C>> {
let mut lifecycle = self.lifecycle.load(Ordering::Acquire);
loop {
// Unpack the current state.
let state = Lifecycle::<C>::from_packed(lifecycle);
let current_gen = LifecycleGen::<C>::from_packed(lifecycle).0;
let refs = RefCount::<C>::from_packed(lifecycle);
test_println!(
"-> get {:?}; current_gen={:?}; lifecycle={:#x}; state={:?}; refs={:?};",
gen,
current_gen,
lifecycle,
state,
refs,
);
// Is it okay to access this slot? The accessed generation must be
// current, and the slot must not be in the process of being
// removed. If we can no longer access the slot at the given
// generation, return `None`.
if gen != current_gen || state != Lifecycle::PRESENT {
test_println!("-> get: no longer exists!");
return None;
}
// Try to increment the slot's ref count by one.
let new_refs = refs.incr()?;
match self.lifecycle.compare_exchange(
lifecycle,
new_refs.pack(lifecycle),
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
test_println!("-> {:?}", new_refs);
return Some(Guard {
slot: ptr::NonNull::from(self),
});
}
Err(actual) => {
// Another thread modified the slot's state before us! We
// need to retry with the new state.
//
// Since the new state may mean that the accessed generation
// is no longer valid, we'll check again on the next
// iteration of the loop.
test_println!("-> get: retrying; lifecycle={:#x};", actual);
lifecycle = actual;
}
};
}
}
/// Marks this slot to be released, returning `true` if the slot can be
/// mutated *now* and `false` otherwise.
///
/// This method checks if there are any references to this slot. If there _are_ valid
/// references, it just marks them for modification and returns and the next thread calling
/// either `clear_storage` or `remove_value` will try and modify the storage
fn mark_release(&self, gen: Generation<C>) -> Option<bool> {
let mut lifecycle = self.lifecycle.load(Ordering::Acquire);
let mut curr_gen;
// Try to advance the slot's state to "MARKED", which indicates that it
// should be removed when it is no longer concurrently accessed.
loop {
curr_gen = LifecycleGen::from_packed(lifecycle).0;
test_println!(
"-> mark_release; gen={:?}; current_gen={:?};",
gen,
curr_gen
);
// Is the slot still at the generation we are trying to remove?
if gen != curr_gen {
return None;
}
let state = Lifecycle::<C>::from_packed(lifecycle).state;
test_println!("-> mark_release; state={:?};", state);
match state {
State::Removing => {
test_println!("--> mark_release; cannot release (already removed!)");
return None;
}
State::Marked => {
test_println!("--> mark_release; already marked;");
break;
}
State::Present => {}
};
// Set the new state to `MARKED`.
let new_lifecycle = Lifecycle::<C>::MARKED.pack(lifecycle);
test_println!(
"-> mark_release; old_lifecycle={:#x}; new_lifecycle={:#x};",
lifecycle,
new_lifecycle
);
match self.lifecycle.compare_exchange(
lifecycle,
new_lifecycle,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => break,
Err(actual) => {
test_println!("-> mark_release; retrying");
lifecycle = actual;
}
}
}
// Unpack the current reference count to see if we can remove the slot now.
let refs = RefCount::<C>::from_packed(lifecycle);
test_println!("-> mark_release: marked; refs={:?};", refs);
// Are there currently outstanding references to the slot? If so, it
// will have to be removed when those references are dropped.
Some(refs.value == 0)
}
/// Mutates this slot.
///
/// This method spins until no references to this slot are left, and calls the mutator
fn release_with<F, M, R>(&self, gen: Generation<C>, offset: usize, free: &F, mutator: M) -> R
where
F: FreeList<C>,
M: FnOnce(Option<&mut T>) -> R,
{
let mut lifecycle = self.lifecycle.load(Ordering::Acquire);
let mut advanced = false;
// Exponential spin backoff while waiting for the slot to be released.
let mut spin_exp = 0;
let next_gen = gen.advance();
loop {
let current_gen = LifecycleGen::from_packed(lifecycle).0;
test_println!("-> release_with; lifecycle={:#x}; expected_gen={:?}; current_gen={:?}; next_gen={:?};",
lifecycle,
gen,
current_gen,
next_gen
);
// First, make sure we are actually able to remove the value.
// If we're going to remove the value, the generation has to match
// the value that `remove_value` was called with...unless we've
// already stored the new generation.
if (!advanced) && gen != current_gen {
test_println!("-> already removed!");
return mutator(None);
}
match self.lifecycle.compare_exchange(
lifecycle,
LifecycleGen(next_gen).pack(lifecycle),
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(actual) => {
// If we're in this state, we have successfully advanced to
// the next generation.
advanced = true;
// Make sure that there are no outstanding references.
let refs = RefCount::<C>::from_packed(actual);
test_println!("-> advanced gen; lifecycle={:#x}; refs={:?};", actual, refs);
if refs.value == 0 {
test_println!("-> ok to remove!");
// safety: we've modified the generation of this slot and any other thread
// calling this method will exit out at the generation check above in the
// next iteraton of the loop.
let value = self
.item
.with_mut(|item| mutator(Some(unsafe { &mut *item })));
free.push(offset, self);
return value;
}
// Otherwise, a reference must be dropped before we can
// remove the value. Spin here until there are no refs remaining...
test_println!("-> refs={:?}; spin...", refs);
// Back off, spinning and possibly yielding.
exponential_backoff(&mut spin_exp);
}
Err(actual) => {
test_println!("-> retrying; lifecycle={:#x};", actual);
lifecycle = actual;
// The state changed; reset the spin backoff.
spin_exp = 0;
}
}
}
}
/// Initialize a slot
///
/// This method initializes and sets up the state for a slot. When being used in `Pool`, we
/// only need to ensure that the `Slot` is in the right `state, while when being used in a
/// `Slab` we want to insert a value into it, as the memory is not initialized
pub(crate) fn init(&self) -> Option<InitGuard<T, C>> {
// Load the current lifecycle state.
let lifecycle = self.lifecycle.load(Ordering::Acquire);
let gen = LifecycleGen::<C>::from_packed(lifecycle).0;
let refs = RefCount::<C>::from_packed(lifecycle);
test_println!(
"-> initialize_state; state={:?}; gen={:?}; refs={:?};",
Lifecycle::<C>::from_packed(lifecycle),
gen,
refs,
);
if refs.value != 0 {
test_println!("-> initialize while referenced! cancelling");
return None;
}
Some(InitGuard {
slot: ptr::NonNull::from(self),
curr_lifecycle: lifecycle,
released: false,
})
}
}
// Slot impl which _needs_ an `Option` for self.item, this is for `Slab` to use.
impl<T, C> Slot<Option<T>, C>
where
C: cfg::Config,
{
fn is_empty(&self) -> bool {
self.item.with(|item| unsafe { (*item).is_none() })
}
/// Insert a value into a slot
///
/// We first initialize the state and then insert the pased in value into the slot.
#[inline]
pub(crate) fn insert(&self, value: &mut Option<T>) -> Option<Generation<C>> {
debug_assert!(self.is_empty(), "inserted into full slot");
debug_assert!(value.is_some(), "inserted twice");
let mut guard = self.init()?;
let gen = guard.generation();
unsafe {
// Safety: Accessing the value of an `InitGuard` is unsafe because
// it has a pointer to a slot which may dangle. Here, we know the
// pointed slot is alive because we have a reference to it in scope,
// and the `InitGuard` will be dropped when this function returns.
mem::swap(guard.value_mut(), value);
guard.release();
};
test_println!("-> inserted at {:?}", gen);
Some(gen)
}
/// Tries to remove the value in the slot, returning `true` if the value was
/// removed.
///
/// This method tries to remove the value in the slot. If there are existing references, then
/// the slot is marked for removal and the next thread calling either this method or
/// `remove_value` will do the work instead.
#[inline]
pub(super) fn try_remove_value<F: FreeList<C>>(
&self,
gen: Generation<C>,
offset: usize,
free: &F,
) -> bool {
let should_remove = match self.mark_release(gen) {
// If `mark_release` returns `Some`, a value exists at this
// generation. The bool inside this option indicates whether or not
// _we're_ allowed to remove the value.
Some(should_remove) => should_remove,
// Otherwise, the generation we tried to remove has already expired,
// and we did not mark anything for removal.
None => {
test_println!(
"-> try_remove_value; nothing exists at generation={:?}",
gen
);
return false;
}
};
test_println!("-> try_remove_value; marked!");
if should_remove {
// We're allowed to remove the slot now!
test_println!("-> try_remove_value; can remove now");
self.remove_value(gen, offset, free);
}
true
}
#[inline]
pub(super) fn remove_value<F: FreeList<C>>(
&self,
gen: Generation<C>,
offset: usize,
free: &F,
) -> Option<T> {
self.release_with(gen, offset, free, |item| item.and_then(Option::take))
}
}
// These impls are specific to `Pool`
impl<T, C> Slot<T, C>
where
T: Default + Clear,
C: cfg::Config,
{
pub(in crate::page) fn new(next: usize) -> Self {
Self {
lifecycle: AtomicUsize::new(Lifecycle::<C>::REMOVING.as_usize()),
item: UnsafeCell::new(T::default()),
next: UnsafeCell::new(next),
_cfg: PhantomData,
}
}
/// Try to clear this slot's storage
///
/// If there are references to this slot, then we mark this slot for clearing and let the last
/// thread do the work for us.
#[inline]
pub(super) fn try_clear_storage<F: FreeList<C>>(
&self,
gen: Generation<C>,
offset: usize,
free: &F,
) -> bool {
let should_clear = match self.mark_release(gen) {
// If `mark_release` returns `Some`, a value exists at this
// generation. The bool inside this option indicates whether or not
// _we're_ allowed to clear the value.
Some(should_clear) => should_clear,
// Otherwise, the generation we tried to remove has already expired,
// and we did not mark anything for removal.
None => {
test_println!(
"-> try_clear_storage; nothing exists at generation={:?}",
gen
);
return false;
}
};
test_println!("-> try_clear_storage; marked!");
if should_clear {
// We're allowed to remove the slot now!
test_println!("-> try_remove_value; can clear now");
return self.clear_storage(gen, offset, free);
}
true
}
/// Clear this slot's storage
///
/// This method blocks until all references have been dropped and clears the storage.
pub(super) fn clear_storage<F: FreeList<C>>(
&self,
gen: Generation<C>,
offset: usize,
free: &F,
) -> bool {
// release_with will _always_ wait unitl it can release the slot or just return if the slot
// has already been released.
self.release_with(gen, offset, free, |item| {
let cleared = item.map(|inner| Clear::clear(inner)).is_some();
test_println!("-> cleared: {}", cleared);
cleared
})
}
}
impl<T, C: cfg::Config> Slot<T, C> {
fn release(&self) -> bool {
let mut lifecycle = self.lifecycle.load(Ordering::Acquire);
loop {
let refs = RefCount::<C>::from_packed(lifecycle);
let state = Lifecycle::<C>::from_packed(lifecycle).state;
let gen = LifecycleGen::<C>::from_packed(lifecycle).0;
// Are we the last guard, and is the slot marked for removal?
let dropping = refs.value == 1 && state == State::Marked;
let new_lifecycle = if dropping {
// If so, we want to advance the state to "removing".
// Also, reset the ref count to 0.
LifecycleGen(gen).pack(State::Removing as usize)
} else {
// Otherwise, just subtract 1 from the ref count.
refs.decr().pack(lifecycle)
};
test_println!(
"-> drop guard: state={:?}; gen={:?}; refs={:?}; lifecycle={:#x}; new_lifecycle={:#x}; dropping={:?}",
state,
gen,
refs,
lifecycle,
new_lifecycle,
dropping
);
match self.lifecycle.compare_exchange(
lifecycle,
new_lifecycle,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
test_println!("-> drop guard: done; dropping={:?}", dropping);
return dropping;
}
Err(actual) => {
test_println!("-> drop guard; retry, actual={:#x}", actual);
lifecycle = actual;
}
}
}
}
}
impl<T, C: cfg::Config> fmt::Debug for Slot<T, C> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let lifecycle = self.lifecycle.load(Ordering::Relaxed);
f.debug_struct("Slot")
.field("lifecycle", &format_args!("{:#x}", lifecycle))
.field("state", &Lifecycle::<C>::from_packed(lifecycle).state)
.field("gen", &LifecycleGen::<C>::from_packed(lifecycle).0)
.field("refs", &RefCount::<C>::from_packed(lifecycle))
.field("next", &self.next())
.finish()
}
}
// === impl Generation ===
impl<C> fmt::Debug for Generation<C> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Generation").field(&self.value).finish()
}
}
impl<C: cfg::Config> Generation<C> {
fn advance(self) -> Self {
Self::from_usize((self.value + 1) % Self::BITS)
}
}
impl<C: cfg::Config> PartialEq for Generation<C> {
fn eq(&self, other: &Self) -> bool {
self.value == other.value
}
}
impl<C: cfg::Config> Eq for Generation<C> {}
impl<C: cfg::Config> PartialOrd for Generation<C> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.value.partial_cmp(&other.value)
}
}
impl<C: cfg::Config> Ord for Generation<C> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.value.cmp(&other.value)
}
}
impl<C: cfg::Config> Clone for Generation<C> {
fn clone(&self) -> Self {
*self
}
}
impl<C: cfg::Config> Copy for Generation<C> {}
// === impl Guard ===
impl<T, C: cfg::Config> Guard<T, C> {
/// Releases the guard, returning `true` if the slot should be cleared.
///
/// ## Safety
///
/// This dereferences a raw pointer to the slot. The caller is responsible
/// for ensuring that the `Guard` does not outlive the slab that contains
/// the pointed slot. Failure to do so means this pointer may dangle.
#[inline]
pub(crate) unsafe fn release(&self) -> bool {
self.slot().release()
}
/// Returns a borrowed reference to the slot.
///
/// ## Safety
///
/// This dereferences a raw pointer to the slot. The caller is responsible
/// for ensuring that the `Guard` does not outlive the slab that contains
/// the pointed slot. Failure to do so means this pointer may dangle.
#[inline]
pub(crate) unsafe fn slot(&self) -> &Slot<T, C> {
self.slot.as_ref()
}
/// Returns a borrowed reference to the slot's value.
///
/// ## Safety
///
/// This dereferences a raw pointer to the slot. The caller is responsible
/// for ensuring that the `Guard` does not outlive the slab that contains
/// the pointed slot. Failure to do so means this pointer may dangle.
#[inline(always)]
pub(crate) unsafe fn value(&self) -> &T {
self.slot().item.with(|item| &*item)
}
}
// === impl Lifecycle ===
impl<C: cfg::Config> Lifecycle<C> {
const MARKED: Self = Self {
state: State::Marked,
_cfg: PhantomData,
};
const REMOVING: Self = Self {
state: State::Removing,
_cfg: PhantomData,
};
const PRESENT: Self = Self {
state: State::Present,
_cfg: PhantomData,
};
}
impl<C: cfg::Config> Pack<C> for Lifecycle<C> {
const LEN: usize = 2;
type Prev = ();
fn from_usize(u: usize) -> Self {
Self {
state: match u & Self::MASK {
0b00 => State::Present,
0b01 => State::Marked,
0b11 => State::Removing,
bad => unreachable!("weird lifecycle {:#b}", bad),
},
_cfg: PhantomData,
}
}
fn as_usize(&self) -> usize {
self.state as usize
}
}
impl<C> PartialEq for Lifecycle<C> {
fn eq(&self, other: &Self) -> bool {
self.state == other.state
}
}
impl<C> Eq for Lifecycle<C> {}
impl<C> fmt::Debug for Lifecycle<C> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Lifecycle").field(&self.state).finish()
}
}
// === impl RefCount ===
impl<C: cfg::Config> Pack<C> for RefCount<C> {
const LEN: usize = cfg::WIDTH - (Lifecycle::<C>::LEN + Generation::<C>::LEN);
type Prev = Lifecycle<C>;
fn from_usize(value: usize) -> Self {
debug_assert!(value <= Self::BITS);
Self {
value,
_cfg: PhantomData,
}
}
fn as_usize(&self) -> usize {
self.value
}
}
impl<C: cfg::Config> RefCount<C> {
pub(crate) const MAX: usize = Self::BITS - 1;
#[inline]
fn incr(self) -> Option<Self> {
if self.value >= Self::MAX {
test_println!("-> get: {}; MAX={}", self.value, RefCount::<C>::MAX);
return None;
}
Some(Self::from_usize(self.value + 1))
}
#[inline]
fn decr(self) -> Self {
Self::from_usize(self.value - 1)
}
}
impl<C> fmt::Debug for RefCount<C> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("RefCount").field(&self.value).finish()
}
}
impl<C: cfg::Config> PartialEq for RefCount<C> {
fn eq(&self, other: &Self) -> bool {
self.value == other.value
}
}
impl<C: cfg::Config> Eq for RefCount<C> {}
impl<C: cfg::Config> PartialOrd for RefCount<C> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.value.partial_cmp(&other.value)
}
}
impl<C: cfg::Config> Ord for RefCount<C> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.value.cmp(&other.value)
}
}
impl<C: cfg::Config> Clone for RefCount<C> {
fn clone(&self) -> Self {
*self
}
}
impl<C: cfg::Config> Copy for RefCount<C> {}
// === impl LifecycleGen ===
impl<C: cfg::Config> Pack<C> for LifecycleGen<C> {
const LEN: usize = Generation::<C>::LEN;
type Prev = RefCount<C>;
fn from_usize(value: usize) -> Self {
Self(Generation::from_usize(value))
}
fn as_usize(&self) -> usize {
self.0.as_usize()
}
}
impl<T, C: cfg::Config> InitGuard<T, C> {
pub(crate) fn generation(&self) -> Generation<C> {
LifecycleGen::<C>::from_packed(self.curr_lifecycle).0
}
/// Returns a borrowed reference to the slot's value.
///
/// ## Safety
///
/// This dereferences a raw pointer to the slot. The caller is responsible
/// for ensuring that the `InitGuard` does not outlive the slab that
/// contains the pointed slot. Failure to do so means this pointer may
/// dangle.
pub(crate) unsafe fn value(&self) -> &T {
self.slot.as_ref().item.with(|val| &*val)
}
/// Returns a mutably borrowed reference to the slot's value.
///
/// ## Safety
///
/// This dereferences a raw pointer to the slot. The caller is responsible
/// for ensuring that the `InitGuard` does not outlive the slab that
/// contains the pointed slot. Failure to do so means this pointer may
/// dangle.
///
/// It's safe to reference the slot mutably, though, because creating an
/// `InitGuard` ensures there are no outstanding immutable references.
pub(crate) unsafe fn value_mut(&mut self) -> &mut T {
self.slot.as_ref().item.with_mut(|val| &mut *val)
}
/// Releases the guard, returning `true` if the slot should be cleared.
///
/// ## Safety
///
/// This dereferences a raw pointer to the slot. The caller is responsible
/// for ensuring that the `InitGuard` does not outlive the slab that
/// contains the pointed slot. Failure to do so means this pointer may
/// dangle.
pub(crate) unsafe fn release(&mut self) -> bool {
self.release2(0)
}
/// Downgrades the guard to an immutable guard
///
/// ## Safety
///
/// This dereferences a raw pointer to the slot. The caller is responsible
/// for ensuring that the `InitGuard` does not outlive the slab that
/// contains the pointed slot. Failure to do so means this pointer may
/// dangle.
pub(crate) unsafe fn downgrade(&mut self) -> Guard<T, C> {
let _ = self.release2(RefCount::<C>::from_usize(1).pack(0));
Guard { slot: self.slot }
}
unsafe fn release2(&mut self, new_refs: usize) -> bool {
test_println!(
"InitGuard::release; curr_lifecycle={:?}; downgrading={}",
Lifecycle::<C>::from_packed(self.curr_lifecycle),
new_refs != 0,
);
if self.released {
test_println!("-> already released!");
return false;
}
self.released = true;
let mut curr_lifecycle = self.curr_lifecycle;
let slot = self.slot.as_ref();
let new_lifecycle = LifecycleGen::<C>::from_packed(self.curr_lifecycle)
.pack(Lifecycle::<C>::PRESENT.pack(new_refs));
match slot.lifecycle.compare_exchange(
curr_lifecycle,
new_lifecycle,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
test_println!("--> advanced to PRESENT; done");
return false;
}
Err(actual) => {
test_println!(
"--> lifecycle changed; actual={:?}",
Lifecycle::<C>::from_packed(actual)
);
curr_lifecycle = actual;
}
}
// if the state was no longer the prior state, we are now responsible
// for releasing the slot.
loop {
let refs = RefCount::<C>::from_packed(curr_lifecycle);
let state = Lifecycle::<C>::from_packed(curr_lifecycle).state;
test_println!(
"-> InitGuard::release; lifecycle={:#x}; state={:?}; refs={:?};",
curr_lifecycle,
state,
refs,
);
debug_assert!(state == State::Marked || thread::panicking(), "state was not MARKED; someone else has removed the slot while we have exclusive access!\nactual={:?}", state);
debug_assert!(refs.value == 0 || thread::panicking(), "ref count was not 0; someone else has referenced the slot while we have exclusive access!\nactual={:?}", refs);
let new_lifecycle = LifecycleGen(self.generation()).pack(State::Removing as usize);
match slot.lifecycle.compare_exchange(
curr_lifecycle,
new_lifecycle,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => {
test_println!("-> InitGuard::RELEASE: done!");
return true;
}
Err(actual) => {
debug_assert!(thread::panicking(), "we should not have to retry this CAS!");
test_println!("-> InitGuard::release; retry, actual={:#x}", actual);
curr_lifecycle = actual;
}
}
}
}
}
// === helpers ===
#[inline(always)]
fn exponential_backoff(exp: &mut usize) {
/// Maximum exponent we can back off to.
const MAX_EXPONENT: usize = 8;
// Issue 2^exp pause instructions.
for _ in 0..(1 << *exp) {
hint::spin_loop();
}
if *exp >= MAX_EXPONENT {
// If we have reached the max backoff, also yield to the scheduler
// explicitly.
crate::sync::yield_now();
} else {
// Otherwise, increment the exponent.
*exp += 1;
}
}