tracing_tree/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
pub(crate) mod format;
pub mod time;

use crate::time::FormatTime;
use format::{write_span_mode, Buffers, ColorLevel, Config, FmtEvent, SpanMode};

use nu_ansi_term::{Color, Style};
use std::{
    fmt::{self, Write as _},
    io::{self, IsTerminal},
    iter::Fuse,
    mem,
    sync::Mutex,
    time::Instant,
};
use tracing_core::{
    field::{Field, Visit},
    span::{Attributes, Id},
    Event, Subscriber,
};
#[cfg(feature = "tracing-log")]
use tracing_log::NormalizeEvent;
use tracing_subscriber::{
    fmt::MakeWriter,
    layer::{Context, Layer},
    registry::{LookupSpan, ScopeFromRoot, SpanRef},
};

// Span extension data
pub(crate) struct Data {
    start: Instant,
    kvs: Vec<(&'static str, String)>,
    written: bool,
}

impl Data {
    pub fn new(attrs: &Attributes<'_>, written: bool) -> Self {
        let mut span = Self {
            start: Instant::now(),
            kvs: Vec::new(),
            written,
        };
        attrs.record(&mut span);
        span
    }
}

impl Visit for Data {
    fn record_debug(&mut self, field: &Field, value: &dyn fmt::Debug) {
        self.kvs.push((field.name(), format!("{:?}", value)))
    }
}

#[derive(Debug)]
pub struct HierarchicalLayer<W = fn() -> io::Stderr, FT = ()>
where
    W: for<'writer> MakeWriter<'writer> + 'static,
    FT: FormatTime,
{
    make_writer: W,
    bufs: Mutex<Buffers>,
    config: Config,
    timer: FT,
}

impl Default for HierarchicalLayer {
    fn default() -> Self {
        Self::new(2)
    }
}

impl HierarchicalLayer<fn() -> io::Stderr> {
    pub fn new(indent_amount: usize) -> Self {
        let ansi = io::stderr().is_terminal();
        let config = Config {
            ansi,
            indent_amount,
            ..Default::default()
        };
        Self {
            make_writer: io::stderr,
            bufs: Mutex::new(Buffers::new()),
            config,
            timer: (),
        }
    }
}

impl<W, FT> HierarchicalLayer<W, FT>
where
    W: for<'writer> MakeWriter<'writer> + 'static,
    FT: FormatTime,
{
    /// Enables terminal colors, boldness and italics.
    pub fn with_ansi(self, ansi: bool) -> Self {
        Self {
            config: self.config.with_ansi(ansi),
            ..self
        }
    }

    pub fn with_writer<W2>(self, make_writer: W2) -> HierarchicalLayer<W2, FT>
    where
        W2: for<'writer> MakeWriter<'writer>,
    {
        HierarchicalLayer {
            make_writer,
            config: self.config,
            bufs: self.bufs,
            timer: self.timer,
        }
    }

    pub fn with_indent_amount(self, indent_amount: usize) -> Self {
        let config = Config {
            indent_amount,
            ..self.config
        };
        Self { config, ..self }
    }

    /// Renders an ascii art tree instead of just using whitespace indentation.
    pub fn with_indent_lines(self, indent_lines: bool) -> Self {
        Self {
            config: self.config.with_indent_lines(indent_lines),
            ..self
        }
    }

    /// Specifies how to measure and format time at which event has occurred.
    pub fn with_timer<FT2: FormatTime>(self, timer: FT2) -> HierarchicalLayer<W, FT2> {
        HierarchicalLayer {
            make_writer: self.make_writer,
            config: self.config,
            bufs: self.bufs,
            timer,
        }
    }

    /// Whether to render the event and span targets. Usually targets are the module path to the
    /// event/span macro invocation.
    pub fn with_targets(self, targets: bool) -> Self {
        Self {
            config: self.config.with_targets(targets),
            ..self
        }
    }

    /// Whether to render the thread id in the beginning of every line. This is helpful to
    /// untangle the tracing statements emitted by each thread.
    pub fn with_thread_ids(self, thread_ids: bool) -> Self {
        Self {
            config: self.config.with_thread_ids(thread_ids),
            ..self
        }
    }

    /// Whether to render the thread name in the beginning of every line. Not all threads have
    /// names, but if they do, this may be more helpful than the generic thread ids.
    pub fn with_thread_names(self, thread_names: bool) -> Self {
        Self {
            config: self.config.with_thread_names(thread_names),
            ..self
        }
    }

    /// Resets the indentation to zero after `wraparound` indentation levels.
    /// This is helpful if you expect very deeply nested spans as otherwise the indentation
    /// just runs out of your screen.
    pub fn with_wraparound(self, wraparound: usize) -> Self {
        Self {
            config: self.config.with_wraparound(wraparound),
            ..self
        }
    }

    /// Whether to print the currently active span's message again before entering a new span.
    /// This helps if the entry to the current span was quite a while back (and with scrolling
    /// upwards in logs).
    pub fn with_verbose_entry(self, verbose_entry: bool) -> Self {
        Self {
            config: self.config.with_verbose_entry(verbose_entry),
            ..self
        }
    }

    /// Whether to print the currently active span's message again before dropping it.
    /// This helps if the entry to the current span was quite a while back (and with scrolling
    /// upwards in logs).
    pub fn with_verbose_exit(self, verbose_exit: bool) -> Self {
        Self {
            config: self.config.with_verbose_exit(verbose_exit),
            ..self
        }
    }

    /// Whether to print the currently active span's message again if another span was entered in
    /// the meantime
    /// This helps during concurrent or multi-threaded events where threads are entered, but not
    /// necessarily *exited* before other *divergent* spans are entered and generating events.
    pub fn with_span_retrace(self, enabled: bool) -> Self {
        Self {
            config: self.config.with_span_retrace(enabled),
            ..self
        }
    }

    /// Defers printing span opening until an event is generated within the span.
    ///
    /// Avoids printing empty spans with no generated events.
    pub fn with_deferred_spans(self, enabled: bool) -> Self {
        Self {
            config: self.config.with_deferred_spans(enabled),
            ..self
        }
    }

    /// Prefixes each branch with the event mode, such as `open`, or `close`
    pub fn with_span_modes(self, enabled: bool) -> Self {
        Self {
            config: self.config.with_span_modes(enabled),
            ..self
        }
    }

    /// Whether to print `{}` around the fields when printing a span.
    /// This can help visually distinguish fields from the rest of the message.
    pub fn with_bracketed_fields(self, bracketed_fields: bool) -> Self {
        Self {
            config: self.config.with_bracketed_fields(bracketed_fields),
            ..self
        }
    }

    /// Whether to print the time with higher precision.
    pub fn with_higher_precision(self, higher_precision: bool) -> Self {
        Self {
            config: self.config.with_higher_precision(higher_precision),
            ..self
        }
    }

    fn styled(&self, style: Style, text: impl AsRef<str>) -> String {
        if self.config.ansi {
            style.paint(text.as_ref()).to_string()
        } else {
            text.as_ref().to_string()
        }
    }

    fn print_kvs<'a, I, V>(&self, buf: &mut impl fmt::Write, kvs: I) -> fmt::Result
    where
        I: IntoIterator<Item = (&'a str, V)>,
        V: fmt::Display + 'a,
    {
        let mut kvs = kvs.into_iter();
        if let Some((k, v)) = kvs.next() {
            if k == "message" {
                write!(buf, "{}", v)?;
            } else {
                write!(buf, "{}={}", k, v)?;
            }
        }
        for (k, v) in kvs {
            write!(buf, ", {}={}", k, v)?;
        }
        Ok(())
    }

    /// If `span_retrace` ensures that `new_span` is properly printed before an event
    fn write_retrace_span<'a, S>(
        &self,
        new_span: &SpanRef<'a, S>,
        bufs: &mut Buffers,
        ctx: &'a Context<S>,
    ) where
        S: Subscriber + for<'new_span> LookupSpan<'new_span>,
    {
        let should_write = if self.config.deferred_spans {
            if let Some(data) = new_span.extensions_mut().get_mut::<Data>() {
                !data.written
            } else {
                false
            }
        } else {
            false
        };

        // Also handle deferred spans along with retrace since deferred spans may need to print
        // multiple spans at once as a whole tree can be deferred
        if self.config.span_retrace || should_write {
            let old_span_id = bufs.current_span.replace((new_span.id()).clone());
            let old_span_id = old_span_id.as_ref();

            if Some(&new_span.id()) != old_span_id {
                let old_span = old_span_id.as_ref().and_then(|v| ctx.span(v));
                let old_path = old_span.as_ref().map(scope_path).into_iter().flatten();

                let new_path = scope_path(new_span);

                // Print the path from the common base of the two spans
                let new_path = DifferenceIter::new(old_path, new_path, |v| v.id());

                for (i, span) in new_path.enumerate() {
                    // Mark traversed spans as *written*
                    let was_written = if let Some(data) = span.extensions_mut().get_mut::<Data>() {
                        mem::replace(&mut data.written, true)
                    } else {
                        // `on_new_span` was not called, before
                        // Consider if this should panic instead, which is *technically* correct but is
                        // bad behavior for a logging layer in production.
                        false
                    };

                    // Print the previous span before entering a new deferred or retraced span
                    if i == 0 && self.config.verbose_entry {
                        if let Some(parent) = &span.parent() {
                            self.write_span_info(parent, bufs, SpanMode::PreOpen);
                        }
                    }
                    let verbose = self.config.verbose_entry && i == 0;

                    self.write_span_info(
                        &span,
                        bufs,
                        if was_written {
                            SpanMode::Retrace { verbose }
                        } else {
                            SpanMode::Open { verbose }
                        },
                    )
                }
            }
        }
    }

    fn write_span_info<S>(&self, span: &SpanRef<S>, bufs: &mut Buffers, style: SpanMode)
    where
        S: Subscriber + for<'span> LookupSpan<'span>,
    {
        let ext = span.extensions();
        let data = ext.get::<Data>().expect("span does not have data");

        let mut current_buf = &mut bufs.current_buf;

        if self.config.span_modes {
            write_span_mode(current_buf, style)
        }

        let indent = scope_path(span).skip(1).count();

        let should_write = match style {
            SpanMode::Open { .. } | SpanMode::Event => true,
            // Print the parent of a new span again before entering the child
            SpanMode::PreOpen { .. } if self.config.verbose_entry => true,
            SpanMode::Close { verbose } => verbose,
            // Generated if `span_retrace` is enabled
            SpanMode::Retrace { .. } => true,
            // Generated if `verbose_exit` is enabled
            SpanMode::PostClose => true,
            _ => false,
        };

        if should_write {
            if self.config.targets {
                let target = span.metadata().target();
                write!(
                    &mut current_buf,
                    "{}::",
                    self.styled(Style::new().dimmed(), target,),
                )
                .expect("Unable to write to buffer");
            }

            write!(
                current_buf,
                "{name}",
                name = self.styled(Style::new().fg(Color::Green).bold(), span.metadata().name())
            )
            .unwrap();
            if self.config.bracketed_fields {
                write!(
                    current_buf,
                    "{}",
                    self.styled(Style::new().fg(Color::Green).bold(), "{") // Style::new().fg(Color::Green).dimmed().paint("{")
                )
                .unwrap();
            } else {
                write!(current_buf, " ").unwrap();
            }
            self.print_kvs(&mut current_buf, data.kvs.iter().map(|(k, v)| (*k, v)))
                .unwrap();
            if self.config.bracketed_fields {
                write!(
                    current_buf,
                    "{}",
                    self.styled(Style::new().fg(Color::Green).bold(), "}") // Style::new().dimmed().paint("}")
                )
                .unwrap();
            }
        }

        bufs.indent_current(indent, &self.config, style);
        let writer = self.make_writer.make_writer();
        bufs.flush_current_buf(writer)
    }

    fn get_timestamp<S>(&self, span: SpanRef<S>) -> Option<String>
    where
        S: Subscriber + for<'span> LookupSpan<'span>,
    {
        let ext = span.extensions();
        let data = ext
            .get::<Data>()
            .expect("Data cannot be found in extensions");

        if self.config.higher_precision {
            Some(self.format_timestamp_with_decimals(data.start))
        } else {
            Some(self.format_timestamp(data.start))
        }
    }

    fn format_timestamp(&self, start: std::time::Instant) -> String {
        let elapsed = start.elapsed();
        let millis = elapsed.as_millis();
        let secs = elapsed.as_secs();

        // Convert elapsed time to appropriate units: ms, s, or m.
        // - Less than 1s : use ms
        // - Less than 1m : use s
        // - 1m and above : use m
        let (n, unit) = if millis < 1000 {
            (millis as _, "ms")
        } else if secs < 60 {
            (secs, "s ")
        } else {
            (secs / 60, "m ")
        };

        let timestamp = format!("{n:>3}");
        self.style_timestamp(timestamp, unit)
    }

    fn format_timestamp_with_decimals(&self, start: std::time::Instant) -> String {
        let secs = start.elapsed().as_secs_f64();

        // Convert elapsed time to appropriate units: μs, ms, or s.
        // - Less than 1ms: use μs
        // - Less than 1s : use ms
        // - 1s and above : use s
        let (n, unit) = if secs < 0.001 {
            (secs * 1_000_000.0, "μs")
        } else if secs < 1.0 {
            (secs * 1_000.0, "ms")
        } else {
            (secs, "s ")
        };

        let timestamp = format!(" {n:.2}");
        self.style_timestamp(timestamp, unit)
    }

    fn style_timestamp(&self, timestamp: String, unit: &str) -> String {
        format!(
            "{timestamp}{unit} ",
            timestamp = self.styled(Style::new().dimmed(), timestamp),
            unit = self.styled(Style::new().dimmed(), unit),
        )
    }
}

impl<S, W, FT> Layer<S> for HierarchicalLayer<W, FT>
where
    S: Subscriber + for<'span> LookupSpan<'span>,
    W: for<'writer> MakeWriter<'writer> + 'static,
    FT: FormatTime + 'static,
{
    fn on_new_span(&self, attrs: &Attributes, id: &Id, ctx: Context<S>) {
        let span = ctx.span(id).expect("in new_span but span does not exist");

        if span.extensions().get::<Data>().is_none() {
            let data = Data::new(attrs, !self.config.deferred_spans);
            span.extensions_mut().insert(data);
        }

        // Entry will be printed in on_event along with retrace
        if self.config.deferred_spans {
            return;
        }

        let bufs = &mut *self.bufs.lock().unwrap();

        // Store the most recently entered span
        bufs.current_span = Some(span.id());

        if self.config.verbose_entry {
            if let Some(span) = span.parent() {
                self.write_span_info(&span, bufs, SpanMode::PreOpen);
            }
        }

        self.write_span_info(
            &span,
            bufs,
            SpanMode::Open {
                verbose: self.config.verbose_entry,
            },
        );
    }

    fn on_event(&self, event: &Event<'_>, ctx: Context<S>) {
        let span = ctx.current_span();
        let span_id = span.id();
        let span = span_id.and_then(|id| ctx.span(id));

        let mut guard = self.bufs.lock().unwrap();
        let bufs = &mut *guard;

        if let Some(new_span) = &span {
            self.write_retrace_span(new_span, bufs, &ctx);
        }

        let mut event_buf = &mut bufs.current_buf;

        // Time.

        {
            let prev_buffer_len = event_buf.len();

            self.timer
                .format_time(&mut event_buf)
                .expect("Unable to write time to buffer");

            // Something was written to the buffer, pad it with a space.
            if prev_buffer_len < event_buf.len() {
                write!(event_buf, " ").expect("Unable to write to buffer");
            }
        }

        // printing the indentation
        let indent = ctx
            .event_scope(event)
            .map(|scope| scope.count())
            .unwrap_or(0);

        // check if this event occurred in the context of a span.
        // if it has, get the start time of this span.
        if let Some(span) = span {
            if let Some(timestamp) = self.get_timestamp(span) {
                write!(&mut event_buf, "{}", timestamp).expect("Unable to write to buffer");
            }
        }

        #[cfg(feature = "tracing-log")]
        let normalized_meta = event.normalized_metadata();
        #[cfg(feature = "tracing-log")]
        let metadata = normalized_meta.as_ref().unwrap_or_else(|| event.metadata());
        #[cfg(not(feature = "tracing-log"))]
        let metadata = event.metadata();

        let level = metadata.level();
        let level = if self.config.ansi {
            ColorLevel(level).to_string()
        } else {
            level.to_string()
        };

        write!(&mut event_buf, "{level}", level = level).expect("Unable to write to buffer");

        if self.config.targets {
            let target = metadata.target();
            write!(
                &mut event_buf,
                " {}",
                self.styled(Style::new().dimmed(), target,),
            )
            .expect("Unable to write to buffer");
        }

        let mut visitor = FmtEvent { comma: false, bufs };
        event.record(&mut visitor);
        visitor
            .bufs
            .indent_current(indent, &self.config, SpanMode::Event);
        let writer = self.make_writer.make_writer();
        bufs.flush_current_buf(writer)
    }

    fn on_close(&self, id: Id, ctx: Context<S>) {
        let bufs = &mut *self.bufs.lock().unwrap();

        let span = ctx.span(&id).expect("invalid span in on_close");

        // Span was not printed, so don't print an exit
        if self.config.deferred_spans
            && span.extensions().get::<Data>().map(|v| v.written) != Some(true)
        {
            return;
        }

        // self.write_retrace_span(&span, bufs, &ctx);

        self.write_span_info(
            &span,
            bufs,
            SpanMode::Close {
                verbose: self.config.verbose_exit,
            },
        );

        if let Some(parent_span) = span.parent() {
            bufs.current_span = Some(parent_span.id());
            if self.config.verbose_exit {
                // Consider parent as entered

                self.write_span_info(&parent_span, bufs, SpanMode::PostClose);
            }
        }
    }
}

fn scope_path<'a, R: LookupSpan<'a>>(span: &SpanRef<'a, R>) -> ScopeFromRoot<'a, R> {
    span.scope().from_root()
}

/// Runs `A` and `B` side by side and only yields items present in `B`
struct DifferenceIter<L, R, F> {
    left: Fuse<L>,
    right: R,
    compare: F,
}

impl<L: Iterator<Item = T>, R: Iterator<Item = T>, T, U: PartialEq, F: Fn(&T) -> U>
    DifferenceIter<L, R, F>
{
    fn new(left: L, right: R, compare: F) -> Self {
        Self {
            left: left.fuse(),
            right,
            compare,
        }
    }
}

impl<L: Iterator<Item = T>, R: Iterator<Item = T>, T, U: PartialEq, F: Fn(&T) -> U> Iterator
    for DifferenceIter<L, R, F>
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            let left = self.left.next();
            let right = self.right.next()?;

            if left.as_ref().map(&self.compare) != Some((self.compare)(&right)) {
                return Some(right);
            }
        }
    }
}