uuid/
timestamp.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
//! Generating UUIDs from timestamps.
//!
//! Timestamps are used in a few UUID versions as a source of decentralized
//! uniqueness (as in versions 1 and 6), and as a way to enable sorting (as
//! in versions 6 and 7). Timestamps aren't encoded the same way by all UUID
//! versions so this module provides a single [`Timestamp`] type that can
//! convert between them.
//!
//! # Timestamp representations in UUIDs
//!
//! Versions 1 and 6 UUIDs use a bespoke timestamp that consists of the
//! number of 100ns ticks since `1582-10-15 00:00:00`, along with
//! a counter value to avoid duplicates.
//!
//! Version 7 UUIDs use a more standard timestamp that consists of the
//! number of millisecond ticks since the Unix epoch (`1970-01-01 00:00:00`).
//!
//! # References
//!
//! * [UUID Version 1 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.1)
//! * [UUID Version 7 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.7)
//! * [Timestamp Considerations in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.1)

use core::cmp;

use crate::Uuid;

/// The number of 100 nanosecond ticks between the RFC 9562 epoch
/// (`1582-10-15 00:00:00`) and the Unix epoch (`1970-01-01 00:00:00`).
pub const UUID_TICKS_BETWEEN_EPOCHS: u64 = 0x01B2_1DD2_1381_4000;

/// A timestamp that can be encoded into a UUID.
///
/// This type abstracts the specific encoding, so versions 1, 6, and 7
/// UUIDs can both be supported through the same type, even
/// though they have a different representation of a timestamp.
///
/// # References
///
/// * [Timestamp Considerations in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.1)
/// * [UUID Generator States in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.3)
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct Timestamp {
    seconds: u64,
    subsec_nanos: u32,
    counter: u128,
    usable_counter_bits: u8,
}

impl Timestamp {
    /// Get a timestamp representing the current system time and up to a 128-bit counter.
    ///
    /// This method defers to the standard library's `SystemTime` type.
    #[cfg(feature = "std")]
    pub fn now(context: impl ClockSequence<Output = impl Into<u128>>) -> Self {
        let (seconds, subsec_nanos) = now();

        let (counter, seconds, subsec_nanos) =
            context.generate_timestamp_sequence(seconds, subsec_nanos);
        let counter = counter.into();
        let usable_counter_bits = context.usable_bits() as u8;

        Timestamp {
            seconds,
            subsec_nanos,
            counter,
            usable_counter_bits,
        }
    }

    /// Construct a `Timestamp` from the number of 100 nanosecond ticks since 00:00:00.00,
    /// 15 October 1582 (the date of Gregorian reform to the Christian calendar) and a 14-bit
    /// counter, as used in versions 1 and 6 UUIDs.
    ///
    /// # Overflow
    ///
    /// If conversion from RFC 9562 ticks to the internal timestamp format would overflow
    /// it will wrap.
    pub const fn from_gregorian(ticks: u64, counter: u16) -> Self {
        let (seconds, subsec_nanos) = Self::gregorian_to_unix(ticks);

        Timestamp {
            seconds,
            subsec_nanos,
            counter: counter as u128,
            usable_counter_bits: 14,
        }
    }

    /// Construct a `Timestamp` from a Unix timestamp and up to a 128-bit counter, as used in version 7 UUIDs.
    pub const fn from_unix_time(
        seconds: u64,
        subsec_nanos: u32,
        counter: u128,
        usable_counter_bits: u8,
    ) -> Self {
        Timestamp {
            seconds,
            subsec_nanos,
            counter,
            usable_counter_bits,
        }
    }

    /// Construct a `Timestamp` from a Unix timestamp and up to a 128-bit counter, as used in version 7 UUIDs.
    pub fn from_unix(
        context: impl ClockSequence<Output = impl Into<u128>>,
        seconds: u64,
        subsec_nanos: u32,
    ) -> Self {
        let (counter, seconds, subsec_nanos) =
            context.generate_timestamp_sequence(seconds, subsec_nanos);
        let counter = counter.into();
        let usable_counter_bits = context.usable_bits() as u8;

        Timestamp {
            seconds,
            subsec_nanos,
            counter,
            usable_counter_bits,
        }
    }

    /// Get the value of the timestamp as the number of 100 nanosecond ticks since 00:00:00.00,
    /// 15 October 1582 and a 14-bit counter, as used in versions 1 and 6 UUIDs.
    ///
    /// # Overflow
    ///
    /// If conversion from the internal timestamp format to ticks would overflow
    /// then it will wrap.
    /// 
    /// If the internal counter is wider than 14 bits then it will be truncated to 14 bits.
    pub const fn to_gregorian(&self) -> (u64, u16) {
        (
            Self::unix_to_gregorian_ticks(self.seconds, self.subsec_nanos),
            (self.counter as u16) & 0x3FFF,
        )
    }

    // NOTE: This method is not public; the usable counter bits are lost in a version 7 UUID
    // so can't be reliably recovered.
    #[cfg(feature = "v7")]
    pub(crate) const fn counter(&self) -> (u128, u8) {
        (self.counter, self.usable_counter_bits)
    }

    /// Get the value of the timestamp as a Unix timestamp, as used in version 7 UUIDs.
    pub const fn to_unix(&self) -> (u64, u32) {
        (self.seconds, self.subsec_nanos)
    }

    const fn unix_to_gregorian_ticks(seconds: u64, nanos: u32) -> u64 {
        UUID_TICKS_BETWEEN_EPOCHS
            .wrapping_add(seconds.wrapping_mul(10_000_000))
            .wrapping_add(nanos as u64 / 100)
    }

    const fn gregorian_to_unix(ticks: u64) -> (u64, u32) {
        (
            ticks.wrapping_sub(UUID_TICKS_BETWEEN_EPOCHS) / 10_000_000,
            (ticks.wrapping_sub(UUID_TICKS_BETWEEN_EPOCHS) % 10_000_000) as u32 * 100,
        )
    }
}

#[doc(hidden)]
impl Timestamp {
    #[deprecated(since = "1.10.0", note = "use `Timestamp::from_gregorian(ticks, counter)`")]
    pub const fn from_rfc4122(ticks: u64, counter: u16) -> Self {
        Timestamp::from_gregorian(ticks, counter)
    }

    #[deprecated(since = "1.10.0", note = "use `Timestamp::to_gregorian()`")]
    pub const fn to_rfc4122(&self) -> (u64, u16) {
        self.to_gregorian()
    }

    #[deprecated(since = "1.2.0", note = "`Timestamp::to_unix_nanos()` is deprecated and will be removed: use `Timestamp::to_unix()`")]
    pub const fn to_unix_nanos(&self) -> u32 {
        panic!("`Timestamp::to_unix_nanos()` is deprecated and will be removed: use `Timestamp::to_unix()`")
    }
}

pub(crate) const fn encode_gregorian_timestamp(
    ticks: u64,
    counter: u16,
    node_id: &[u8; 6],
) -> Uuid {
    let time_low = (ticks & 0xFFFF_FFFF) as u32;
    let time_mid = ((ticks >> 32) & 0xFFFF) as u16;
    let time_high_and_version = (((ticks >> 48) & 0x0FFF) as u16) | (1 << 12);

    let mut d4 = [0; 8];

    d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
    d4[1] = (counter & 0xFF) as u8;
    d4[2] = node_id[0];
    d4[3] = node_id[1];
    d4[4] = node_id[2];
    d4[5] = node_id[3];
    d4[6] = node_id[4];
    d4[7] = node_id[5];

    Uuid::from_fields(time_low, time_mid, time_high_and_version, &d4)
}

pub(crate) const fn decode_gregorian_timestamp(uuid: &Uuid) -> (u64, u16) {
    let bytes = uuid.as_bytes();

    let ticks: u64 = ((bytes[6] & 0x0F) as u64) << 56
        | (bytes[7] as u64) << 48
        | (bytes[4] as u64) << 40
        | (bytes[5] as u64) << 32
        | (bytes[0] as u64) << 24
        | (bytes[1] as u64) << 16
        | (bytes[2] as u64) << 8
        | (bytes[3] as u64);

    let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);

    (ticks, counter)
}

pub(crate) const fn encode_sorted_gregorian_timestamp(
    ticks: u64,
    counter: u16,
    node_id: &[u8; 6],
) -> Uuid {
    let time_high = ((ticks >> 28) & 0xFFFF_FFFF) as u32;
    let time_mid = ((ticks >> 12) & 0xFFFF) as u16;
    let time_low_and_version = ((ticks & 0x0FFF) as u16) | (0x6 << 12);

    let mut d4 = [0; 8];

    d4[0] = (((counter & 0x3F00) >> 8) as u8) | 0x80;
    d4[1] = (counter & 0xFF) as u8;
    d4[2] = node_id[0];
    d4[3] = node_id[1];
    d4[4] = node_id[2];
    d4[5] = node_id[3];
    d4[6] = node_id[4];
    d4[7] = node_id[5];

    Uuid::from_fields(time_high, time_mid, time_low_and_version, &d4)
}

pub(crate) const fn decode_sorted_gregorian_timestamp(uuid: &Uuid) -> (u64, u16) {
    let bytes = uuid.as_bytes();

    let ticks: u64 = ((bytes[0]) as u64) << 52
        | (bytes[1] as u64) << 44
        | (bytes[2] as u64) << 36
        | (bytes[3] as u64) << 28
        | (bytes[4] as u64) << 20
        | (bytes[5] as u64) << 12
        | ((bytes[6] & 0xF) as u64) << 8
        | (bytes[7] as u64);

    let counter: u16 = ((bytes[8] & 0x3F) as u16) << 8 | (bytes[9] as u16);

    (ticks, counter)
}

pub(crate) const fn encode_unix_timestamp_millis(
    millis: u64,
    counter_random_bytes: &[u8; 10],
) -> Uuid {
    let millis_high = ((millis >> 16) & 0xFFFF_FFFF) as u32;
    let millis_low = (millis & 0xFFFF) as u16;

    let counter_random_version = (counter_random_bytes[1] as u16
        | ((counter_random_bytes[0] as u16) << 8) & 0x0FFF)
        | (0x7 << 12);

    let mut d4 = [0; 8];

    d4[0] = (counter_random_bytes[2] & 0x3F) | 0x80;
    d4[1] = counter_random_bytes[3];
    d4[2] = counter_random_bytes[4];
    d4[3] = counter_random_bytes[5];
    d4[4] = counter_random_bytes[6];
    d4[5] = counter_random_bytes[7];
    d4[6] = counter_random_bytes[8];
    d4[7] = counter_random_bytes[9];

    Uuid::from_fields(millis_high, millis_low, counter_random_version, &d4)
}

pub(crate) const fn decode_unix_timestamp_millis(uuid: &Uuid) -> u64 {
    let bytes = uuid.as_bytes();

    let millis: u64 = (bytes[0] as u64) << 40
        | (bytes[1] as u64) << 32
        | (bytes[2] as u64) << 24
        | (bytes[3] as u64) << 16
        | (bytes[4] as u64) << 8
        | (bytes[5] as u64);

    millis
}

#[cfg(all(
    feature = "std",
    feature = "js",
    all(
        target_arch = "wasm32",
        target_vendor = "unknown",
        target_os = "unknown"
    )
))]
fn now() -> (u64, u32) {
    use wasm_bindgen::prelude::*;

    #[wasm_bindgen]
    extern "C" {
        // NOTE: This signature works around https://bugzilla.mozilla.org/show_bug.cgi?id=1787770
        #[wasm_bindgen(js_namespace = Date, catch)]
        fn now() -> Result<f64, JsValue>;
    }

    let now = now().unwrap_throw();

    let secs = (now / 1_000.0) as u64;
    let nanos = ((now % 1_000.0) * 1_000_000.0) as u32;

    (secs, nanos)
}

#[cfg(all(
    feature = "std",
    not(miri),
    any(
        not(feature = "js"),
        not(all(
            target_arch = "wasm32",
            target_vendor = "unknown",
            target_os = "unknown"
        ))
    )
))]
fn now() -> (u64, u32) {
    let dur = std::time::SystemTime::UNIX_EPOCH.elapsed().expect(
        "Getting elapsed time since UNIX_EPOCH. If this fails, we've somehow violated causality",
    );

    (dur.as_secs(), dur.subsec_nanos())
}

#[cfg(all(feature = "std", miri))]
fn now() -> (u64, u32) {
    use std::{sync::Mutex, time::Duration};

    static TS: Mutex<u64> = Mutex::new(0);

    let ts = Duration::from_nanos({
        let mut ts = TS.lock().unwrap();
        *ts += 1;
        *ts
    });

    (ts.as_secs(), ts.subsec_nanos())
}

/// A counter that can be used by versions 1 and 6 UUIDs to support
/// the uniqueness of timestamps.
///
/// # References
///
/// * [UUID Version 1 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.1)
/// * [UUID Version 6 in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-5.6)
/// * [UUID Generator States in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-6.3)
pub trait ClockSequence {
    /// The type of sequence returned by this counter.
    type Output;

    /// Get the next value in the sequence to feed into a timestamp.
    ///
    /// This method will be called each time a [`Timestamp`] is constructed.
    ///
    /// Any bits beyond [`ClockSequence::usable_bits`] in the output must be unset.
    fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output;

    /// Get the next value in the sequence, potentially also adjusting the timestamp.
    ///
    /// This method should be preferred over `generate_sequence`.
    ///
    /// Any bits beyond [`ClockSequence::usable_bits`] in the output must be unset.
    fn generate_timestamp_sequence(
        &self,
        seconds: u64,
        subsec_nanos: u32,
    ) -> (Self::Output, u64, u32) {
        (
            self.generate_sequence(seconds, subsec_nanos),
            seconds,
            subsec_nanos,
        )
    }

    /// The number of usable bits from the least significant bit in the result of [`ClockSequence::generate_sequence`]
    /// or [`ClockSequence::generate_timestamp_sequence`].
    ///
    /// The number of usable bits must not exceed 128.
    ///
    /// The number of usable bits is not expected to change between calls. An implementation of `ClockSequence` should
    /// always return the same value from this method.
    fn usable_bits(&self) -> usize
    where
        Self::Output: Sized,
    {
        cmp::min(128, core::mem::size_of::<Self::Output>())
    }
}

impl<'a, T: ClockSequence + ?Sized> ClockSequence for &'a T {
    type Output = T::Output;

    fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
        (**self).generate_sequence(seconds, subsec_nanos)
    }

    fn generate_timestamp_sequence(
        &self,
        seconds: u64,
        subsec_nanos: u32,
    ) -> (Self::Output, u64, u32) {
        (**self).generate_timestamp_sequence(seconds, subsec_nanos)
    }

    fn usable_bits(&self) -> usize
    where
        Self::Output: Sized,
    {
        (**self).usable_bits()
    }
}

/// Default implementations for the [`ClockSequence`] trait.
pub mod context {
    use super::ClockSequence;

    #[cfg(any(feature = "v1", feature = "v6"))]
    mod v1_support {
        use super::*;

        use atomic::{Atomic, Ordering};

        #[cfg(all(feature = "std", feature = "rng"))]
        static CONTEXT: Context = Context {
            count: Atomic::new(0),
        };

        #[cfg(all(feature = "std", feature = "rng"))]
        static CONTEXT_INITIALIZED: Atomic<bool> = Atomic::new(false);

        #[cfg(all(feature = "std", feature = "rng"))]
        pub(crate) fn shared_context() -> &'static Context {
            // If the context is in its initial state then assign it to a random value
            // It doesn't matter if multiple threads observe `false` here and initialize the context
            if CONTEXT_INITIALIZED
                .compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
                .is_ok()
            {
                CONTEXT.count.store(crate::rng::u16(), Ordering::Release);
            }

            &CONTEXT
        }

        /// A thread-safe, wrapping counter that produces 14-bit values.
        ///
        /// This type works by:
        ///
        /// 1. Atomically incrementing the counter value for each timestamp.
        /// 2. Wrapping the counter back to zero if it overflows its 14-bit storage.
        ///
        /// This type should be used when constructing versions 1 and 6 UUIDs.
        ///
        /// This type should not be used when constructing version 7 UUIDs. When used to
        /// construct a version 7 UUID, the 14-bit counter will be padded with random data.
        /// Counter overflows are more likely with a 14-bit counter than they are with a
        /// 42-bit counter when working at millisecond precision. This type doesn't attempt
        /// to adjust the timestamp on overflow.
        #[derive(Debug)]
        pub struct Context {
            count: Atomic<u16>,
        }

        impl Context {
            /// Construct a new context that's initialized with the given value.
            ///
            /// The starting value should be a random number, so that UUIDs from
            /// different systems with the same timestamps are less likely to collide.
            /// When the `rng` feature is enabled, prefer the [`Context::new_random`] method.
            pub const fn new(count: u16) -> Self {
                Self {
                    count: Atomic::<u16>::new(count),
                }
            }

            /// Construct a new context that's initialized with a random value.
            #[cfg(feature = "rng")]
            pub fn new_random() -> Self {
                Self {
                    count: Atomic::<u16>::new(crate::rng::u16()),
                }
            }
        }

        impl ClockSequence for Context {
            type Output = u16;

            fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
                // RFC 9562 reserves 2 bits of the clock sequence so the actual
                // maximum value is smaller than `u16::MAX`. Since we unconditionally
                // increment the clock sequence we want to wrap once it becomes larger
                // than what we can represent in a "u14". Otherwise there'd be patches
                // where the clock sequence doesn't change regardless of the timestamp
                self.count.fetch_add(1, Ordering::AcqRel) & (u16::MAX >> 2)
            }

            fn usable_bits(&self) -> usize {
                14
            }
        }

        #[cfg(test)]
        mod tests {
            use crate::Timestamp;

            use super::*;

            #[test]
            fn context() {
                let seconds = 1_496_854_535;
                let subsec_nanos = 812_946_000;

                let context = Context::new(u16::MAX >> 2);

                let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);
                assert_eq!(16383, ts.counter);
                assert_eq!(14, ts.usable_counter_bits);

                let seconds = 1_496_854_536;

                let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);
                assert_eq!(0, ts.counter);

                let seconds = 1_496_854_535;

                let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);
                assert_eq!(1, ts.counter);
            }
        }
    }

    #[cfg(any(feature = "v1", feature = "v6"))]
    pub use v1_support::*;

    #[cfg(feature = "std")]
    mod std_support {
        use super::*;

        use core::panic::{AssertUnwindSafe, RefUnwindSafe};
        use std::{sync::Mutex, thread::LocalKey};

        /// A wrapper for a context that uses thread-local storage.
        pub struct ThreadLocalContext<C: 'static>(&'static LocalKey<C>);

        impl<C> std::fmt::Debug for ThreadLocalContext<C> {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                f.debug_struct("ThreadLocalContext").finish_non_exhaustive()
            }
        }

        impl<C: 'static> ThreadLocalContext<C> {
            /// Wrap a thread-local container with a context.
            pub const fn new(local_key: &'static LocalKey<C>) -> Self {
                ThreadLocalContext(local_key)
            }
        }

        impl<C: ClockSequence + 'static> ClockSequence for ThreadLocalContext<C> {
            type Output = C::Output;

            fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
                self.0
                    .with(|ctxt| ctxt.generate_sequence(seconds, subsec_nanos))
            }

            fn generate_timestamp_sequence(
                &self,
                seconds: u64,
                subsec_nanos: u32,
            ) -> (Self::Output, u64, u32) {
                self.0
                    .with(|ctxt| ctxt.generate_timestamp_sequence(seconds, subsec_nanos))
            }

            fn usable_bits(&self) -> usize {
                self.0.with(|ctxt| ctxt.usable_bits())
            }
        }

        impl<C: ClockSequence> ClockSequence for AssertUnwindSafe<C> {
            type Output = C::Output;

            fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
                self.0.generate_sequence(seconds, subsec_nanos)
            }

            fn generate_timestamp_sequence(
                &self,
                seconds: u64,
                subsec_nanos: u32,
            ) -> (Self::Output, u64, u32) {
                self.0.generate_timestamp_sequence(seconds, subsec_nanos)
            }

            fn usable_bits(&self) -> usize
            where
                Self::Output: Sized,
            {
                self.0.usable_bits()
            }
        }

        impl<C: ClockSequence + RefUnwindSafe> ClockSequence for Mutex<C> {
            type Output = C::Output;

            fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
                self.lock()
                    .unwrap_or_else(|err| err.into_inner())
                    .generate_sequence(seconds, subsec_nanos)
            }

            fn generate_timestamp_sequence(
                &self,
                seconds: u64,
                subsec_nanos: u32,
            ) -> (Self::Output, u64, u32) {
                self.lock()
                    .unwrap_or_else(|err| err.into_inner())
                    .generate_timestamp_sequence(seconds, subsec_nanos)
            }

            fn usable_bits(&self) -> usize
            where
                Self::Output: Sized,
            {
                self.lock()
                    .unwrap_or_else(|err| err.into_inner())
                    .usable_bits()
            }
        }
    }

    #[cfg(feature = "std")]
    pub use std_support::*;

    #[cfg(feature = "v7")]
    mod v7_support {
        use super::*;

        use core::{cell::Cell, panic::RefUnwindSafe};

        #[cfg(feature = "std")]
        static CONTEXT_V7: SharedContextV7 =
            SharedContextV7(std::sync::Mutex::new(ContextV7::new()));

        #[cfg(feature = "std")]
        pub(crate) fn shared_context_v7() -> &'static SharedContextV7 {
            &CONTEXT_V7
        }

        const USABLE_BITS: usize = 42;

        // Leave the most significant bit unset
        // This guarantees the counter has at least 2,199,023,255,552
        // values before it will overflow, which is exceptionally unlikely
        // even in the worst case
        const RESEED_MASK: u64 = u64::MAX >> 23;
        const MAX_COUNTER: u64 = u64::MAX >> 22;

        /// An unsynchronized, reseeding counter that produces 42-bit values.
        ///
        /// This type works by:
        ///
        /// 1. Reseeding the counter each millisecond with a random 41-bit value. The 42nd bit
        ///    is left unset so the counter can safely increment over the millisecond.
        /// 2. Wrapping the counter back to zero if it overflows its 42-bit storage and adding a
        ///    millisecond to the timestamp.
        ///
        /// This type can be used when constructing version 7 UUIDs. When used to construct a
        /// version 7 UUID, the 42-bit counter will be padded with random data. This type can
        /// be used to maintain ordering of UUIDs within the same millisecond.
        ///
        /// This type should not be used when constructing version 1 or version 6 UUIDs.
        /// When used to construct a version 1 or version 6 UUID, only the 14 least significant
        /// bits of the counter will be used.
        #[derive(Debug)]
        pub struct ContextV7 {
            last_reseed: Cell<LastReseed>,
            counter: Cell<u64>,
        }

        #[derive(Debug, Default, Clone, Copy)]
        struct LastReseed {
            millis: u64,
            ts_seconds: u64,
            ts_subsec_nanos: u32,
        }

        impl LastReseed {
            fn from_millis(millis: u64) -> Self {
                LastReseed {
                    millis,
                    ts_seconds: millis / 1_000,
                    ts_subsec_nanos: (millis % 1_000) as u32 * 1_000_000,
                }
            }
        }

        impl RefUnwindSafe for ContextV7 {}

        impl ContextV7 {
            /// Construct a new context that will reseed its counter on the first
            /// non-zero timestamp it receives.
            pub const fn new() -> Self {
                ContextV7 {
                    last_reseed: Cell::new(LastReseed {
                        millis: 0,
                        ts_seconds: 0,
                        ts_subsec_nanos: 0,
                    }),
                    counter: Cell::new(0),
                }
            }
        }

        impl ClockSequence for ContextV7 {
            type Output = u64;

            fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
                self.generate_timestamp_sequence(seconds, subsec_nanos).0
            }

            fn generate_timestamp_sequence(
                &self,
                seconds: u64,
                subsec_nanos: u32,
            ) -> (Self::Output, u64, u32) {
                let millis = (seconds * 1_000).saturating_add(subsec_nanos as u64 / 1_000_000);

                let last_reseed = self.last_reseed.get();

                // If the observed system time has shifted forwards then regenerate the counter
                if millis > last_reseed.millis {
                    let last_reseed = LastReseed::from_millis(millis);
                    self.last_reseed.set(last_reseed);

                    let counter = crate::rng::u64() & RESEED_MASK;
                    self.counter.set(counter);

                    (counter, last_reseed.ts_seconds, last_reseed.ts_subsec_nanos)
                }
                // If the observed system time has not shifted forwards then increment the counter
                else {
                    // If the incoming timestamp is earlier than the last observed one then
                    // use it instead. This may happen if the system clock jitters, or if the counter
                    // has wrapped and the timestamp is artificially incremented
                    let millis = ();
                    let _ = millis;

                    // Guaranteed to never overflow u64
                    let counter = self.counter.get() + 1;

                    // If the counter has not overflowed its 42-bit storage then return it
                    if counter <= MAX_COUNTER {
                        self.counter.set(counter);

                        (counter, last_reseed.ts_seconds, last_reseed.ts_subsec_nanos)
                    }
                    // Unlikely: If the counter has overflowed its 42-bit storage then wrap it
                    // and increment the timestamp. Until the observed system time shifts past
                    // this incremented value, all timestamps will use it to maintain monotonicity
                    else {
                        // Increment the timestamp by 1 milli
                        let last_reseed = LastReseed::from_millis(last_reseed.millis + 1);
                        self.last_reseed.set(last_reseed);

                        // Reseed the counter
                        let counter = crate::rng::u64() & RESEED_MASK;
                        self.counter.set(counter);

                        (counter, last_reseed.ts_seconds, last_reseed.ts_subsec_nanos)
                    }
                }
            }

            fn usable_bits(&self) -> usize {
                USABLE_BITS
            }
        }

        #[cfg(feature = "std")]
        pub(crate) struct SharedContextV7(std::sync::Mutex<ContextV7>);

        #[cfg(feature = "std")]
        impl ClockSequence for SharedContextV7 {
            type Output = u64;

            fn generate_sequence(&self, seconds: u64, subsec_nanos: u32) -> Self::Output {
                self.0.generate_sequence(seconds, subsec_nanos)
            }

            fn generate_timestamp_sequence(
                &self,
                seconds: u64,
                subsec_nanos: u32,
            ) -> (Self::Output, u64, u32) {
                self.0.generate_timestamp_sequence(seconds, subsec_nanos)
            }

            fn usable_bits(&self) -> usize
            where
                Self::Output: Sized,
            {
                USABLE_BITS
            }
        }

        #[cfg(test)]
        mod tests {
            use core::time::Duration;

            use super::*;

            use crate::Timestamp;

            #[test]
            fn context() {
                let seconds = 1_496_854_535;
                let subsec_nanos = 812_946_000;

                let context = ContextV7::new();

                let ts1 = Timestamp::from_unix(&context, seconds, subsec_nanos);
                assert_eq!(42, ts1.usable_counter_bits);

                // Backwards second
                let seconds = 1_496_854_534;

                let ts2 = Timestamp::from_unix(&context, seconds, subsec_nanos);

                // The backwards time should be ignored
                // The counter should still increment
                assert_eq!(ts1.seconds, ts2.seconds);
                assert_eq!(ts1.subsec_nanos, ts2.subsec_nanos);
                assert_eq!(ts1.counter + 1, ts2.counter);

                // Forwards second
                let seconds = 1_496_854_536;

                let ts3 = Timestamp::from_unix(&context, seconds, subsec_nanos);

                // The counter should have reseeded
                assert_ne!(ts2.counter + 1, ts3.counter);
                assert_ne!(0, ts3.counter);
            }

            #[test]
            fn context_wrap() {
                let seconds = 1_496_854_535u64;
                let subsec_nanos = 812_946_000u32;

                let millis = (seconds * 1000).saturating_add(subsec_nanos as u64 / 1_000_000);

                // This context will wrap
                let context = ContextV7 {
                    last_reseed: Cell::new(LastReseed::from_millis(millis)),
                    counter: Cell::new(u64::MAX >> 22),
                };

                let ts = Timestamp::from_unix(&context, seconds, subsec_nanos);

                // The timestamp should be incremented by 1ms
                let expected_ts = Duration::new(seconds, subsec_nanos / 1_000_000 * 1_000_000)
                    + Duration::from_millis(1);
                assert_eq!(expected_ts.as_secs(), ts.seconds);
                assert_eq!(expected_ts.subsec_nanos(), ts.subsec_nanos);

                // The counter should have reseeded
                assert!(ts.counter < (u64::MAX >> 22) as u128);
                assert_ne!(0, ts.counter);
            }
        }
    }

    #[cfg(feature = "v7")]
    pub use v7_support::*;

    /// An empty counter that will always return the value `0`.
    ///
    /// This type can be used when constructing version 7 UUIDs. When used to
    /// construct a version 7 UUID, the entire counter segment of the UUID will be
    /// filled with a random value. This type does not maintain ordering of UUIDs
    /// within a millisecond but is efficient.
    ///
    /// This type should not be used when constructing version 1 or version 6 UUIDs.
    /// When used to construct a version 1 or version 6 UUID, the counter
    /// segment will remain zero.
    #[derive(Debug, Clone, Copy, Default)]
    pub struct NoContext;

    impl ClockSequence for NoContext {
        type Output = u16;

        fn generate_sequence(&self, _seconds: u64, _nanos: u32) -> Self::Output {
            0
        }

        fn usable_bits(&self) -> usize {
            0
        }
    }
}

#[cfg(all(test, any(feature = "v1", feature = "v6")))]
mod tests {
    use super::*;

    #[cfg(all(
        target_arch = "wasm32",
        target_vendor = "unknown",
        target_os = "unknown"
    ))]
    use wasm_bindgen_test::*;

    #[test]
    #[cfg_attr(
        all(
            target_arch = "wasm32",
            target_vendor = "unknown",
            target_os = "unknown"
        ),
        wasm_bindgen_test
    )]
    fn gregorian_unix_does_not_panic() {
        // Ensure timestamp conversions never panic
        Timestamp::unix_to_gregorian_ticks(u64::MAX, 0);
        Timestamp::unix_to_gregorian_ticks(0, u32::MAX);
        Timestamp::unix_to_gregorian_ticks(u64::MAX, u32::MAX);

        Timestamp::gregorian_to_unix(u64::MAX);
    }

    #[test]
    #[cfg_attr(
        all(
            target_arch = "wasm32",
            target_vendor = "unknown",
            target_os = "unknown"
        ),
        wasm_bindgen_test
    )]
    fn to_gregorian_truncates_to_usable_bits() {
        let ts = Timestamp::from_gregorian(123, u16::MAX);

        assert_eq!((123, u16::MAX >> 2), ts.to_gregorian());
    }
}