#[repr(C)]pub struct Complex<T> {
pub re: T,
pub im: T,
}
Expand description
A complex number in Cartesian form.
Representation and Foreign Function Interface Compatibility
Complex<T>
is memory layout compatible with an array [T; 2]
.
Note that Complex<F>
where F is a floating point type is only memory
layout compatible with C’s complex types, not necessarily calling
convention compatible. This means that for FFI you can only pass
Complex<F>
behind a pointer, not as a value.
Examples
Example of extern function declaration.
use num_complex::Complex;
use std::os::raw::c_int;
extern "C" {
fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>,
x: *const Complex<f64>, incx: *const c_int,
y: *mut Complex<f64>, incy: *const c_int);
}
Fields
re: T
Real portion of the complex number
im: T
Imaginary portion of the complex number
Implementations
sourceimpl<T> Complex<T> where
T: Clone + Num,
impl<T> Complex<T> where
T: Clone + Num,
sourceimpl<T> Complex<T> where
T: Clone + Signed,
impl<T> Complex<T> where
T: Clone + Signed,
sourcepub fn l1_norm(&self) -> T
pub fn l1_norm(&self) -> T
Returns the L1 norm |re| + |im|
– the Manhattan distance from the origin.
sourceimpl<T> Complex<T> where
T: Float,
impl<T> Complex<T> where
T: Float,
sourcepub fn cis(phase: T) -> Complex<T>
pub fn cis(phase: T) -> Complex<T>
Create a new Complex with a given phase: exp(i * phase)
.
See cis (mathematics).
sourcepub fn to_polar(self) -> (T, T)
pub fn to_polar(self) -> (T, T)
Convert to polar form (r, theta), such that
self = r * exp(i * theta)
sourcepub fn from_polar(r: T, theta: T) -> Complex<T>
pub fn from_polar(r: T, theta: T) -> Complex<T>
Convert a polar representation into a complex number.
sourcepub fn exp(self) -> Complex<T>
pub fn exp(self) -> Complex<T>
Computes e^(self)
, where e
is the base of the natural logarithm.
sourcepub fn ln(self) -> Complex<T>
pub fn ln(self) -> Complex<T>
Computes the principal value of natural logarithm of self
.
This function has one branch cut:
(-∞, 0]
, continuous from above.
The branch satisfies -π ≤ arg(ln(z)) ≤ π
.
sourcepub fn sqrt(self) -> Complex<T>
pub fn sqrt(self) -> Complex<T>
Computes the principal value of the square root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/2 ≤ arg(sqrt(z)) ≤ π/2
.
sourcepub fn cbrt(self) -> Complex<T>
pub fn cbrt(self) -> Complex<T>
Computes the principal value of the cube root of self
.
This function has one branch cut:
(-∞, 0)
, continuous from above.
The branch satisfies -π/3 ≤ arg(cbrt(z)) ≤ π/3
.
Note that this does not match the usual result for the cube root of
negative real numbers. For example, the real cube root of -8
is -2
,
but the principal complex cube root of -8
is 1 + i√3
.
sourcepub fn log(self, base: T) -> Complex<T>
pub fn log(self, base: T) -> Complex<T>
Returns the logarithm of self
with respect to an arbitrary base.
sourcepub fn expf(self, base: T) -> Complex<T>
pub fn expf(self, base: T) -> Complex<T>
Raises a floating point number to the complex power self
.
sourcepub fn asin(self) -> Complex<T>
pub fn asin(self) -> Complex<T>
Computes the principal value of the inverse sine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Re(asin(z)) ≤ π/2
.
sourcepub fn acos(self) -> Complex<T>
pub fn acos(self) -> Complex<T>
Computes the principal value of the inverse cosine of self
.
This function has two branch cuts:
(-∞, -1)
, continuous from above.(1, ∞)
, continuous from below.
The branch satisfies 0 ≤ Re(acos(z)) ≤ π
.
sourcepub fn atan(self) -> Complex<T>
pub fn atan(self) -> Complex<T>
Computes the principal value of the inverse tangent of self
.
This function has two branch cuts:
(-∞i, -i]
, continuous from the left.[i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Re(atan(z)) ≤ π/2
.
sourcepub fn asinh(self) -> Complex<T>
pub fn asinh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic sine of self
.
This function has two branch cuts:
(-∞i, -i)
, continuous from the left.(i, ∞i)
, continuous from the right.
The branch satisfies -π/2 ≤ Im(asinh(z)) ≤ π/2
.
sourcepub fn acosh(self) -> Complex<T>
pub fn acosh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic cosine of self
.
This function has one branch cut:
(-∞, 1)
, continuous from above.
The branch satisfies -π ≤ Im(acosh(z)) ≤ π
and 0 ≤ Re(acosh(z)) < ∞
.
sourcepub fn atanh(self) -> Complex<T>
pub fn atanh(self) -> Complex<T>
Computes the principal value of inverse hyperbolic tangent of self
.
This function has two branch cuts:
(-∞, -1]
, continuous from above.[1, ∞)
, continuous from below.
The branch satisfies -π/2 ≤ Im(atanh(z)) ≤ π/2
.
sourcepub fn finv(self) -> Complex<T>
pub fn finv(self) -> Complex<T>
Returns 1/self
using floating-point operations.
This may be more accurate than the generic self.inv()
in cases
where self.norm_sqr()
would overflow to ∞ or underflow to 0.
Examples
use num_complex::Complex64;
let c = Complex64::new(1e300, 1e300);
// The generic `inv()` will overflow.
assert!(!c.inv().is_normal());
// But we can do better for `Float` types.
let inv = c.finv();
assert!(inv.is_normal());
println!("{:e}", inv);
let expected = Complex64::new(5e-301, -5e-301);
assert!((inv - expected).norm() < 1e-315);
sourcepub fn fdiv(self, other: Complex<T>) -> Complex<T>
pub fn fdiv(self, other: Complex<T>) -> Complex<T>
Returns self/other
using floating-point operations.
This may be more accurate than the generic Div
implementation in cases
where other.norm_sqr()
would overflow to ∞ or underflow to 0.
Examples
use num_complex::Complex64;
let a = Complex64::new(2.0, 3.0);
let b = Complex64::new(1e300, 1e300);
// Generic division will overflow.
assert!(!(a / b).is_normal());
// But we can do better for `Float` types.
let quotient = a.fdiv(b);
assert!(quotient.is_normal());
println!("{:e}", quotient);
let expected = Complex64::new(2.5e-300, 5e-301);
assert!((quotient - expected).norm() < 1e-315);
sourceimpl<T> Complex<T> where
T: Float + FloatConst,
impl<T> Complex<T> where
T: Float + FloatConst,
Trait Implementations
sourceimpl<'a, T> AddAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> AddAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn add_assign(&mut self, other: &Complex<T>)
fn add_assign(&mut self, other: &Complex<T>)
Performs the +=
operation. Read more
sourceimpl<'a, T> AddAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> AddAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
sourcefn add_assign(&mut self, other: &T)
fn add_assign(&mut self, other: &T)
Performs the +=
operation. Read more
sourceimpl<T> AddAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<T> AddAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn add_assign(&mut self, other: Complex<T>)
fn add_assign(&mut self, other: Complex<T>)
Performs the +=
operation. Read more
sourceimpl<T> AddAssign<T> for Complex<T> where
T: Clone + NumAssign,
impl<T> AddAssign<T> for Complex<T> where
T: Clone + NumAssign,
sourcefn add_assign(&mut self, other: T)
fn add_assign(&mut self, other: T)
Performs the +=
operation. Read more
sourceimpl<T, U> AsPrimitive<U> for Complex<T> where
T: AsPrimitive<U>,
U: 'static + Copy,
impl<T, U> AsPrimitive<U> for Complex<T> where
T: AsPrimitive<U>,
U: 'static + Copy,
sourceimpl<T> ComplexFloat for Complex<T> where
T: Float + FloatConst,
impl<T> ComplexFloat for Complex<T> where
T: Float + FloatConst,
type Real = T
type Real = T
The type used to represent the real coefficients of this complex number.
sourcefn re(self) -> <Complex<T> as ComplexFloat>::Real
fn re(self) -> <Complex<T> as ComplexFloat>::Real
Returns the real part of the number.
sourcefn im(self) -> <Complex<T> as ComplexFloat>::Real
fn im(self) -> <Complex<T> as ComplexFloat>::Real
Returns the imaginary part of the number.
sourcefn abs(self) -> <Complex<T> as ComplexFloat>::Real
fn abs(self) -> <Complex<T> as ComplexFloat>::Real
Returns the absolute value of the number. See also Complex::norm
sourcefn recip(self) -> Complex<T>
fn recip(self) -> Complex<T>
Take the reciprocal (inverse) of a number, 1/x
. See also Complex::finv.
sourcefn l1_norm(&self) -> <Complex<T> as ComplexFloat>::Real
fn l1_norm(&self) -> <Complex<T> as ComplexFloat>::Real
Returns the L1 norm |re| + |im|
– the Manhattan distance from the origin. Read more
sourcefn is_infinite(self) -> bool
fn is_infinite(self) -> bool
Returns true
if this value is positive infinity or negative infinity and
false otherwise. Read more
sourcefn arg(self) -> <Complex<T> as ComplexFloat>::Real
fn arg(self) -> <Complex<T> as ComplexFloat>::Real
Computes the argument of the number.
sourcefn powc(
self,
exp: Complex<<Complex<T> as ComplexFloat>::Real>
) -> Complex<<Complex<T> as ComplexFloat>::Real>
fn powc(
self,
exp: Complex<<Complex<T> as ComplexFloat>::Real>
) -> Complex<<Complex<T> as ComplexFloat>::Real>
Raises self
to a complex power.
sourcefn log(self, base: <Complex<T> as ComplexFloat>::Real) -> Complex<T>
fn log(self, base: <Complex<T> as ComplexFloat>::Real) -> Complex<T>
Returns the logarithm of the number with respect to an arbitrary base.
sourcefn powf(self, f: <Complex<T> as ComplexFloat>::Real) -> Complex<T>
fn powf(self, f: <Complex<T> as ComplexFloat>::Real) -> Complex<T>
Raises self
to a real power.
sourcefn asin(self) -> Complex<T>
fn asin(self) -> Complex<T>
Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1]. Read more
sourcefn acos(self) -> Complex<T>
fn acos(self) -> Complex<T>
Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1]. Read more
sourceimpl<'a, T> DivAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> DivAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn div_assign(&mut self, other: &Complex<T>)
fn div_assign(&mut self, other: &Complex<T>)
Performs the /=
operation. Read more
sourceimpl<'a, T> DivAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> DivAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
sourcefn div_assign(&mut self, other: &T)
fn div_assign(&mut self, other: &T)
Performs the /=
operation. Read more
sourceimpl<T> DivAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<T> DivAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn div_assign(&mut self, other: Complex<T>)
fn div_assign(&mut self, other: Complex<T>)
Performs the /=
operation. Read more
sourceimpl<T> DivAssign<T> for Complex<T> where
T: Clone + NumAssign,
impl<T> DivAssign<T> for Complex<T> where
T: Clone + NumAssign,
sourcefn div_assign(&mut self, other: T)
fn div_assign(&mut self, other: T)
Performs the /=
operation. Read more
sourceimpl<T> FromPrimitive for Complex<T> where
T: FromPrimitive + Num,
impl<T> FromPrimitive for Complex<T> where
T: FromPrimitive + Num,
sourcefn from_usize(n: usize) -> Option<Complex<T>>
fn from_usize(n: usize) -> Option<Complex<T>>
Converts a usize
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_isize(n: isize) -> Option<Complex<T>>
fn from_isize(n: isize) -> Option<Complex<T>>
Converts an isize
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u8(n: u8) -> Option<Complex<T>>
fn from_u8(n: u8) -> Option<Complex<T>>
Converts an u8
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u16(n: u16) -> Option<Complex<T>>
fn from_u16(n: u16) -> Option<Complex<T>>
Converts an u16
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u32(n: u32) -> Option<Complex<T>>
fn from_u32(n: u32) -> Option<Complex<T>>
Converts an u32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u64(n: u64) -> Option<Complex<T>>
fn from_u64(n: u64) -> Option<Complex<T>>
Converts an u64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i8(n: i8) -> Option<Complex<T>>
fn from_i8(n: i8) -> Option<Complex<T>>
Converts an i8
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i16(n: i16) -> Option<Complex<T>>
fn from_i16(n: i16) -> Option<Complex<T>>
Converts an i16
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i32(n: i32) -> Option<Complex<T>>
fn from_i32(n: i32) -> Option<Complex<T>>
Converts an i32
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i64(n: i64) -> Option<Complex<T>>
fn from_i64(n: i64) -> Option<Complex<T>>
Converts an i64
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_u128(n: u128) -> Option<Complex<T>>
fn from_u128(n: u128) -> Option<Complex<T>>
Converts an u128
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourcefn from_i128(n: i128) -> Option<Complex<T>>
fn from_i128(n: i128) -> Option<Complex<T>>
Converts an i128
to return an optional value of this type. If the
value cannot be represented by this type, then None
is returned. Read more
sourceimpl<'a, 'b, T> MulAdd<&'b Complex<T>, &'a Complex<T>> for &'a Complex<T> where
T: Clone + Num + MulAdd<T, T, Output = T>,
impl<'a, 'b, T> MulAdd<&'b Complex<T>, &'a Complex<T>> for &'a Complex<T> where
T: Clone + Num + MulAdd<T, T, Output = T>,
sourceimpl<T> MulAdd<Complex<T>, Complex<T>> for Complex<T> where
T: Clone + Num + MulAdd<T, T, Output = T>,
impl<T> MulAdd<Complex<T>, Complex<T>> for Complex<T> where
T: Clone + Num + MulAdd<T, T, Output = T>,
sourceimpl<'a, 'b, T> MulAddAssign<&'a Complex<T>, &'b Complex<T>> for Complex<T> where
T: Clone + NumAssign + MulAddAssign<T, T>,
impl<'a, 'b, T> MulAddAssign<&'a Complex<T>, &'b Complex<T>> for Complex<T> where
T: Clone + NumAssign + MulAddAssign<T, T>,
sourcefn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>)
fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>)
Performs the fused multiply-add assignment operation *self = (*self * a) + b
sourceimpl<T> MulAddAssign<Complex<T>, Complex<T>> for Complex<T> where
T: Clone + NumAssign + MulAddAssign<T, T>,
impl<T> MulAddAssign<Complex<T>, Complex<T>> for Complex<T> where
T: Clone + NumAssign + MulAddAssign<T, T>,
sourcefn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>)
fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>)
Performs the fused multiply-add assignment operation *self = (*self * a) + b
sourceimpl<'a, T> MulAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> MulAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn mul_assign(&mut self, other: &Complex<T>)
fn mul_assign(&mut self, other: &Complex<T>)
Performs the *=
operation. Read more
sourceimpl<'a, T> MulAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> MulAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
sourcefn mul_assign(&mut self, other: &T)
fn mul_assign(&mut self, other: &T)
Performs the *=
operation. Read more
sourceimpl<T> MulAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<T> MulAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn mul_assign(&mut self, other: Complex<T>)
fn mul_assign(&mut self, other: Complex<T>)
Performs the *=
operation. Read more
sourceimpl<T> MulAssign<T> for Complex<T> where
T: Clone + NumAssign,
impl<T> MulAssign<T> for Complex<T> where
T: Clone + NumAssign,
sourcefn mul_assign(&mut self, other: T)
fn mul_assign(&mut self, other: T)
Performs the *=
operation. Read more
sourceimpl<T> Num for Complex<T> where
T: Num + Clone,
impl<T> Num for Complex<T> where
T: Num + Clone,
sourcefn from_str_radix(
s: &str,
radix: u32
) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>
fn from_str_radix(
s: &str,
radix: u32
) -> Result<Complex<T>, <Complex<T> as Num>::FromStrRadixErr>
Parses a +/- bi
; ai +/- b
; a
; or bi
where a
and b
are of type T
radix
must be <= 18; larger radix would include i and j as digits,
which cannot be supported.
The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36.
The elements of T
are parsed using Num::from_str_radix
too, and errors
(or panics) from that are reflected here as well.
type FromStrRadixErr = ParseComplexError<<T as Num>::FromStrRadixErr>
sourceimpl<'a, T> RemAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> RemAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn rem_assign(&mut self, other: &Complex<T>)
fn rem_assign(&mut self, other: &Complex<T>)
Performs the %=
operation. Read more
sourceimpl<'a, T> RemAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> RemAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
sourcefn rem_assign(&mut self, other: &T)
fn rem_assign(&mut self, other: &T)
Performs the %=
operation. Read more
sourceimpl<T> RemAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<T> RemAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn rem_assign(&mut self, modulus: Complex<T>)
fn rem_assign(&mut self, modulus: Complex<T>)
Performs the %=
operation. Read more
sourceimpl<T> RemAssign<T> for Complex<T> where
T: Clone + NumAssign,
impl<T> RemAssign<T> for Complex<T> where
T: Clone + NumAssign,
sourcefn rem_assign(&mut self, other: T)
fn rem_assign(&mut self, other: T)
Performs the %=
operation. Read more
sourceimpl<'a, T> SubAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> SubAssign<&'a Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn sub_assign(&mut self, other: &Complex<T>)
fn sub_assign(&mut self, other: &Complex<T>)
Performs the -=
operation. Read more
sourceimpl<'a, T> SubAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
impl<'a, T> SubAssign<&'a T> for Complex<T> where
T: Clone + NumAssign,
sourcefn sub_assign(&mut self, other: &T)
fn sub_assign(&mut self, other: &T)
Performs the -=
operation. Read more
sourceimpl<T> SubAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
impl<T> SubAssign<Complex<T>> for Complex<T> where
T: Clone + NumAssign,
sourcefn sub_assign(&mut self, other: Complex<T>)
fn sub_assign(&mut self, other: Complex<T>)
Performs the -=
operation. Read more
sourceimpl<T> SubAssign<T> for Complex<T> where
T: Clone + NumAssign,
impl<T> SubAssign<T> for Complex<T> where
T: Clone + NumAssign,
sourcefn sub_assign(&mut self, other: T)
fn sub_assign(&mut self, other: T)
Performs the -=
operation. Read more
sourceimpl<T> ToPrimitive for Complex<T> where
T: ToPrimitive + Num,
impl<T> ToPrimitive for Complex<T> where
T: ToPrimitive + Num,
sourcefn to_usize(&self) -> Option<usize>
fn to_usize(&self) -> Option<usize>
Converts the value of self
to a usize
. If the value cannot be
represented by a usize
, then None
is returned. Read more
sourcefn to_isize(&self) -> Option<isize>
fn to_isize(&self) -> Option<isize>
Converts the value of self
to an isize
. If the value cannot be
represented by an isize
, then None
is returned. Read more
sourcefn to_u8(&self) -> Option<u8>
fn to_u8(&self) -> Option<u8>
Converts the value of self
to a u8
. If the value cannot be
represented by a u8
, then None
is returned. Read more
sourcefn to_u16(&self) -> Option<u16>
fn to_u16(&self) -> Option<u16>
Converts the value of self
to a u16
. If the value cannot be
represented by a u16
, then None
is returned. Read more
sourcefn to_u32(&self) -> Option<u32>
fn to_u32(&self) -> Option<u32>
Converts the value of self
to a u32
. If the value cannot be
represented by a u32
, then None
is returned. Read more
sourcefn to_u64(&self) -> Option<u64>
fn to_u64(&self) -> Option<u64>
Converts the value of self
to a u64
. If the value cannot be
represented by a u64
, then None
is returned. Read more
sourcefn to_i8(&self) -> Option<i8>
fn to_i8(&self) -> Option<i8>
Converts the value of self
to an i8
. If the value cannot be
represented by an i8
, then None
is returned. Read more
sourcefn to_i16(&self) -> Option<i16>
fn to_i16(&self) -> Option<i16>
Converts the value of self
to an i16
. If the value cannot be
represented by an i16
, then None
is returned. Read more
sourcefn to_i32(&self) -> Option<i32>
fn to_i32(&self) -> Option<i32>
Converts the value of self
to an i32
. If the value cannot be
represented by an i32
, then None
is returned. Read more
sourcefn to_i64(&self) -> Option<i64>
fn to_i64(&self) -> Option<i64>
Converts the value of self
to an i64
. If the value cannot be
represented by an i64
, then None
is returned. Read more
sourcefn to_u128(&self) -> Option<u128>
fn to_u128(&self) -> Option<u128>
Converts the value of self
to a u128
. If the value cannot be
represented by a u128
(u64
under the default implementation), then
None
is returned. Read more
sourcefn to_i128(&self) -> Option<i128>
fn to_i128(&self) -> Option<i128>
Converts the value of self
to an i128
. If the value cannot be
represented by an i128
(i64
under the default implementation), then
None
is returned. Read more
impl<T> Copy for Complex<T> where
T: Copy,
impl<T> Eq for Complex<T> where
T: Eq,
impl<T> StructuralEq for Complex<T>
impl<T> StructuralPartialEq for Complex<T>
Auto Trait Implementations
impl<T> RefUnwindSafe for Complex<T> where
T: RefUnwindSafe,
impl<T> Send for Complex<T> where
T: Send,
impl<T> Sync for Complex<T> where
T: Sync,
impl<T> Unpin for Complex<T> where
T: Unpin,
impl<T> UnwindSafe for Complex<T> where
T: UnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more