1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
use hacspec_lib::*;
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct Jacobian<T: UnsignedIntegerCopy>(pub T, pub T, pub T);
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct Affine<T: UnsignedIntegerCopy>(pub T, pub T);
fn jacobian_to_affine<T: UnsignedIntegerCopy>(p: Jacobian<T>) -> Affine<T> {
let (x, y, z) = (p.0, p.1, p.2);
let z2 = z.exp(2);
let z2i = z2.inv(T::default());
let z3 = z * z2;
let z3i = z3.inv(T::default());
let x = x * z2i;
let y = y * z3i;
Affine(x, y)
}
fn affine_to_jacobian<T: UnsignedIntegerCopy>(p: Affine<T>) -> Jacobian<T> {
Jacobian(p.0, p.1, T::from_literal(1))
}
fn point_double<T: UnsignedIntegerCopy>(p: Jacobian<T>) -> Jacobian<T> {
let (x1, y1, z1) = (p.0, p.1, p.2);
let delta = z1.exp(2);
let gamma = y1.exp(2);
let beta = x1 * gamma;
let alpha_1 = x1 - delta;
let alpha_2 = x1 + delta;
let alpha = T::from_literal(3) * (alpha_1 * alpha_2);
let x3 = alpha.exp(2) - (T::from_literal(8) * beta);
let z3_ = (y1 + z1).exp(2);
let z3 = z3_ - (gamma + delta);
let y3_1 = (T::from_literal(4) * beta) - x3;
let y3_2 = T::from_literal(8) * (gamma * gamma);
let y3 = (alpha * y3_1) - y3_2;
Jacobian(x3, y3, z3)
}
fn is_point_at_infinity<T: UnsignedIntegerCopy>(p: Jacobian<T>) -> bool {
p.2.equal(T::from_literal(0))
}
fn point_add<T: UnsignedIntegerCopy>(p: Jacobian<T>, q: Jacobian<T>) -> Jacobian<T> {
if is_point_at_infinity(p) {
return q;
}
if is_point_at_infinity(q) {
return p;
}
let (x1, y1, z1) = (p.0, p.1, p.2);
let (x2, y2, z2) = (q.0, q.1, q.2);
let z1z1 = z1.exp(2);
let z2z2 = z2.exp(2);
let u1 = x1 * z2z2;
let u2 = x2 * z1z1;
let s1 = (y1 * z2) * z2z2;
let s2 = (y2 * z1) * z1z1;
if u1.equal(u2) {
assert!(!s1.equal(s2));
return Jacobian(T::from_literal(0), T::from_literal(1), T::from_literal(0));
}
let h = u2 - u1;
let i = (T::from_literal(2) * h).exp(2);
let j = h * i;
let r = T::from_literal(2) * (s2 - s1);
let v = u1 * i;
let x3_1 = T::from_literal(2) * v;
let x3_2 = r.exp(2) - j;
let x3 = x3_2 - x3_1;
let y3_1 = (T::from_literal(2) * s1) * j;
let y3_2 = r * (v - x3);
let y3 = y3_2 - y3_1;
let z3_ = (z1 + z2).exp(2);
let z3 = (z3_ - (z1z1 + z2z2)) * h;
Jacobian(x3, y3, z3)
}
#[allow(dead_code)]
fn montgomery_ladder<T: UnsignedIntegerCopy, I: UnsignedIntegerCopy>(
k: I,
init: Jacobian<T>,
) -> Jacobian<T> {
let mut p_working = (
Jacobian(T::from_literal(0), T::from_literal(1), T::from_literal(0)),
init,
);
for i in 0..T::NUM_BITS {
if k.get_bit(T::NUM_BITS - 1 - i).equal(I::ONE()) {
p_working = (p_working.1, p_working.0);
}
let xx = point_double(p_working.0);
let xp1 = point_add(p_working.0, p_working.1);
if k.get_bit(T::NUM_BITS - 1 - i).equal(I::ONE()) {
p_working = (xp1, xx);
} else {
p_working = (xx, xp1);
}
}
p_working.0
}
fn ltr_mul<T: UnsignedIntegerCopy, I: UnsignedIntegerCopy>(k: I, p: Jacobian<T>) -> Jacobian<T> {
let mut q = Jacobian(T::from_literal(0), T::from_literal(1), T::from_literal(0));
for i in 0..T::NUM_BITS {
q = point_double(q);
if k.get_bit(T::NUM_BITS - 1 - i).equal(I::ONE()) {
q = point_add(q, p);
}
}
q
}
pub fn point_mul<T: UnsignedIntegerCopy, I: UnsignedIntegerCopy>(k: I, p: Affine<T>) -> Affine<T> {
let jac = ltr_mul(k, affine_to_jacobian(p));
jacobian_to_affine(jac)
}