pub struct ExistentialProjection<I>where
I: Interner,{
pub def_id: <I as Interner>::DefId,
pub args: <I as Interner>::GenericArgs,
pub term: <I as Interner>::Term,
use_existential_projection_new_instead: (),
}
Expand description
A ProjectionPredicate
for an ExistentialTraitRef
.
Fields§
§def_id: <I as Interner>::DefId
§args: <I as Interner>::GenericArgs
§term: <I as Interner>::Term
§use_existential_projection_new_instead: ()
Implementations§
source§impl<I> ExistentialProjection<I>where
I: Interner,
impl<I> ExistentialProjection<I>where
I: Interner,
pub fn new_from_args( interner: I, def_id: <I as Interner>::DefId, args: <I as Interner>::GenericArgs, term: <I as Interner>::Term, ) -> ExistentialProjection<I>
pub fn new(
interner: I,
def_id: <I as Interner>::DefId,
args: impl IntoIterator- >,
term: <I as Interner>::Term,
) -> ExistentialProjection<I>
sourcepub fn trait_ref(&self, interner: I) -> ExistentialTraitRef<I>
pub fn trait_ref(&self, interner: I) -> ExistentialTraitRef<I>
Extracts the underlying existential trait reference from this projection.
For example, if this is a projection of exists T. <T as Iterator>::Item == X
,
then this function would return an exists T. T: Iterator
existential trait
reference.
pub fn with_self_ty( &self, interner: I, self_ty: <I as Interner>::Ty, ) -> ProjectionPredicate<I>
pub fn erase_self_ty( interner: I, projection_predicate: ProjectionPredicate<I>, ) -> ExistentialProjection<I>
Trait Implementations§
source§impl<I> Clone for ExistentialProjection<I>where
I: Interner,
impl<I> Clone for ExistentialProjection<I>where
I: Interner,
source§fn clone(&self) -> ExistentialProjection<I>
fn clone(&self) -> ExistentialProjection<I>
Returns a copy of the value. Read more
source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moresource§impl<I> Debug for ExistentialProjection<I>where
I: Interner,
impl<I> Debug for ExistentialProjection<I>where
I: Interner,
source§impl<I, __D> Decodable<__D> for ExistentialProjection<I>
impl<I, __D> Decodable<__D> for ExistentialProjection<I>
fn decode(__decoder: &mut __D) -> ExistentialProjection<I>
source§impl<I> Display for ExistentialProjection<I>where
I: Interner,
impl<I> Display for ExistentialProjection<I>where
I: Interner,
source§impl<I, __E> Encodable<__E> for ExistentialProjection<I>
impl<I, __E> Encodable<__E> for ExistentialProjection<I>
source§impl<I> Hash for ExistentialProjection<I>where
I: Interner,
impl<I> Hash for ExistentialProjection<I>where
I: Interner,
source§impl<I, __CTX> HashStable<__CTX> for ExistentialProjection<I>where
I: Interner,
<I as Interner>::DefId: HashStable<__CTX>,
<I as Interner>::GenericArgs: HashStable<__CTX>,
<I as Interner>::Term: HashStable<__CTX>,
impl<I, __CTX> HashStable<__CTX> for ExistentialProjection<I>where
I: Interner,
<I as Interner>::DefId: HashStable<__CTX>,
<I as Interner>::GenericArgs: HashStable<__CTX>,
<I as Interner>::Term: HashStable<__CTX>,
fn hash_stable( &self, __hcx: &mut __CTX, __hasher: &mut StableHasher<SipHasher128>, )
source§impl<I, J> Lift<J> for ExistentialProjection<I>
impl<I, J> Lift<J> for ExistentialProjection<I>
type Lifted = ExistentialProjection<J>
fn lift_to_interner(self, interner: J) -> Option<ExistentialProjection<J>>
source§impl<I> PartialEq for ExistentialProjection<I>where
I: Interner,
impl<I> PartialEq for ExistentialProjection<I>where
I: Interner,
source§impl<'tcx, P> Print<'tcx, P> for ExistentialProjection<TyCtxt<'tcx>>where
P: PrettyPrinter<'tcx>,
impl<'tcx, P> Print<'tcx, P> for ExistentialProjection<TyCtxt<'tcx>>where
P: PrettyPrinter<'tcx>,
source§impl<I> Relate<I> for ExistentialProjection<I>where
I: Interner,
impl<I> Relate<I> for ExistentialProjection<I>where
I: Interner,
fn relate<R>(
relation: &mut R,
a: ExistentialProjection<I>,
b: ExistentialProjection<I>,
) -> Result<ExistentialProjection<I>, TypeError<I>>where
R: TypeRelation<I>,
source§impl<I> TypeFoldable<I> for ExistentialProjection<I>where
I: Interner,
<I as Interner>::DefId: TypeFoldable<I>,
<I as Interner>::GenericArgs: TypeFoldable<I>,
<I as Interner>::Term: TypeFoldable<I>,
impl<I> TypeFoldable<I> for ExistentialProjection<I>where
I: Interner,
<I as Interner>::DefId: TypeFoldable<I>,
<I as Interner>::GenericArgs: TypeFoldable<I>,
<I as Interner>::Term: TypeFoldable<I>,
source§fn try_fold_with<__F>(
self,
__folder: &mut __F,
) -> Result<ExistentialProjection<I>, <__F as FallibleTypeFolder<I>>::Error>where
__F: FallibleTypeFolder<I>,
fn try_fold_with<__F>(
self,
__folder: &mut __F,
) -> Result<ExistentialProjection<I>, <__F as FallibleTypeFolder<I>>::Error>where
__F: FallibleTypeFolder<I>,
source§fn fold_with<F>(self, folder: &mut F) -> Selfwhere
F: TypeFolder<I>,
fn fold_with<F>(self, folder: &mut F) -> Selfwhere
F: TypeFolder<I>,
A convenient alternative to
try_fold_with
for use with infallible
folders. Do not override this method, to ensure coherence with
try_fold_with
.source§impl<I> TypeVisitable<I> for ExistentialProjection<I>where
I: Interner,
<I as Interner>::DefId: TypeVisitable<I>,
<I as Interner>::GenericArgs: TypeVisitable<I>,
<I as Interner>::Term: TypeVisitable<I>,
impl<I> TypeVisitable<I> for ExistentialProjection<I>where
I: Interner,
<I as Interner>::DefId: TypeVisitable<I>,
<I as Interner>::GenericArgs: TypeVisitable<I>,
<I as Interner>::Term: TypeVisitable<I>,
source§fn visit_with<__V>(
&self,
__visitor: &mut __V,
) -> <__V as TypeVisitor<I>>::Resultwhere
__V: TypeVisitor<I>,
fn visit_with<__V>(
&self,
__visitor: &mut __V,
) -> <__V as TypeVisitor<I>>::Resultwhere
__V: TypeVisitor<I>,
impl<I> Copy for ExistentialProjection<I>where
I: Interner,
impl<I> Eq for ExistentialProjection<I>where
I: Interner,
Auto Trait Implementations§
impl<I> DynSend for ExistentialProjection<I>
impl<I> DynSync for ExistentialProjection<I>
impl<I> Freeze for ExistentialProjection<I>
impl<I> RefUnwindSafe for ExistentialProjection<I>where
<I as Interner>::DefId: RefUnwindSafe,
<I as Interner>::GenericArgs: RefUnwindSafe,
<I as Interner>::Term: RefUnwindSafe,
impl<I> Send for ExistentialProjection<I>
impl<I> Sync for ExistentialProjection<I>
impl<I> Unpin for ExistentialProjection<I>
impl<I> UnwindSafe for ExistentialProjection<I>where
<I as Interner>::DefId: UnwindSafe,
<I as Interner>::GenericArgs: UnwindSafe,
<I as Interner>::Term: UnwindSafe,
Blanket Implementations§
source§impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere
T: Copy,
impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere
T: Copy,
fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut T
fn allocate_from_iter( arena: &'tcx Arena<'tcx>, iter: impl IntoIterator<Item = T>, ) -> &'tcx mut [T]
source§impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere
T: Copy,
impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for Twhere
T: Copy,
fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut T
fn allocate_from_iter( arena: &'tcx Arena<'tcx>, iter: impl IntoIterator<Item = T>, ) -> &'tcx mut [T]
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
🔬This is a nightly-only experimental API. (
clone_to_uninit
)source§impl<T, R> CollectAndApply<T, R> for T
impl<T, R> CollectAndApply<T, R> for T
source§impl<Tcx, T> DepNodeParams<Tcx> for T
impl<Tcx, T> DepNodeParams<Tcx> for T
default fn fingerprint_style() -> FingerprintStyle
source§default fn to_fingerprint(&self, tcx: Tcx) -> Fingerprint
default fn to_fingerprint(&self, tcx: Tcx) -> Fingerprint
This method turns the parameters of a DepNodeConstructor into an opaque
Fingerprint to be used in DepNode.
Not all DepNodeParams support being turned into a Fingerprint (they
don’t need to if the corresponding DepNode is anonymous).
default fn to_debug_str(&self, _: Tcx) -> String
source§default fn recover(_: Tcx, _: &DepNode) -> Option<T>
default fn recover(_: Tcx, _: &DepNode) -> Option<T>
This method tries to recover the query key from the given
DepNode
,
something which is needed when forcing DepNode
s during red-green
evaluation. The query system will only call this method if
fingerprint_style()
is not FingerprintStyle::Opaque
.
It is always valid to return None
here, in which case incremental
compilation will treat the query as having changed instead of forcing it.source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
Compare self to
key
and return true
if they are equal.source§impl<T> Filterable for T
impl<T> Filterable for T
source§fn filterable(
self,
filter_name: &'static str,
) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>
fn filterable( self, filter_name: &'static str, ) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>
Creates a filterable data provider with the given name for debugging. Read more
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§impl<P> IntoQueryParam<P> for P
impl<P> IntoQueryParam<P> for P
fn into_query_param(self) -> P
source§impl<'tcx, T> IsSuggestable<'tcx> for T
impl<'tcx, T> IsSuggestable<'tcx> for T
source§impl<T> MaybeResult<T> for T
impl<T> MaybeResult<T> for T
source§impl<T> Pointable for T
impl<T> Pointable for T
source§impl<I, T> TypeVisitableExt<I> for Twhere
I: Interner,
T: TypeVisitable<I>,
impl<I, T> TypeVisitableExt<I> for Twhere
I: Interner,
T: TypeVisitable<I>,
fn has_type_flags(&self, flags: TypeFlags) -> bool
source§fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool
fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool
Returns
true
if self
has any late-bound regions that are either
bound by binder
or bound by some binder outside of binder
.
If binder
is ty::INNERMOST
, this indicates whether
there are any late-bound regions that appear free.fn error_reported(&self) -> Result<(), <I as Interner>::ErrorGuaranteed>
source§fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool
fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool
Returns
true
if this type has any regions that escape binder
(and
hence are not bound by it).source§fn has_escaping_bound_vars(&self) -> bool
fn has_escaping_bound_vars(&self) -> bool
Return
true
if this type has regions that are not a part of the type.
For example, for<'a> fn(&'a i32)
return false
, while fn(&'a i32)
would return true
. The latter can occur when traversing through the
former. Read morefn has_aliases(&self) -> bool
fn has_opaque_types(&self) -> bool
fn has_coroutines(&self) -> bool
fn references_error(&self) -> bool
fn has_non_region_param(&self) -> bool
fn has_infer_regions(&self) -> bool
fn has_infer_types(&self) -> bool
fn has_non_region_infer(&self) -> bool
fn has_infer(&self) -> bool
fn has_placeholders(&self) -> bool
fn has_non_region_placeholders(&self) -> bool
fn has_param(&self) -> bool
source§fn has_free_regions(&self) -> bool
fn has_free_regions(&self) -> bool
“Free” regions in this context means that it has any region
that is not (a) erased or (b) late-bound.
fn has_erased_regions(&self) -> bool
source§fn has_erasable_regions(&self) -> bool
fn has_erasable_regions(&self) -> bool
True if there are any un-erased free regions.
source§fn is_global(&self) -> bool
fn is_global(&self) -> bool
Indicates whether this value references only ‘global’
generic parameters that are the same regardless of what fn we are
in. This is used for caching.
source§fn has_bound_regions(&self) -> bool
fn has_bound_regions(&self) -> bool
True if there are any late-bound regions
source§fn has_non_region_bound_vars(&self) -> bool
fn has_non_region_bound_vars(&self) -> bool
True if there are any late-bound non-region variables
source§fn has_bound_vars(&self) -> bool
fn has_bound_vars(&self) -> bool
True if there are any bound variables
source§fn still_further_specializable(&self) -> bool
fn still_further_specializable(&self) -> bool
Indicates whether this value still has parameters/placeholders/inference variables
which could be replaced later, in a way that would change the results of
impl
specialization.source§impl<I, T, U> Upcast<I, U> for Twhere
U: UpcastFrom<I, T>,
impl<I, T, U> Upcast<I, U> for Twhere
U: UpcastFrom<I, T>,
source§impl<I, T> UpcastFrom<I, T> for T
impl<I, T> UpcastFrom<I, T> for T
fn upcast_from(from: T, _tcx: I) -> T
source§impl<Tcx, T> Value<Tcx> for Twhere
Tcx: DepContext,
impl<Tcx, T> Value<Tcx> for Twhere
Tcx: DepContext,
default fn from_cycle_error( tcx: Tcx, cycle_error: &CycleError, _guar: ErrorGuaranteed, ) -> T
source§impl<T> WithSubscriber for T
impl<T> WithSubscriber for T
source§fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
source§fn with_current_subscriber(self) -> WithDispatch<Self>
fn with_current_subscriber(self) -> WithDispatch<Self>
impl<'a, T> Captures<'a> for Twhere
T: ?Sized,
impl<T> ErasedDestructor for Twhere
T: 'static,
impl<T> MaybeSendSync for T
Layout§
Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.